Single-molecule studies of repressor–DNA interactions show long-range interactions

Departments of *Physics, †Molecular Biology, and ‡Electrical Engineering, Princeton University, Princeton, NJ 08544

Contributed by Robert H. Austin, April 29, 2005

We have performed single-molecule studies of GFP–Lac repressor proteins bound to bacteriophage λ DNA containing a 256 tandem lac operator insertion confined in nanochannels. An integrated photon molecular counting method was developed to determine the number of proteins bound to DNA. By using this method, we determined the saturated mean occupancy of the 256 tandem lac operators to be 13, which constitutes only 2.5% of the available sites. This low occupancy level suggests that the repressors influence each other even when they are widely separated, at distances on the order of 200 nm, or several DNA persistence lengths.

The key idea of the IPMC method is that a fluorescent molecule will emit a mean number of photons \(N_0 \) before it irreversibly bleaches. If the emitted number of photons \(N_0 \) from an illuminated region is integrated until the region is bleached, the total number of molecules that were in that region is given by

\[n = N_0/\lambda \]

where \(\lambda \) is the decay constant of the fluorescent molecule. Although this idea is simple in principle, a number of factors must be considered in practice. (i) The Poisson statistics of the photon histogram must be analyzed carefully; (ii) self-quenching by means of Förster energy transfer between the fluorescent molecules must be assessed because the fluorescent molecules in our case can be within nanometers of each other; and (iii) energy transfer between GFP–LacI and the dye (BOBO-3, dimeric cyanine nucleic acid stains) that was used to label the DNA might complicate the analysis. We have investigated these three factors for our LacI–DNA interaction study and determined that the IPMC method can be used to count molecules labeled with GFP and BOBO-3 in close proximity.

Materials and Methods

The GFP13 (S65T): lacI-I12 fusion is described in ref. 10. This fusion lacks the last 11 aa at the extreme C terminus required for tetramerization (7, 10, 11). The lacI-I12 mutant also has the amino acid Pro-3 replaced by Tyr-3 to increase its affinity (6, 12). Because, in our experiment, the GFP–LacI monomer concentration ranges 5–60 nM, below the dimer–monomer LacI dissociation constant \(K_d = 7.7 \times 10^{-8} \text{ M} \) (11), we expect to observe mainly GFP–LacI monomers. Indeed, we observed \(\approx 15\% \) dimers at nanomolar concentrations, consistent with reported \(K_d \) values. Because each symmetric lacO site can accommodate one LacI dimer, we expect two GFP–LacI monomers to bind to one lacO sequence. The GFP–Lac fusion construct was amplified from pAFS144 (10) and cloned into the pPROTet.E protein expression vector (Clontech). The resulting GFP–Lac expression plasmid was transformed into DH5α pro cells. The cells were grown at 37°C in Luria broth medium supplemented with 34 g/ml chloramphenicol and 50 μg/ml spectinomycin until the culture reached an optical density of 0.5 at 600 nm. Expression of GFP–Lac fusion protein was induced by growing the culture overnight in anhydrotetracycline at 100 ng/ml at 30°C. The GFP–Lac fusion was purified by using Talon metal-affinity resins (Clontech) and further characterized by a standard gel-shift assay using the end-labeled lacO sequence shown in Fig. 1. DNA constructs with 256 tandem copies of lacO (lacO256) were first liberated from plasmid pAFSS9 (7, 8) by BamHI digestion and then ligated into the BamHI site of λ Dash II (Stratagene). The construct size was verified further by restriction analysis, and there was a clear 9-kbp band for the lacO256 insertion, and 24- and 9-kbp bands for the two DNA tails. The broadening of the lacO256 band indicated that \(\approx 10–15\% \) of the sample contained \(\leq 256 \) copies. This construct is 42.06 kbp with a contour length \(L_c \approx 14.3 \mu \text{m} \).

Sample Preparation. The following three different samples were prepared for imaging. (i) GFP–LacI monomers and dimers were used for calibrating the IPMC technique. The proteins were diluted to 10 nM in 0.5× Tris/borate/EDTA (TBE) and 100 μg/ml BSA. (ii) GFP–cICys-88 covalent dimer for verifying the fluorescence characteristics of GFP dimers. This sample was prepared in

Abbreviations: IPMC, integrated photon molecular counting; TIRF, total internal reflection fluorescence; POP-6, performance-optimized linear polyacrylamide; TBE, Tris/borate/EDTA.

To whom correspondence should be addressed. E-mail: rha@suilinn.princeton.edu.

© 2005 by The National Academy of Sciences of the USA
the same manner as the GFP–LacI sample. (iii) LacI–lacO
complexes. GFP–LacI monomers were first diluted to 60 nM in
5×TBE buffer and 100 μg/ml BSA and then incubated with 0.4
μg/ml lacO–DNA for 1 h in the dark at room temperature. The
ratio of LacI monomer to lacO binding site was 6:1. After binding,
the LacI–DNA molecules were diluted in half by adding BOBO-3
(Molecular Probes) at a dye-to-DNA ratio of one dye molecule per
5 bp. Three additional solutions were also prepared. (iv) An oxygen
scavenging solution was prepared for preventing BOBO-3 bleach-
ing (13). The reagents and their concentrations in 0.5×TBE were
0.05% (wt/vol) TBE buffer, 0.05% (wt/vol) TBE buffer, and 200
mM β-mercaptoethanol. (v) A surface passivation solution of 0.5×
TBE/100 μg/ml BSA/0.1% (wt/vol) performance-optimized lin-
ear polyacrylamide (POP-6, Applied Biosystems). (vi) A mixture of
surface passivation and oxygen scavenging solutions was prepared
by combining solution iv with 200 μg/ml BSA and 0.2% POP-6.
For imaging using a fused-silica chip, 2.5 μl of the sample and 2.5
μl of the oxygen scavenging solution were sandwiched between the
fused-silica chip and a coverslip, which was then sealed with nail
polish, to yield final concentrations of GFP–LacI monomers
in solution i and GFP–cICys-88 dimers in solution ii of 5 nM and
the concentration of GFP–LacI monomers in solution iii of 15 nM.
GFP–LacI in the absence of oxygen scavenging has also been
characterized, in this case, 2.5 μl of 0.5×TBE was used in place of
solution iv.

For samples i and ii, isolated protein stuck to the fused-silica
surface after deposition. For samples iii, both unbound and bound
proteins stuck to the fused-silica surface. DNA attached to the
bound proteins fluctuated around them by Brownian motion. We
imaged proteins stuck to the fused-silica surface with a TIRF
illumination area of 50×40 μm.

Nanochannel Fabrication and Electrophoresis Methods. To determine
the location of GFP–LacI bound to DNA, we used nanofluidic
channels to elongate the DNA. The device is shown schematically
in Fig. 2a. The idea was to drive DNA molecules into the micro-
channel and then into the nanochannels by using electrophoresis.
The 1-μm-deep microchannels were fabricated by photolithogra-
phy and reactive ion etching. The nanochannels were fabricated
by focused ion beam milling into fused silica. Fig. 2b is a scanning
electron microscopy image of a 120×150-nm nanochannel. Holes
were sand-blasted at the end of the microchannels (disk regions)
for loading the DNA. The device was then sealed with a thin fused-
silica coverslip (170 μm thick) by fused-silica–fused-silica bonding
(14). Reservoirs were affixed over the holes at the four ends of the
microchannels, and a prism was placed on top for TIRF microscopy.

The incident angle of the laser beam was 71° with respect to the
vertical.

We passivated the channel surfaces with antisticking reagents
before injecting the LacI–DNA solution. The channels were wetted
by capillary force with solution v. Together, BSA and POP-6
prevent the sticking of proteins to fused-silica surfaces, whereas
POP-6 reduces electroosmosis. A few hours of soaking was suf-
cient for the surface treatment. The surface treatment solution
was then removed from the reservoirs and replaced with a mixture of
equal parts solution iii and vi.

To drive DNA into the microchannels, a voltage drop was applied
across the microchannel (between V1 and V2). After a sufficient
amount of DNA appeared in the microchannel, a different voltage
drop was applied across the nanochannels (between V1 and V3) and
across the microchannel (between V1 and V2) simultaneously. Once
a DNA molecule had entered a nanochannel, the voltage was
then removed from the reservoirs and replaced with a mixture of
equal parts solution iii and vi.

Imaging. The emitted photons from BOBO-3 (excitation/emission,
568:602 nm) and GFP (excitation/emission, 488:511 nm) were
collected by using a 100× TIRF oil-immersion objective (numerical
aperture, 1.45). The emitted photons went through a custom-
designed dichroic mirror and an emission filter and were recorded
by a charge-coupled device (CCD) camera with an intensifier
(1-PentaMAX-HQ Gen III, Princeton Instruments, Trenton, NJ).
The emission filters were designed to eliminate overlap between the
GFP and BOBO-3 signals.

To determine the number of photons emitted by a single GFP–
LacI molecule, the fluorescence counts per pixel that were received
and read by the camera were converted into number of emitted
photons. The total fluorescence count of a protein dot, which is
typically a few pixels across and includes counts from both the
protein and background, was first obtained. Then the background
fluorescence count measured from nonfluorescent pixels adjacent
to the dot was subtracted. Protein fluorescence counts were then
converted into emitted photons by using the photoelectron-to-
digital unit-conversion factor of 16.72 count/e⁻ (manufacturer’s
specification) and the collection efficiency of our microscope/
camera system of 6.4%.

The following two settings were used for illumination and data
acquisition: one setting with continuous illumination and 16.4-Hz
data-acquisition speed (pixel readout rate, 5-MHz; Fig. 4) and the

Fig. 1. GFP–LacI bound to DNA. (a) Schematic representation of the λ DNA
construct with 256 tandem copies of the lacO binding units. lacO256–DNA is
42.06 kbp long, and the 9.22-kbp lacO256 insertion starts at 24.02 kbp. (b)
Scaled model of the specific lacO sites with the 5’-AATTGTTAGCGGATAGA-
CAATT-3’ sequence, the spacer sequences between them, and the GFP–LacI
proteins bound to full occupancy. The dimensions of the LacI and GFP mole-
cules are 3×6 nm (2) and 3×4 nm (9), respectively. (c) Actual observed
occupancy level. Only 2.5% of the available sites were bound.

Fig. 2. The nanofluidic device. (a) Schematic representations of the microflu-
idic and nanofluidic device. Blue regions are microchannels, and the bridging
black lines are nanochannels where the DNA molecules (red) are elongated.
DNA molecules are guided consecutively into microchannels and nanochan-
nels by electrophoresis. (b) SEM images of a 120×150 nm (width×height)
channel. Inset is a top view of the nanochannel showing its dimensions. (Scale
bar for Inset, 100 nm.)
other setting with 20- to 100-ms pulsed illumination and synchronized data acquisition at 3.4 Hz (pixel readout rate, 1 MHz; Figs. 5, 7, and 8b). These two modes produced no observable difference in the photon yield and the overall declining and unitary bleaching patterns of the GFP monomers; however, in the detection of background noise and GFP blinking, there were some differences.

For the continuous illumination mode, in which the speed of data acquisition was the fastest, the background noise was relatively high, as shown by the comparison of the background photon count per pixel in Fig. 4 with that of Fig. 5. Also, in the continuous-illumination mode, photon counts of each data collection cycle contained photons from the previous cycle because of the continuous illumination after the set exposure time of the previous cycle. As a result of this photon interleakage, sharp fluorescence patterns such as GFP blinking, in which the fluorescence intensity dips suddenly to near-noise level, became sharper. Because the background noise was low for the pulsed-illumination mode synchronized with the 3.4-Hz data acquisition, and the photons emitted during each exposure time were collected by that specific frame after the exposure, the pulsed mode avoided the photon leakage problem between frames. As one can see by comparing the GFP blinking patterns in Fig. 4 with that in Fig. 5, the GFP blinking patterns in Fig. 5 show sharper blinking dips. The laser-illumination blinking patterns in Fig. 4 with that in Fig. 5, the GFP blinking problem between frames. As one can see by comparing the GFP and monomers emit a mean number of photons \(N_0 \) before irreversibly bleaching. Then, we show that the IPMC method is applicable to the GFP–GFP–BOBO-3 fluorescence marker set by evaluating possible (i) GFP–GFP self-quenching and (ii) GFP–BOBO-3 quenching, knowing that the excitation spectrum of BOBO-3 overlaps the emission spectrum of GFP.

Fig. 3a shows a TIRF image of single GFP–LacI proteins attached to fused-silica surface. This image was the average of 10 frames taken at 3.4 Hz and exposure time of 0.1 s. The point-spread-function fit (2D Gaussian fit) to the circled GFP–LacI dot in Fig. 3b gives the width of the point spread function to be 295 nm. This value is expected from the optical resolution of our microscope system of \(\approx 0.6 \times \lambda/N.A. \) (numerical aperture) = 0.6 × 600 nm/1.45 = 250 nm for visible light. Only dots <300 nm wide were selected for this analysis. We observed 85% of the dots to be GFP–LacI monomers, and 15% were dimers. Monomers were differentiated from dimers by their different fluorescence traces.

Representative fluorescence time traces of GFP–LacI monomer dots taken from 16.4-Hz measurements with continuous illumination are shown in Fig. 4. We observed frequent blinking events seen previously for GFP molecules (16, 17), which are sudden fluorescence dips to near noise level that usually last <100 ms. Each photon count value was the peak photon count of a fluorescence dot. Analysis of \(\approx 100 \) GFP–LacI monomer dots shows that most of the molecules exhibited frequent blinking, a slow decline in fluorescence intensity, followed by irreversible photobleaching as shown in Fig. 4a and b. Some molecules exhibited a fluorescence intensity increase after the initial decline (Fig. 4c). Several molecules showed recovery from photobleaching in seconds, and then eventually photobleached again, this time irreversibly (Fig. 4d).

In contrast to Fig. 4, the representative fluorescence trace of the dimers exhibits two distinct sudden drops in intensity, as shown by all traces in Fig. 5. We consider the two fluorescence intensity steps to be the consecutive bleaching events of the two constituent GFP molecules and, thus, the signature of a GFP dimer. The dimer fluorescence traces can be considered as the fluorescence sum of two monomers of the various patterns shown in Fig. 4: Fig. 5 a and c are the sum of two monomer patterns in Fig. 4a and b; Fig. 5 b–e and g are typical sums of patterns shown in Fig. 4a; Fig. 5 f and g are two of the hard-to-catch fly-by dimers that stuck to the fused-silica surface while imaging, and Fig. 5f represents the monomer sum of Fig. 4a and c; last, Fig. 5b seems to be the rarely occurring sum of two monomers in Fig. 4d.

Fig. 6 compares the number of photons emitted by GFP–LacI monomers and dimers. Both data follow a Poisson distribution. The

![Fig. 3. Single GFP–LacI images. (a) Frame-averaged image of single GFP–LacI molecules attached to a fused-silica surface. (b) A 2D-Gaussian fit to the number of emitted photons from the circled GFP–LacI dot in a. The excitation intensity was 300 W/cm²; the image pixel size is 154 nm. The SDs in X and Y directions are \(\sigma_x = 125 \) nm and \(\sigma_y = 131 \) nm, respectively. The optical resolution \(\sigma_0 \) is the full width at half maximum of the point spread function, \(\sigma_0 = \sigma_x \times 2.356 \approx 295 \) nm.](https://www.pnas.org/cgi/doi/10.1073/pnas.0502917102)

Fig. 3. Single GFP–LacI images. (a) Frame-averaged image of single GFP–LacI molecules attached to a fused-silica surface. (b) A 2D-Gaussian fit to the number of emitted photons from the circled GFP–LacI dot in a. The excitation intensity was 300 W/cm²; the image pixel size is 154 nm. The SDs in X and Y directions are \(\sigma_x = 125 \) nm and \(\sigma_y = 131 \) nm, respectively. The optical resolution \(\sigma_0 \) is the full width at half maximum of the point spread function, \(\sigma_0 = \sigma_x \times 2.356 \approx 295 \) nm.

Data Analysis. A modified fitting algorithm was used to determine the location of the GFP–LacI fusion on nanochannel elongated DNA. This algorithm gives the mean DNA end to end distance \(L \), the DNA length fluctuation \(\sigma_L \), and the position of bound proteins if the point spread function of the imaging optics \(\sigma_T \) is known. DNA in nanochannels has been characterized by fitting the DNA intensity profile to the following function (15)

\[
I(z) = I_0 \frac{L}{\sigma_T^2} e^{-\frac{L}{L}} \left[\text{Erfc} \left(\frac{z - L}{\sigma_L^2} \right) - \text{Erfc} \left(\frac{z - L}{\sigma_T^2} \right) \right],
\]

where \(z \) is the distance along the nanochannel direction, \(\text{Erf} \) is the error function representing the convolution of a step function \(I_0 \) of length \(L_z = L_2 - L_1 \) with our effective Gaussian point spread function of width \(\sigma_L \) due to a combination of optical Gaussian point spread function of width \(\sigma_T \) and the Gaussian distribution of DNA length fluctuations of width \(\sigma_T \) which integrate on the camera during the imaging time. Because of the commutative nature of the convolved functions, the two successive Gaussian convolutions can be convoluted into another Gaussian with an effective SD of \(\sigma_T = \sqrt{\sigma_T^2 + \sigma_L^2} \). Because the bound proteins frequently stick in nanochannels and offset the even fluctuation of the two DNA arms, asymmetry was added to Eq. 1 to fit protein-bound DNA in nanochannels

\[
I(z) = \frac{I_0}{2} \left[\text{Erf} \left(\frac{z - L_1}{\sigma_T^2} \right) - \text{Erf} \left(\frac{L - L_2}{\sigma_T^2} \right) \right],
\]

where \(\sigma_1 \) and \(\sigma_2 \) are the uneven effective SDs of the two DNA arms because of asymmetric length functions.

Supporting Information. For details on the synthesis of GFP–Cl and microscope/camera efficiency, see Supporting Materials and Methods, which is published as supporting information on the PNAS web site.

Results and Discussion.

IPMC. Here, we discuss the IPMC method used to determine the number of GFP–LacI molecules \(n = N_f/N_0 \) bound to DNA, where \(N_f \) is the total number of photons emitted by a fluorescent protein aggregate and \(N_0 \) is the mean number of photons emitted by a GFP monomer. We first rely on the observation that GFP–LacI monomers emit a mean number of photons \(N_0 \) before irreversibly bleaching. Then, we show that the IPMC method is applicable to the GFP–GFP–BOBO-3 fluorescence marker set by evaluating possible (i) GFP–GFP self-quenching and (ii) GFP–BOBO-3 quenching, knowing that the excitation spectrum of BOBO-3 overlaps the emission spectrum of GFP.

Fig. 3a shows a TIRF image of single GFP–LacI proteins attached to fused-silica surface. This image was the average of 10 frames taken at 3.4 Hz and exposure time of 0.1 s. The point-spread-function fit (2D Gaussian fit) to the circled GFP–LacI dot in Fig. 3b gives the width of the point spread function to be 295 nm. This value is expected from the optical resolution of our microscope system of \(\approx 0.6 \times \lambda/N.A. \) (numerical aperture) = 0.6 × 600 nm/1.45 = 250 nm for visible light. Only dots <300 nm wide were selected for this analysis. We observed 85% of the dots to be GFP–LacI monomers, and 15% were dimers. Monomers were differentiated from dimers by their different fluorescence traces.

Representative fluorescence time traces of GFP–LacI monomer dots taken from 16.4-Hz measurements with continuous illumination are shown in Fig. 4. We observed frequent blinking events seen previously for GFP molecules (16, 17), which are sudden fluorescence dips to near noise level that usually last <100 ms. Each photon count value was the peak photon count of a fluorescence dot. Analysis of \(\approx 100 \) GFP–LacI monomer dots shows that most of the molecules exhibited frequent blinking, a slow decline in fluorescence intensity, followed by irreversible photobleaching as shown in Fig. 4a and b. Some molecules exhibited a fluorescence intensity increase after the initial decline (Fig. 4c). Several molecules showed recovery from photobleaching in seconds, and then eventually photobleached again, this time irreversibly (Fig. 4d).

In contrast to Fig. 4, the representative fluorescence trace of the dimers exhibits two distinct sudden drops in intensity, as shown by all traces in Fig. 5. We consider the two fluorescence intensity steps to be the consecutive bleaching events of the two constituent GFP molecules and, thus, the signature of a GFP dimer. The dimer fluorescence traces can be considered as the fluorescence sum of two monomers of the various patterns shown in Fig. 4: Fig. 5 a and c are the sum of two monomer patterns in Fig. 4a and b; Fig. 5 b–e and g are typical sums of patterns shown in Fig. 4a; Fig. 5 f and g are two of the hard-to-catch fly-by dimers that stuck to the fused-silica surface while imaging, and Fig. 5f represents the monomer sum of Fig. 4a and c; last, Fig. 5b seems to be the rarely occurring sum of two monomers in Fig. 4d.

Fig. 6 compares the number of photons emitted by GFP–LacI monomers and dimers. Both data follow a Poisson distribution. The
mean photons emitted by monomers is 3.69×10^4 photons, and this agrees with the reported value of $\sim 10^5$ photons (18, 19). This value is the same with or without oxygen scavenging. The mean number of photons emitted by GFP–LacI dimers is 7.32×10^4, which is exactly twice that of GFP–LacI monomers. Thus, it is clear that GFP–GFP fluorescence self-quenching is negligible in these experiments. From this result, we infer that the number of photons emitted by GFP multimers scales linearly with the number of GFP molecules, and we use 3.69×10^4 photons as the yield per GFP–LacI monomer in subsequent calculations.

To verify that the two-step bleaching photon-emission pattern that we used to distinguish between monomers and dimers is valid, we also imaged a GFP–cl covalent dimer. Fig. 12, which is published as supporting information on the PNAS web site, shows fluorescence time traces of GFP–cl dimers, with the signature two-step bleaching pattern in each trace. Thus, the two-step bleaching is indeed the signature of a GFP dimer.

Next, we proceeded to count the number of GFP–LacI molecules bound to $lacO_{256}$. Fig. 7a shows a color image of GFP–Lac bound to $lacO_{256}$-DNA attached to a fused-silica surface. Time-averaged images of GFP–Lac and DNA were false colored to be green and red, respectively, and superimposed, so that the overlapping green and red dots indicate bound molecules. The fluorescence intensity per pixel vs. time pattern of representative bound GFP–LacI multimers is different from that of an unbound monomer (Fig. 7b); it is a continuous exponentially decreasing curve devoid of sudden photobleaching events. The exponential fit to the curve gives a GFP characteristic bleaching time constant of 0.3 s for the illumination intensity of 1,000 W/cm2.

The number of bound GFP–LacI molecules was obtained by using the IPMC method, and its distribution is shown in Fig. 8. The number of bound proteins ranges from an order of 4 to an order of 100, with a mean of 13 (± 6 SD). This distribution is specific to the GFP–LacI monomer/$lacO$ concentration ratio of 6:1. When the...
GFP–LacI monomer/lacO ratio was increased to 18:1 by tripling the protein concentration, the number of bound GFP–LacI also increased approximately three times.

To verify that the width of the distribution is not primarily due to random GFP bleaching, we modeled the total photon yields of 13 randomly selected GFP–LacI monomers that have a Poisson photon-yield distribution (Fig. 6). The simulated distribution is shown in the Fig. 8 Inset a to have a mean of 13 and a SD of 2. This narrow distribution indicates that our measured broader distribution indeed represents a large variation in the number of bound GFP–LacI. We have also examined the effect of BOBO-3 dye on the specific binding of GFP–LacI by decreasing the dye-to-DNA ratio to one dye molecule per 100 bp. The Fig. 8 Inset b shows that the number of bound GFP–LacI is 15 ± 7 (mean ± SD), and it has approximately the same mean and SD as for one dye per 5 bp. Thus, the dye effect is negligible.

To evaluate possible quenching between GFP and BOBO-3, the number of GFP–LacI bound to lacO256–DNA was compared under two different conditions: one condition with oxygen scavenging, in which the BOBO-3 dye lasts 30 min without bleaching, and the other condition without oxygen scavenging, in which BOBO-3 bleaches within a minute under the illumination conditions of 50 W/cm². With oxygen scavenging, BOBO-3 was active while GFP was being imaged; thus, there could possibly be

Fig. 7. Image- and fluorescence-intensity trace of GFP–Lac bound to lacO256–DNA. The pulsed-illumination mode was used at an intensity of 1,000 W/cm²; the exposure time was 40 ms. (a) GFP–Lac bound to lacO256–DNA attached to fused-silica surface. Superimposed green and red dots are bound LacI–DNA molecules, and independent green dots are single unbound GFP–LacI molecules. The pixel size is 234 nm. (b) Fluorescence-intensity time traces of a bound GFP–LacI dot (7 × 8 pixels) and an unbound GFP–LacI dot (4 × 4 pixels) measured by using the average photon count per pixel of each image. The intensity of the bound GFP–LacI image declines exponentially, obscuring the photobleaching events of individual bound molecules. There are ~22 molecules bound to lacO256 in this image.

Fig. 8. The number of bound GFP–LacI to lacO256–DNA is 13 ± 6 proteins (mean ± SD). Points above 30 are likely lacO256–DNA dimers formed by the sticky end hybridization of two lacO256–DNA monomers. Inset a is the simulated distribution for number of bound GFP–LacI for 13 randomly selected GFP–LacI monomers. Inset b is the number of bound GFP–LacI at the decreased dye concentration of one dye molecule per 100 bp. The number of bound GFP–LacI is 15 ± 7 proteins.

Fig. 9. The number of GFP–Lac bound to lacO256–DNA for three different conditions: without IPTG, with 1 mM IPTG added after the LacI–DNA–BOBO-3 binding, and with 1 mM IPTG preincubated with GFP–LacI for 1 h before adding DNA and BOBO-3 dye. The numbers of bound GFP–LacI are 19 ± 3, 8 ± 5, and 7 ± 3 (mean ± SD), respectively.

Fig. 10. LacI bound to DNA in a nanochannel. (a) Time-averaged image of GFP–Lac bound to lacO256–DNA elongated in a 150 × 200 nm channel. There are ~20 GFP–LacI molecules bound to this lacO256–DNA molecule. This molecule traveled from right to left into the nanochannel driven by an electric field of 5 V/50 μm. (b) Fluorescence intensity profiles for the DNA and the bound GFP–LacI. The fits are dashed lines.
GFP–BOBO-3 quenching. Without oxygen scavenging, where the DNA was first imaged and the BOBO-3 dye bleached, there should be no GFP–BOBO-3 interaction. If the numbers of bound proteins under the two conditions are identical, it can be inferred that there is negligible GFP/BOBO-3 quenching, despite their overlapping spectra. Fig. 13, which is published as supporting information on the PNAS web site, demonstrates that there is no significant energy transfer between GFP and BOBO-3.

It is clear that there are only of order 10 GFP–LacI monomers bound to the 256 tandem lacO, despite the potential 500 monomer capacity at our nanomolar protein concentrations. Fig. 1 shows the sparsely bound density GFP–LacI on DNA. This low occupancy level of 2.5% was unexpected.

We also studied the effect of the inducer IPTG on LacI–DNA interaction, in part to verify that the observed bindings are specific. It is generally believed that IPTG binds to LacI and releases it from its associated DNA. We measured the number of bound GFP–LacI molecules after adding 1 mM IPTG to the LacI–DNA–BOBO-3 solution; the mean number decreased by ~60% from 19 to 8 (Fig. 9). This mean number of molecules is significantly higher than expected for the 1 mM concentration of IPTG, in which most, if not all, of the bound proteins should be dissociated. This mean value for measurements performed a few minutes to a few hours after adding IPTG, Premixing 1 mM IPTG with GFP–LacI for 1 h before adding DNA gave a similar mean of seven bound proteins. One possible explanation for this result is that the binding coefficient of LacI to a tandem array of binding sites is a function of the number of bound proteins N, most likely a declining function with 1/N.

LacI-DNA in Nanochannels. Another method of verifying the specific binding, and the distribution of proteins along the lacO sequence, is to localize the bound proteins along DNA.

Fig. 10a is a time-averaged image of GFP–LacI bound to lacO–DNA elongated in a nanochannel. There are ~20 GFP–LacI bound to the operator sequence in this image. The fit for DNA using Eq. 2 gives the DNA length Lp = 4.9 μm (σ0 = 175 nm, σ1 = 800 nm, and σ2 = 87 nm); the fit for LacI–lacO–lacO gives the protein–DNA length Lp = 1.1 μm (Fig. 10b). The fractional center location of the LacI–lacO sequence 0.40 and agrees with that of lacO of 0.5 of 0.3 of the LacI–lacO length, which is 0.22, and agrees with that of lacO of 0.22 of lacO length, 9.2 ± 4.0 kbp = 0.22. This result indicates that the 20 GFP–LacI proteins were distributed across the entire lacO sequence. The length of the lacO segment is unaffected by the bound proteins, and, thus, we infer that the binding of 20 LacI does not obviously affect global DNA properties, such as persistence length.

An example with ~24 GFP–LacI bound to lacO–DNA was studied to obtain the protein-distribution statistics (Fig. 11). The data points cluster around the fractional center position of 0.32 and the fractional length of 0.22 of the pristine lacO sequence. Thus, we infer that most, if not all, proteins were bound specifically. By correlating the number of bound proteins with the measured LacI–lacO length, we observed that when only a few bound proteins were present, they appeared as single dots distributed randomly along the lacO sequence. However, for >10 bound proteins, they occupied more sites along lacO, sequence, which to our optical system appeared to take up the whole 1.1-μm-long lacO (Fig. 10). At our optical resolution of ~300 nm, we cannot clearly resolve more than two protein clusters. Because almost all observed proteins were on the expected lacO sites, we infer that there were very few nonspecific binding events in these images.

Conclusions

We have demonstrated the direct imaging of GFP–LacI proteins bound to DNA with tandem lacO insertions. The number of bound molecules was counted by using an IPMC method, and the locations of the bound proteins were determined. An unexpected finding is that only 2.5% of the sites are occupied. The simplest model that might explain such a “long-range” interaction is the nonlinear way that strain energy induced by bending or twisting of the DNA helix upon transcription factor binding influences binding further (20); the strain energy varies as the square of the twisting angle or bending radius. If two transcription factors bind next to each other, the induced strain energy could increase by a factor of 4 and strongly inhibit neighboring occupation. The IPMC method, if properly applied to other fluorescence marker systems, can be a powerful tool to count molecules that cannot be resolved optically. In conjunction with localizing the bound proteins for DNA by the use of nanochannels or other methods, we are one step closer to imaging protein–DNA interactions in real time. Only then can we answer some of the most fundamental protein–DNA interaction questions, such as the binding mechanism of proteins to their recognition-specific sites.

We thank Monica Skoge for helpful discussions. This work was supported by Defense Advanced Research Planning Agency Grant MDA972-00-1-0031, National Institutes of Health Grant HG01506, National Science Foundation Nanobiology Technology Center Grant BSEC9587671, the State of New Jersey Grant NCST 99-100-082-2042-007, and U.S. Genomics.

Fig. 11. Fractional center locations and fractional lengths of LacI–lacO for 24 different samples. The center position is the fractional distance from the center of the LacI-bound DNA to the shorter end of the DNA molecule. The dashed lines mark the fractional center position of 0.32 and the fractional length of 0.22 of the native lacO length.