Paracellular Cl− permeability is regulated by WNK4 kinase: Insight into normal physiology and hypertension

*Departments of Genetics, Medicine, and Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; Departments of †Cellular and Molecular Physiology and ¶Pathology, Yale University School of Medicine, New Haven, CT 06510; and §Renal Unit and Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114

Contributed by Richard P. Lifton, August 20, 2004

Paracellular ion flux across epithelia occurs through selective and regulated pores in tight junctions; this process is poorly understood. Mutations in the kinase WNK4 cause pseudohypoaldosteronism type II (PHAII), a disease featuring hypertension and hyperkalemia. Whereas WNK4 is known to regulate several transcellular transporters and channels involved in NaCl and K+ homeostasis, its localization to tight junctions suggests it might also regulate paracellular flux. We performed electrophysiology on mammalian kidney epithelia with inducible expression of various WNK4 constructs. Induction of wild-type WNK4 reduced transepithelial resistance by increasing absolute chloride permeability. PHAII-mutant WNK4 produced markedly larger effects, whereas kinase-mutant WNK4 had no effect. The electrochemical and pharmacologic properties of these effects indicate they are attributable to the paracellular pathway. The effects of WNK4 persist when induction is delayed until after tight-junction formation, demonstrating a dynamic effect. WNK4 did not alter the flux of uncharged solutes, or the expression or localization of selected tight-junction proteins. Transmission and freeze-fracture electron microscopy showed no effect of WNK4 on tight-junction structure. These findings implicate WNK signaling in the coordination of transcellular and paracellular flux to achieve NaCl and K+ homeostasis, explain PHAII pathophysiology, and suggest that modifiers of WNK signaling may be potent antihypertensive agents.

The study of rare inherited diseases has the potential to identify integral components of complex regulatory networks. Pseudohypoaldosteronism type II (PHAII) is a rare genetic disease featuring hypertension and hyperkalemia (14). Positional cloning identified mutations in genes encoding the serine-threonine kinases WNK1 and WNK4 as a cause of this disease (15). Recent work has demonstrated that these proteins regulate diverse transcellular ion transport pathways; in the kidney, they inhibit the thiazide-sensitive NaCl cotransporter and the renal outer medullary K+ channel (16–18). Importantly, the missense mutations in WNK4 that cause PHAII relieve inhibition of the NaCl cotransporter (16, 17), but increase inhibition of the renal outer medullary K+ channel (18). These findings establish that WNKs act as a molecular switch that allows the kidney to alternate between NaCl-reabsorbing and K+-secreting states (18, 19). In extrarenal epithelia, WNK4 regulates other transporters and exchangers, establishing pleiotropic roles for these proteins (20).

In many epithelia, including kidney, WNKs localize tight junctions (15, 20, 21). This localization, the role of WNK4 in regulating the balance between NaCl reabsorption and K+ secretion (15–20), and the Cl− dependence of PHAII phenotypes (22, 23), suggest WNK4 might also play a role in paracellular Cl− flux, because this pathway plays a major role in NaCl homeostasis in the distal nephron. We report an investigation of WNK4 in the regulation of paracellular permeability in mammalian kidney epithelia.

Methods

Generation and Culture of Madin–Darby Canine Kidney (MDCK) II tet-off Wild-Type and Mutant WNK4 Cell Lines. cDNAs encoding full-length mouse WT-WNK4, WNK4-Q562E, WNK-E559K, and WNK-D318A (16), each tagged at the carboxyl terminus with hemagglutinin (HA), were subcloned into the pTRE2hyg expression vector (Clontech) and transfected into MDCK II tet-off cells. Transfected clones were selected for hygromycin B resistance. Resistant clones were maintained in high-glucose DMEM with hygromycin and 50 ng/ml doxycycline. Cell lines were screened for induction of WNK4 by incubation without doxycycline, followed by cell lysis and Western blotting with a rabbit anti-HA antibody (16).

Immunofluorescence Microscopy. For immunofluorescence and electrophysiological experiments, cells were plated onto porous filters (clear polyester or opaque polycarbonate Transwell filters; Corning Life Sciences, Corning, NY) either with doxycycline (50 ng/ml) or without doxycycline. Experiments were performed on day 4 after plating, corresponding with peak induction of WNK4 (data not shown). WNK4 was detected by immunofluorescence microscopy after staining with mouse (Roche Diagnostics, 1 Gilbert Street, TAC S341, New Haven, CT 06510).
Baseline TER and dilution potentials were measured in buffer A, after which the same buffer containing the indicated drug [amiloride (0.1 mM), -disulfonic acid (0.1 mM), or hydrochlorothiazide (0.1 mM)] was then substituted with 72.5 mM NaCl buffer and the junction of interest bathed in 145 mM NaCl and connected through an NaCl concentration. It follows that the absolute permeabilities of Na\(^+\) (\(P_{\text{Na}}\)) and Cl\(^-\) (\(P_{\text{Cl}}\)) were calculated by using a simplified Kimizuka–Koketsu equation (25),

\[
P_{\text{Na}} = G \frac{(RT/F^2)}{\alpha(1 + \beta)},
\]

where \(G\) is conductance per unit of surface area and \(\alpha\) is the NaCl concentration. It follows that

\[
P_{\text{Cl}} = P_{\text{Na}} \beta.
\]

TER and dilution potential measurements were performed in triplicate on each of three different clonal cell lines in at least three independent experiments; results from independent clones of each construct showed no significant differences and were treated as independent measures. For each construct, the mean TER of uninuded monolayers is adjusted to a value of 100%, and TER after induction is expressed as the percentage of this value. Dilution potentials are shown as raw data. All data are expressed as mean ± SEM, and statistical comparisons between groups are made by a paired \(t\) test (induced vs. uninduced), or by an unpaired \(t\) test for comparison of effects of different constructs. Two-tailed \(P\) values are reported.

Inhibitors of Transcellular Transport Studies. Baseline TER and dilution potentials were measured in buffer A, after which the same buffer containing the indicated drug [amiloride (0.1 mM), bumetanide (0.01 mM), 4-acetamido-4′-isothiocyanato-stibene-2,2′-disulfonic acid (0.1 mM), or hydrochlorothiazide (0.1 mM) each from Sigma] was substituted in the apical and basal chambers. Measurements were repeated, and the apical buffer A was replaced with buffer B, containing the indicated drug. TER and dilution potentials were again determined.

Electrophysiology. Current–voltage (I–V) relationships were acquired by voltage clamping monolayers between -50 and +50 mV and transepithelial resistance (TER) was calculated from Ohm’s law. The resistance of blank filters was 21.7 ± 0.1 Ω cm\(^2\), and was subtracted from the values obtained for monolayers. TER was measured with buffer A, composed of 145 mM NaCl, 5 mM KCl, 1.2 mM CaCl\(_2\), 1 mM MgCl\(_2\), 10 mM glucose, and 10 mM Hepes (pH 7.4) in both apical and basolateral chambers.

Dilution potentials were measured with apical buffer (buffer A), and a basal buffer B that differed from buffer A by the substitution of 72.5 for 145 mM NaCl; isoosmolarity was maintained by addition of 145 mM mannitol. All transepithelial voltages are reported as \(V_1-V_2\), where the \(V_1\) electrode is in the apical compartment and \(V_2\) is in the basal compartment. The junction potential at the Ag/AgCl voltage electrodes exposed to a change in Cl\(^-\) activity was measured before and after and dilution potential determination. Junction potentials were measured by first recording the offset potential with the AgCl voltage electrodes exposed to a change in Cl\(^-\) activity was measured before and after and dilution potential determination. Junction potentials were measured by first recording the offset potential with the Ag/AgCl electrode of interest bathed in 145 mM NaCl and connected through an agar bridge (3% agar in 3 M KCl) to the reference electrode bathed in 3 M KCl. The solution bathing the Ag/AgCl electrode was then substituted with 72.5 mM NaCl buffer and the junction potentials were recorded. The observed junction potentials corresponded well with those calculated from the Nernst equation for a perfect Cl\(^-\) selective conductance (24).

The ion permeability ratio (\(\beta\)) for the monolayer was calculated from the dilution potential by using the Goldman–Hodgkin–Katz equation (24), where \(\beta\) is the ratio of the permeability of the monolayer to Cl\(^-\) over the permeability to Na\(^+\) ions (\(\beta = P_{\text{Cl}}/P_{\text{Na}}\)).

The absolute permeabilities of Na\(^+\) (\(P_{\text{Na}}\)) and Cl\(^-\) (\(P_{\text{Cl}}\)) were calculated by using a simplified Kimizuka–Koketsu equation (25),

\[
P_{\text{Na}} = G \frac{(RT/F^2)}{\alpha(1 + \beta)},
\]

where \(G\) is conductance per unit of surface area and \(\alpha\) is the NaCl concentration. It follows that

\[
P_{\text{Cl}} = P_{\text{Na}} \beta.
\]

TER and dilution potential measurements were performed in triplicate on each of three different clonal cell lines in at least three independent experiments; results from independent clones of each construct showed no significant differences and were treated as independent measures. For each construct, the mean TER of uninuced monolayers is adjusted to a value of 100%, and TER after induction is expressed as the percentage of this value. Dilution potentials are shown as raw data. All data are expressed as mean ± SEM, and statistical comparisons between groups are made by a paired \(t\) test (induced vs. uninduced), or by an unpaired \(t\) test for comparison of effects of different constructs. Two-tailed \(P\) values are reported.

Results

Regulated Expression and Localization of WNK4 in MDCK II Cells. The MDCK epithelial II tet-off cell line (MDCK II tet-off) stably expresses the tetracycline transactivator. The tetracycline transactivator induces transcription at cytomegalovirus promoters in the absence of doxycyline; this induction is repressed by doxycyline (29). We cloned HA-tagged wild-type (WT-WNK4), two different HA-tagged PHAII-mutant WNK4s (WNK4-Q562E and WNK4-E559K; ref. 16), and a WNK4 mutant with a single-point mutation at an essential residue of the kinase catalytic domain (WNK4-D318A; ref. 16) into the pTRE3hyg expression vector. Constructs were transfected into MDCK II tet-off cells, and stable transfectant clones were selected (see Methods). Clones showing low transgene expression in the presence of doxycyline, and robust transgene induction in the absence of doxycyline, were selected for further study (Fig. 1a).
WNK4-selective increases paracellular Cl\(^{-}\) conductance. The increase in paracellular conductance induced by WNK4 could result from a selective or nonselective increase in permeability for cations and anions. To address this hypothesis, we measured the dilution potential (\(\Delta V_D\)) resulting from application of a transepithelial NaCl gradient in the presence or absence of WNK4. Determinants of the dilution potential include the absolute permeabilities for Na\(^{+}\) (\(P_{Na}\)) and Cl\(^{-}\) (\(P_{Cl}\)), and the ratio of their permeabilities (\(P_{Cl}/P_{Na}\)). \(P_{Na}\) and \(P_{Cl}\) can be calculated from the measured TER and \(P_{Cl}/P_{Na}\) (ref. 24; see Methods). Absolute \(P_{Na}\) and \(P_{Cl}\) can be calculated from the measured TER and \(P_{Cl}/P_{Na}\) (ref. 25; see Methods).

Similar to previous reports (32–35), the parental MDCK II monolayers showed higher permeability for Na\(^{+}\) than Cl\(^{-}\}. Na\(^{+}\) permeability was 2.6-fold higher than Cl\(^{-}\) permeability; doxycycline had no significant effect on the dilution potential in the parental cell line (Fig. 3a). However, induction of WT-WNK4 resulted in a highly significant change in the dilution potential (Fig. 3a), with an increase in \(P_{Cl}/P_{Na}\) (\(P < 0.0001\); Fig. 3b). This increase was attributable to an \(\approx 2\)-fold increase in absolute \(P_{Cl}\) (\(P < 0.0001\)), while the absolute value of \(P_{Na}\) displayed minor changes (14\% increase, \(P < 0.0001\); Fig. 3c and d). Kinase-mutant WNK4 affected none of these parameters (Fig. 3).

Dilution potentials were also measured before and after induction of PHAII-mutant WNK4. Induction of WNK4-Q562E or WNK4-E559K resulted in a marked increase in \(P_{Cl}/P_{Na}\) (Fig. 3b). For both WNK4 mutants, this increased ratio resulted from a marked increase in \(P_{Cl}\) (\(4.5\)-fold, \(P < 0.0001\); Fig. 3d). Again, the increase in \(P_{Na}\) was minor, although statistically significant (Fig. 3c). The \(P_{Cl}\) seen with PHAII-mutant WNK4 is significantly greater than both the \(P_{Cl}\) in uninduced cells (\(P < 0.0001\)) and the \(P_{Cl}\) seen after induction of WT-WNK4 (\(P < 0.0001\)). Importantly, dilution potentials were indistinguishable when the monolayers were treated with an epithelial Na-channel blocker, amiloride, or a basolateral antithrombin of transcellular NaCl flux pathways did not alter the effect of PHAII-mutant WNK4 on dilution potentials (data not shown).
These findings indicate that the observed effects are attributable to the paracellular pathway.

WNK4 Alters the Function of Preformed Tight Junctions. In the above experiments, WNK4 was expressed during tight-junction assembly/formation; this leaves open whether WNK4 can alter the function of tight junctions that have already been formed. To address this hypothesis, we first repressed WNK4-Q562E expression until after tight-junction formation was complete by incubating cells in doxycycline from the time cells were plated to day 4. We then measured the TER and dilution potential of preformed tight-junction monolayers (Fig. 3e). Twelve replicates of a clone containing PHAII-mutant WNK4 (WNK4-Q562E) were plated and allowed to form monolayers in the presence of doxycycline for 4 days. TER and dilution potentials (DP) were measured. Half the monolayers were then incubated for 2 more days in the presence of doxycycline, whereas the other half were incubated in the absence of doxycycline, thereby inducing WNK4-Q562E. Measurements were repeated. Data from individual wells are shown for TER measurements and mean ± SEM of dilution potentials is shown for each group. Induction of WNK4-Q562E markedly reduced the TER and altered the dilution potential of monolayers whose tight junctions have already assembled.

Effect of WNK4 on Tight-Junction Proteins and Structure. WNK4 could regulate paracellular permeability by altering the expression, localization, or function of proteins that determine paracellular ion permeability and selectivity. We compared the expression and localization of claudins 1–4, occludin, and ZO-1 before and after induction of WT-WNK4 or WNK4-Q562E (see Methods). Induction of either protein had no significant effect on the localization or expression levels of these tight-junction proteins (Fig. 5, which is published as supporting information on www.pnas.org/cgi/doi/10.1073/pnas.0406172101 Kahle et al. for each protein of interest).
In addition to showing that WNK4 can alter paracellular function when it is expressed during tight-junction formation, we have shown that WNK4 can also alter the function of preformed tight junctions, with effects that are quantitatively similar to those found when WNK4 is expressed from the time of cell plating. This finding reveals that WNK4 is capable of dynamic regulation of paracellular ion flux, consistent with the notion that signaling pathways acting through WNK4 can modify paracellular Cl⁻ flux in response to physiologic demand.

Because they constitute paracellular channels, the claudins are logical potential targets for WNK4 action at the tight junction. Yamauchi et al. (37) have shown increased phosphorylation of claudins 1 and 3 in the presence of PHAII-mutant WNK4, and we have shown that the effect of WNK4 on paracellular ion flux is abolished by missense mutations that impair WNK kinase function. These findings together implicate WNK4-mediated phosphorylation of claudins in the mechanism of altered paracellular flux. How such phosphorylation imparts its effect is presently unknown. Both we and Yamauchi et al. (37) have seen no change in the abundance or localization of claudins 1–4, ZO-1, or occludin after expression of WNK4. In addition, our structural studies by both transmission and freeze-fracture EM show no difference in tight-junction architecture, indicating that altered paracellular flux is not achieved by gross changes in tight-junction structure. These observations leave open the question of mechanism. One possibility is alteration of claudin function (e.g., altered conductance) by posttranslational modification, as occurs with many transcellular ion channels (38). Alternatively, WNK signaling could alter the claudin composition of the tight junction. Further investigation will be required to distinguish these possibilities.

In addition to its role in the kidney, WNK4 and other WNKs are expressed in other tissues, predominantly those involved in epithelial Cl⁻ flux (20, 21). In many of these epithelia, WNKs localize to intercellular junctions (20, 21), suggesting that WNKs may play a general role in the regulation of paracellular Cl⁻ flux.

These findings have implications for normal and disease physiology. We have previously proposed that WNK4 is a molecular switch that integrates physiologic signals to vary the balance between net renal NaCl reabsorption and K⁺ homeostasis in the connecting tubule and collecting duct, where 70% of Cl⁻ reabsorption occurs via the paracellular path (39). In these nephron segments, Na⁺ reabsorption via the epithelial Na⁺ channel is accompanied by either paracellular Cl⁻ reabsorption or transcellular K⁺ secretion. In the presence of PHAII-mutant WNK4, Na⁺ reabsorption via the epithelial Na⁺ channel would be accompanied by increased paracellular Cl⁻ reabsorption and reduced K⁺ secretion due to the effect of WNK4 to both reduce the lumen-negative potential and to directly inhibit the renal outer medullary K⁺ channel. Thus, the multiple renal effects of PHAII-mutant WNK4 can all be viewed as serving a coordinated effort to expand plasma volume by increasing NaCl reabsorption, while maintaining serum K⁺.

Although thiazide diuretics have efficacy equal to any class of antihypertensive agents (40), the magnitude of their effect is limited by activation of the renin-angiotensin system, which increases distal NaCl reabsorption through increased epithelial Na⁺ channel activity and paracellular Cl⁻ flux. The demonstration that WNK signaling regulates NaCl reabsorption at both the thiazide-target Na⁺ cotransporter and the more distal paracellular Cl⁻ pathway suggests that modification of WNK signaling has the potential to produce larger effects than can be achieved with thiazides or other agents that attack single-flux mediators.
The WNKs may consequently present opportunities for the development of uniquely efficacious antihypertensive agents.

Note. While preparing this manuscript, Yamauchi et al. (37), using \(^{22}\text{Na}^+\) and \(^{36}\text{Cl}^-\) flux, came to similar general conclusions (37). They observed that a PHAII-mutant WNK4 increased transepithelial \(^{36}\text{Cl}^-\) flux 2-fold (37). In contrast to Yamauchi et al. (37), we found a much larger effect of PHAII-mutant WNK4 on \(P_{\text{Na}}/P_{\text{Cl}}\) of 25 and \(35 \times 10^{-6}\) cm/s for two different PHAII-mutants, vs. \(5.5 \times 10^{-6}\) cm/s for the mutant tested by Yamauchi et al. (37). In addition, we show that wild-type WNK4 also has a highly significant effect on \(P_{\text{Na}}/P_{\text{Cl}}\). These differences may be attributable to greater sensitivity of electrophysiologic measurement of TER and dilution potential and to differences in the starting cell lines. The parental MDC II line of Yamauchi et al. (37) showed a much higher selectivity for \(\text{Na}^+\) than ours (\(P_{\text{Na}}/P_{\text{Cl}} = 12.9\) vs. 2.8, respectively).

We thank Keith Choa, Jim Anderson, Christina Van Itallie, Yin Lu, and Peter Aronson for helpful discussions. This work was supported by a Specialized Center of Research in Hypertension grant from the National Heart, Lung, and Blood Institute. R.P.L. is an Investigator of the Howard Hughes Medical Institute.
