New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive
Contributed by Murray Gell-Mann, July 25, 2005

Abstract
Phase space can be constructed for N equal and distinguishable subsystems that could be probabilistically either weakly correlated or strongly correlated. If they are locally correlated, we expect the Boltzmann-Gibbs entropy SBG ≡ -k Σi pi ln pi to be extensive, i.e., SBG(N) ∝ N for N → ∞. In particular, if they are independent, SBG is strictly additive, i.e., SBG(N) = NSBG(1), ∀N. However, if the subsystems are globally correlated, we expect, for a vast class of systems, the entropy Sq ≡ k[1 - Σi pqi]/(q - 1) (with S1 = SBG) for some special value of q ≠ 1 to be the one which is extensive [i.e., Sq(N) ∝ N for N → ∞]. Another concept which is relevant is strict or asymptotic scale-freedom (or scale-invariance), defined as the situation for which all marginal probabilities of the N-system coincide or asymptotically approach (for N → ∞) the joint probabilities of the (N - 1)-system. If each subsystem is a binary one, scale-freedom is guaranteed by what we hereafter refer to as the Leibnitz rule, i.e., the sum of two successive joint probabilities of the N-system coincides or asymptotically approaches the corresponding joint probability of the (N - 1)-system. The kinds of interplay of these various concepts are illustrated in several examples. One of them justifies the title of this paper. We conjecture that these mechanisms are deeply related to the very frequent emergence, in natural and artificial complex systems, of scale-free structures and to their connections with nonextensive statistical mechanics. Summarizing, we have shown that, for asymptotically scale-invariant systems, it is Sq with q ≠ 1, and not SBG, the entropy which matches standard, clausius-like, prescriptions of classical thermodynamics.
- Copyright © 2005, The National Academy of Sciences
Citation Manager Formats
More Articles of This Classification
Physical Sciences
Related Content
- No related articles found.