On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites

Ming-Bo Wang*,†, Xue-Yu Bian‡, Li-Min Wu*, Li-Xia Liu*§, Neil A. Smith*, Daniel Isenegger¶, Rong-Mei Wu*, and Peter M. Waterhouse*

*Commonwealth Scientific and Industrial Research Organisation Plant Industry, P.O. Box 1600, Canberra ACT 2601, Australia; ‡Commonwealth Scientific and Industrial Research Organisation Plant Industry, P.O. Box 350, Glen Osmond SA 5064, Australia; †Institute for Horticultural Development, Agriculture Victoria, Knoxfield VIC 3176, Australia; ¶Plant Virology Laboratory, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; and §Department of Biological Sciences, University of South Carolina, Columbia, SC 29208

Communicated by William James Peacock, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia, January 12, 2004 (received for review September 1, 2003)

Viroids and viral satellites have small, noncoding, and highly structured RNA genomes. How they cause disease symptoms without encoding proteins and why they have characteristic secondary structures are two longstanding questions. Recent studies have shown that both viroids and satellites are capable of inducing RNA silencing, suggesting a possible role of this mechanism in the pathology and evolution of these subviral RNAs. Here we show that preventing RNA silencing in tobacco, using a silencing suppressor, greatly reduces the symptoms caused by the Y satellite of cucumber mosaic virus. Furthermore, tomato plants expressing hairpin RNA, derived from potato spindle tuber viroid, developed symptoms similar to those of potato spindle tuber viroid infection. These results provide evidence suggesting that viroids and satellites cause disease symptoms by directing RNA silencing against physiologically important host genes. We also show that viroid and satellite RNAs are significantly resistant to RNA silencing-mediated degradation, suggesting that RNA silencing is an important selective pressure shaping the evolution of the secondary structures of these pathogens.

Viroids and most viral satellites, which are the smallest known infectious agents in plants, have single-stranded RNA genomes of 200–400 nt and do not code for proteins (1–3). Whereas viroids replicate autonomously by using host-encoded RNA polymerase, satellite RNAs multiply only in the presence of a helper virus that provides the appropriate RNA-dependent RNA polymerase (2, 4). Intriguingly, some viroids and satellites can induce unique, highly host species-specific disease symptoms despite their exceedingly small size and lack of mRNA activity. Previous studies have shown that one, or a few, nucleotide changes in their RNA genomes can dramatically alter the virulence of these subviral RNAs or the host-plant specificity of the disease symptoms (5–7). Despite intensive investigation, major questions remain as to how these minor sequence variations modulate viroid and satellite pathology and how host plants develop symptoms in response to specific sequences. A striking similarity among viroids and small satellites is that they tend to form characteristic secondary structures due to intramolecular base-pairing. These structures are clearly important, because the evolution of these small RNAs appears to be constrained by the need to preserve their distinct structural features. However, the host factor(s) that imposes this evolutionary pressure has yet to be identified.

RNA silencing is a sequence-specific RNA degradation process directed by double-stranded RNA (dsRNA) or self-complementary hairpin RNA (hRNA). This dsRNA or hRNA is cleaved by an RNase III-like enzyme known as Dicer to generate small (21- to 25-nt) RNAs, termed small interfering RNAs (siRNAs), which are used to guide siRNA–ribonuclease complex (known as RNA-induced silencing complexes [RISC]) to degrade cognate single-stranded RNA (8). Recent studies have shown that plants infected with potato spindle tuber viroid (PSTVd) or cereal yellow dwarf virus RPV and its satellite (RPVSat) contain siRNAs derived from the pathogens’ genomes (9–11). This finding has led to the hypothesis that RNA silencing might be involved in the processes of viroid and viral satellite pathogenicity (9, 12, 13). Until now, there has been no experimental evidence to support this hypothesis. Here, we provide evidence suggesting that viroid and satellite pathogenicities are mediated by RNA silencing and that these subviral RNAs have evolved secondary structures that minimize siRNA-mediated destruction.

Materials and Methods

Plasmids. The various constructs used in this work are shown in Fig. 1. The hpRPVSat construct encoding hprRNA of the cereal yellow dwarf virus RPV satellite was prepared by cloning the same RPVSat sequence as in GUS:RPVSat (11) into pKan nibal (14). To make the β-glucuronidase (GUS) fusion constructs, GUS:PSTVd[+] and GUS:PSTVd[−], the full-length sequence (with minor mutations; see Fig. 1) of the RG1 strain (15) of PSTVd, was assembled by PCR with overlapping oligonucleotides and then cloned into a 35S-GUS-Ocs cassette (11) in either sense (for GUS:PSTVd[+] or antisense (for GUS:PSTVd[−]) orientation. For Agrobacterium-mediated transformation, the three constructs were all cloned into the binary vector pWBBvec2a (16). The hpPSTVd construct was made by cloning into pKan nibal a truncated PSTVd sequence (nucleotides 16–355) and the above-mentioned full-length PSTVd sequence in sense and antisense orientations, respectively. The hpY-Sat construct and the d/y-Y-Sat construct that encodes direct-repeat RNA of cucumber mosaic virus (CMV) Y satellite (Y-Sat) were prepared by cloning PCR-assembled (using several overlapping oligonucleotides) Y-Sat sequences (with minor mutations; see Fig. 1) into pKan nibal. The PSTVd and Y-Sat constructs were cloned into pART27 (17) for Agrobacterium transformation. The hpGUS construct was prepared by cloning the hpGUS sequence (18) into pART7 (17). The resulting 35S-hpGUS-Ocs cassette was then inserted into pWBBvec4 (16) for Agrobacterium transformation. The Agrobacterium tumefaciens strain AGL1 was used for plant transformation.

Plant Transformation. Tobacco was transformed as described (11) by using 20 mg/liter hygromycin (for pWBBvec2-based plasmids).

Abbreviations: CMV, cucumber mosaic virus; hprRNA, hairpin RNA; PSTVd, potato spindle tuber viroid; Y-Sat, Y satellite; dsRNA, double-stranded RNA; siRNA, small interfering RNA; RISC, RNA-induced silencing complex; RPVSat, cereal yellow dwarf virus RPV satellite; GUS, β-glucuronidase; dpi, days postinoculation.

†To whom correspondence should be addressed. E-mail: ming-bo.wang@csiro.au.

§Present address: School of Science, Northeast Normal University, Changchun 130024, China.

© 2004 by The National Academy of Sciences of the USA
The Y-Sat constructs were transformed into Lycopersicon esculentum Samsun, and all of the others were transformed into yellow symptom domain, plus four single-nucleotide substitutions of – reduces satellite symptoms. To test whether RNA silencing is there are two versions (A and B) for the hpY-Sat and d antisense sequence is the same as that in the GUS:PSTVd fusion constructs. There are two versions (A and B) for the hpY-Sat and d/rY-Sat constructs; the Y-SatA sequence has the size of a wild-type Y-Sat RNA (369 nt) but with two single-nucleotide substitutions of A355-G and A356-G, and Y-SatB has a 5-nt deletion (nucleotides 192–196), which constitutes part of the yellow symptom domain, plus four single-nucleotide substitutions of G280-A, G281-C, G282-A, and G283-C. The hpGUS sequence is the same as that described in ref. 1, 35S-P, cauliflower mosaic virus 35S promoter; OcS-T, 3’ region of Agrobacterium octopine synthase gene; i/r, inverted-repeat sequences.

Analysis of Transgenic Plants. GUS activity in transgenic tobacco was measured at 37°C by the fluorometric 4-methylumbelliferyl-β-glucuronide assay (20) by using 5 μg of leaf protein extract. For Northern blot hybridization analysis, total RNA was prepared by using the TRizol reagent (Invitrogen), separated in formaldehyde-agarose gels (for normal Northern analysis) or in 15% polyacrylamide gels (for siRNA detection), blotted to Hybond-N filter, and hybridized with T7 or SP6 polymerase-synthesized, α-32P-labeled riboprobes (11).

Virus/Satellite RNA Infection. The Y-Sat culture was initiated by mechanically inoculating CMV-infected young tobacco with transcript synthesized from an infectious Y-Sat clone (21). Extracts of the CMV/Y-Sat-infected tobacco leaves were then used for subsequent inoculation. Infection by potato leaf roll virus, which was required to support RPVSat replication, was performed as described (11).

Results
Evidence That RNA Silencing Mediates Viroid and Satellite Pathogenicity. Expressing an RNA silencing suppressor in plants dramatically reduces satellite symptoms. To test whether RNA silencing is involved in the pathology of subviral RNAs, we examined the symptom development of CMV Y-Sat in transgenic tobacco expressing P1/Hc-Pro from tobacco etch virus (22). Hc-Pro is a potent suppressor of RNA silencing induced by either transgenes or viruses (23). We infected 21 plants expressing P1/Hc-Pro as a transgene (Hc-Pro+) and 7 plants without the transgene (Hc-Pro–) with CMV plus Y-Sat and monitored the development of the bright yellow mosaic symptom. It should be noted that this yellowing symptom is unique to Y-Sat infection (24) and that the helper virus CMV alone induces only light green mosaic symptoms. All seven Hc-Pro– plants developed the characteristic yellow mosaic symptom ~17 days postinoculation (dpi), which turned to severe systemic chlorosis (Fig. 2A) from 25 dpi. In contrast, none of the 21 Hc-Pro+ plants showed such severe systemic yellowing. Some young leaves of the Hc-Pro+ plants initially showed yellow vein clearing, usually near the midribs (data not shown), but the symptoms disappeared in expanded leaves (Fig. 2A). Reciprocal grafting between the Y-Sat-infected Hc-Pro+ and Hc-Pro– plants gave the predicted result; leaves of Hc-Pro+ scions or stocks developed severe chlorosis, and those of the Hc-Pro– scions or stocks showed little or no yellowing (see Fig. 2B). These results suggest that a fully functional RNA silencing mechanism is required for satellite symptom development, making it likely that this mechanism is the mediator of those symptoms. An alternative explanation, i.e., the reduction in symptoms was due to reduced levels of Y-Sat RNA replication, can be ruled out because the levels of both the plus (+) and minus (–) strands of Y-Sat RNA were much higher in the Hc-Pro+ plants than in the Hc-Pro– plants (Fig. 2C).

Northern blot analysis revealed extremely high levels of Y-Sat-specific siRNAs in the satellite-infected plants (Fig. 2D, lanes 1–6), which were at least 100-fold more abundant than Y-Sat-specific siRNAs derived from the hpY-Sat transgene (Fig. 2D, lane 7). The Y-Sat siRNA levels were higher in the Hc-Pro+ plants than in the Hc-Pro– plants (Fig. 2D, lanes 1 and 2 versus lanes 3–6), indicating that Hc-Pro does not block siRNA production from dsRNA, consistent with previous findings (25). Plants expressing hpRNA of a viroid sequence develop viroid-like symptoms. We reasoned that if RNA silencing mediates viroid and satellite symptoms, then the production of dsRNA or siRNAs, corresponding to viroid or satellite sequences, from a nonreplicating hpRNA should give symptoms that mimic those of viroid or satellite infection. To test this, we transformed tomato plants with a transgene designed to express an hpRNA that contains sequences corresponding to a virulent strain (RG1) of PSTVd (15). A total of five transgenic lines containing the hpPSTVd construct (Fig. 1) and eight lines containing a nonhairpin (direct repeat) PSTVd control construct (d/rPSTVd) (Fig. 1) were examined. In tissue culture, the leaves of the hpPSTVd lines showed rugosity and abnormal shapes with dark green color (Fig. 3A). In contrast, the lines with the control construct showed normal leaf phenotypes. Under greenhouse conditions, the five hpPSTVd lines displayed a range of abnormalities compared with the control lines. The two extreme lines, hpPSTVd-3 and hpPSTVd-5, had shorter internodes and stunted, epinastic leaves (Fig. 3B), which resemble the symptoms caused by infection with PSTVd (26). Fruit development of most hpPSTVd lines, including hpPSTVd-3 and hpPSTVd-5, was impaired. One line, hpPSTVd-4, which showed a milder abnormality than hpPSTVd-3 and hpPSTVd-5, yielded a small number of seed. As shown in Fig. 3C, the T1 seedlings of hpPSTVd-4 displayed significant developmental defects compared with the T1 progeny of the healthy control line (d/rPSTVd-3). PSTVd-specific siRNA was detectable in the hpPSTVd lines but not in the control line (Fig. 3D). Northern blot hybridization showed that no replicating PSTVd RNA arose from the hpPSTVd transgene (data...
not shown), which was expected, because both the sense and antisense sequences in hpPSTVd contain small sequence mutations outside the virulence modulating region (Fig. 1). This ruled out the possibility that the symptoms are due to the generation of infectious PSTVd. The symptoms in hpPSTVd plants did not appear to be as strong as those described for plants infected with the natural RG1 strain (6, 15). This is probably due to lower levels of siRNA being produced from the hpPSTVd transgenes than from replicating PSTVd. Overall, these results suggest that PSTVd-like symptoms are induced by siRNAs corresponding to PSTVd sequences, thus supporting a direct role of RNA silencing in mediating viroid symptoms.

Evidence That RNA Silencing Plays a Role in the Evolution of Viroid and Satellite RNA. Replicating satellite RNAs are resistant to hpRNA-induced silencing. hpRNA transgenes are highly effective at inducing the silencing of a wide range of plant genes and in conferring resistance to RNA viruses (14, 27, 28). Therefore, we tested whether satellite RNAs are similarly vulnerable to hpRNA-induced degradation. Tobacco plants were transformed with a transgene encoding an hpRNA containing sequences from Y-Sat (a linear satellite RNA) (24) or a circular satellite RNA of RPVSat (29). Plants transformed with the Y-Sat hairpin construct (hpY-Sat) or a control nonhairpin (direct repeat) Y-Sat construct (dY-Sat, Fig. 1), together with nine untransformed plants, were infected with CMV plus Y-Sat and monitored for symptom development. At ~18 dpi, T1 plants of all 14 hpY-Sat lines tested had developed the characteristic bright yellow mosaic symptom (data not shown). There was no observable difference in symptom severity or Y-Sat RNA accumulation between the hpY-Sat plants and untransformed plants or between the hpY-Sat plants and the dY-Sat plants.
Discussion

Does RNA Silencing Mediate the Pathogenicity of Viroids and Viral Satellites? One of the intriguing features of viroids and viral satellites is their ability to induce symptoms in their host plants without encoding proteins. Various models involving the primary sequence or secondary structural features of their RNA genomes have been proposed to account for the pathogenicity of these small RNAs (7, 30). Here, we present two lines of evidence supporting an alternative pathogenicity model based on RNA silencing (refs. 9, 12, and 13 and Fig. 5). We show that (i) tobacco plants expressing the strong silencing suppressor Hc-Pro no longer support systemic induction of the bright yellow symptoms of CMV Y-Sat, despite the increased accumulation of satellite

that did not produce siRNA (Fig. 4A). Infection of the hpY-Sat and d/r Y-Sat plants with the helper CMV alone did not induce the yellowing symptom (data not shown), indicating that no infectious Y-Sat RNA arose from the Y-Sat transgenes, which would continuously provide Y-Sat inocula. Similarly, the hpRPVSat tobacco plants showed no resistance to RPVSat in tobacco, and Northern blot hybridization analysis revealed similar levels of RPVSat RNA in hpRPVSat plants and the untransformed plants at 28 dpi (data not shown). These results suggest that satellite RNAs evade or are protected from host-mediated RNA silencing.

Nonreplicating satellite and viroid sequences are resistant to RNA silencing. The ability of Y-Sat or RPVSat to escape hpRNA-induced RNA silencing could be due to the high rates of replication and spread of the satellites outcompeting the capacity of the RNA silencing machinery. Therefore, we examined the effect of RNA silencing on nonreplicating, nonspreading viroid (PSTVd) or satellite (RPVSat) sequences present as part of a transgene-derived GUS-fusion transcript (GUS:PSTVd [+], GUS:PRPVd[−], or GUS:RPVSat; Fig. 1). Plants expressing the GUS:PSTVd [+], or GUS:RPVSat[−] transgene were supertransformed with hpPSTVd (Fig. 1). The doubly transformed plants showed no dramatic reduction in either GUS activity (Fig. 4B) or levels of the full-length fusion transcripts (data not shown) despite the presence of PSTVd siRNA (Fig. 4C). Similarly, GUS:RPVSat plants supertransformed with hpRPVSat showed little reduction in GUS activity (Fig. 4D). Furthermore, the GUS:RPVSat plants, infected with RPVSat, showed no significant reduction in the level of GUS:RPVSat fusion transcript, despite the production of abundant RPVSat siRNAs by the replicating RPVSat RNA (Fig. 4E). In contrast, GUS:PSTVd [+], GUS:PRPVd[−], and GUS:RPVSat plants supertransformed with the hpGUS construct, which targets silencing to the GUS sequence of the fusion mRNAs, showed high levels of GUS silencing (Fig. 4B and D). These results suggest that resistance to RNA silencing, while not a feature of most messenger or viral RNAs, is a common feature of viroid and satellite genomic sequences and is intrinsic to their sequences rather than to their replication rates.
RNA in these plants, and (ii) tomato plants expressing the noninfectious hpRNA of PSTVd develop the corresponding viroid-like symptoms. These findings strongly argue against a direct involvement of unprocessed genomic RNAs, or secondary structures, of viroids and satellites in their pathogenicity.

siRNA-directed degradation requires a minimum sequence identity of ≈19 nt between the siRNA and the cognate target RNA (8, 31). Previous studies have shown that the pathogenicity of viroids and viral satellites is generally determined by the nucleotide sequences within particular small (≈20-nt) regions of their RNA genomes (3, 7, 32), such as the previously defined virulence modulating region of PSTVd (3). Interestingly, a BLAST search (33) with the full-length sequence of PSTVd-RG1 revealed numerous sequences from several plant species that have 19- to 20-nt identities with the PSTVd sequence. Almost all of these 19- to 20-nt sequences correspond to the A+G-rich virulence modulating region (nucleotides 45–68) of PSTVd. The identified plant sequences have not been annotated, but at least two ESTs (GenBank accession nos. BI473247 and BI969092) appear to encode putative transcription factors, and another (GenBank accession no. BI265876) encodes a putative chromodomain helicase DNA-binding protein. Although no potato or tomato sequences were found, possibly because of insufficient sequence entries in the databases for the two species, the BLAST search result raises the possibility that siRNAs derived from the virulence modulating region of PSTVd may target the silencing of host regulatory genes.

A seeming inconsistency with the RNA silencing-mediated pathogenicity model is that symptom induction by certain pathogenic CMV satellites appears to be helper virus-dependent (7). However, it is known that RNA silencing is dose-dependent, especially when the target sequence is relatively small (31, 34). Therefore, it is possible that the variation in symptoms induced by CMV satellites reflects their replication efficiency by different CMV strains. Indeed, strong symptom induction by the pathogenic CMV satellites appears to require helper virus strains that support high levels of double-stranded satellite RNA (and hence siRNA) accumulation (35–37). Our results show that replicating Y-Sat RNA produced an extremely high level of siRNAs (Fig. 2D). It is possible that such a high level of siRNA is essential for the induction of the yellow mosaic symptom in tobacco. This could explain why no chlorotic symptoms were observed in the transgenic tobacco containing the hpY-Sat transgene that yields a much lower abundance of siRNAs.

In addition to targeting RNA for degradation, siRNAs generated by viroids and satellites could also act like micro-RNAs (38) to form mismatched dsRNA complexes with cognate sequences of host gene mRNAs and thereby inhibit their translation and induce symptoms. Translational inhibition by micro-RNAs, a class of small ~21-nt RNAs generated by Dicer cleavage of endogenous hpRNA precursors (38), occurs naturally in plants (39). Another alternative to symptom induction by means of the RNA degradation-based mechanism is the RNA-directed DNA methylation model proposed in ref. 40. Both viroids and satellites induce heavy de novo cytosine methylation of homologous nuclear DNA (11, 41), which could lead to transcriptional silencing of cognate endogenous genes. However, this model would not account for the prevention of Y-Sat symptom development by He-Pro, which does not block RNA-directed methylation (22, 25).

Does RNA Silencing Mediate the Evolution of Viroids and Viral Satellites? A major role attributed to RNA silencing in plants is defense against viral infection (42). The siRNAs produced from the pathogen’s dsRNA replication intermediates target degradation of the pathogen’s genome. To evade or block this host defense mechanism, viruses encode silencing suppressor proteins (43). Viroids and small viral satellites on the other hand, do not encode any functional proteins and yet are capable of accumulating to high levels in plants. Our results suggest that viroid and satellite RNAs have developed a nuclease resistance strategy to protect themselves against degradation by RNA silencing. Satellites are encapsidated by helper virus coat proteins, which may provide some protection against RNA silencing-mediated degradation. However, the level of such protection is clearly limited, because the helper viruses themselves are, in general, highly susceptible to hpRNA-induced silencing (14, 27, 28). Most viroids, including PSTVd, replicate in the nucleus, and this subcellular localization may allow viroid RNA to avoid contact with RISC, which is believed to act mainly in the cytoplasm (44). However, a recent report shows that nucleolar RNAs are also susceptible to RNA silencing (45). Furthermore, viroids must traverse the cytoplasm during cell-to-cell movement in plants, thereby potentially being exposed to cytoplasmic RISC degradation.

A likely explanation for the resistance of viroids and viral satellites to RNA silencing is that their extensive intramolecular base-pairing renders them less accessible to the RISC complex for degradation. Additionally, the presence of mismatches in the duplex regions restricts perfectly paired regions of the predicted secondary structures of subviral RNAs (1) to no longer than 14 bp (data not shown). This would be sufficient to protect them against cleavage by Dicer, which requires a minimum of ≈19 bp of dsRNA (46). Several recent observations support a direct role of secondary RNA structures in conferring resistance to RNA silencing: (i) regions of a plant mRNA that have the potential to form duplex structure have been shown to accumulate in cells where the mRNA is silenced (47), (ii) a short defective interfering viral RNA, with the potential to form a stable secondary structure, is significantly more resistant to RNA silencing than is its helper virus (48), and (iii) PSTVd or viroid-like RNAs are highly resistant to Dicer cleavage in an *in vitro* system (49).

The resistance of viroids and satellites to RNA silencing-mediated degradation implies that RNA silencing may have directed the evolution of plant subviral RNAs (Fig. 5). This view is supported by the observation that viroid and satellite sequence variants retain their secondary structures. For instance, a recently discovered natural variant of citrus exocortis viroid retains the rod-like secondary structure of the wild-type strain, despite the insertion of an additional 96-nt sequence (50). The RNA silencing-mediated model is also consistent with lack of contact with RISC, which is believed to act mainly in the cytoplasm. Moreover, the pathogenicity of viroids and satellites in their pathogenicity has evolved independently of their evolution of their secondary structures (Fig. 5).

In conclusion, our results suggest that RNA silencing in plants plays a central role in both the pathogenicity of viroids and viral satellites and in the evolution of their secondary structures (Fig. 5). Like viruses, the evolutionary pathway that viroid and satellite RNAs appear to have adopted allows them not only to use the host functions for their replication but also to evade host defenses and to elicit pathogenic reactions. Whereas viruses achieve these functions by means of an array of encoded proteins, viroids and viral satellites appear to ensure their evolutionary survival using an exclusively sequence and structure-based strategy.

We thank Paul Chu for providing the CMV strain; Peter Palukaitis for sharing information on CMV satellites; Geoff Ellacott for maintaining potato leaf roll virus culture; Judith Gaudron and Jasmina Dedic for PCR primers; Carl Davies for photography; Fei Zhang for advice on *BLAST* searches; Tony Arioli, Rogerio Margis, and Jean Finnegan for helpful discussions; Jim Peacock, Bill Taylor, and James Hutchinson for support; and three referees for their critical reviews of the manuscript.