Single-molecule mechanics of mussel adhesion

Haeshin Lee*, Norbert F. Scherer†, and Phillip B. Messersmith*‡§

Departments of *Biomedical Engineering and †Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208; and ‡Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637

Communicated by George C. Schatz, Northwestern University, Evanston, IL, July 3, 2006 (received for review April 5, 2006)

The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels’ ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic.

© 2006 by The National Academy of Sciences of the USA

Conflict of interest statement: No conflicts declared.

Abbreviations: AFM, atomic force microscopy; dopa, 3,4-dihydroxy-L-phenylalanine; Mefp, Mytilus edulis foot protein; F–D, force–distance.

§To whom correspondence should be addressed. E-mail: philm@northwestern.edu.

© 2006 by The National Academy of Sciences of the USA

Numerous living creatures rely on physical adhesion to biotic and abiotic objects for essential activities, such as movement, protection, and self-defense (1–3). From a purely functional point of view, bioadhesion can be of two major types: temporary and permanent. A characteristic example of a temporary bioadhesive strategy is given by the specialized foot hairs used by geckos for climbing sheer surfaces (1). A classic example of permanent bioadhesion is exemplified by mussels, (4) which secrete holdfasts essential for stability within the tidal marine environment. The remarkable features of mussel adhesion include the ability to achieve long-lasting adhesion in a wet environment (3) and adherence to virtually all types of inorganic and organic surfaces (5). The adhesive apparatus of the mussel consists of a series of byssal threads that tether the organism to a substrate (Fig. 1A). At least five specialized adhesive protein subtypes known to contain 3,4-dihydroxy-L-phenylalanine (dopa) at concentrations ranging from a few mol % to 27 mol % (Fig. 1B) are found within the distal adhesive pad of the widely studied blue mussel, Mytilus edulis (6). The highest dopa content occurs in M. edulis foot protein (Mefp)-3 (21 mol %) and Mefp-5 (27 mol %) (7, 8), both of which are localized near the interface between the adhesive pad and the substrate (Fig. 1C).

The role of dopa in mussel adhesive proteins is not fully understood, although there is general acceptance that oxidized dopa residues play important roles in cross-linking reactions leading to solidification of the secreted liquid protein adhesive (9–12). The particularly high concentration of dopa at the adhesive/substrate interface has led to much speculation regarding its role in adhesive bonding. However, the physicochemical details of dopa–surface interactions remain elusive. Byssal thread pull-off experiments (13) and macroscopic lap shear bond strength measurements using dopa-containing polypeptides (14) failed to clearly distinguish between cohesive and adhesive behavior and yielded little information at the molecular level. Previous atomic force microscopy (AFM) measurements of whole mussel adhesive proteins interacting with surfaces (15, 16) were complicated by the presence of other amino acids, an unknown number of proteins on the tip, and multiple dopa residues interacting with the surface. For this paper, we used the single-molecule method of Hinterdorfer et al. (17) to isolate the contribution of dopa in mussel adhesion.

Results and Discussion

Single-Molecule Adhesion Force of dopa. We used chemically modified Si3N4 AFM cantilevers to investigate the interaction of single dopa residues with organic and inorganic surfaces. PEG...
residues tethered to different PEG chains. On very rare occasions this did occur, which was apparent from F–D profiles that exhibited multiple pull-off signals (Fig. 5, which is published as supporting information on the PNAS web site). Finally, the low probability of observed tip–surface binding events (≈10% of contacts yielded F–D curves as shown in Fig. 2A) provided additional evidence for single dopa–Ti surface interactions.

The reversible nature of the interaction between a single dopa molecule and the Ti surface allowed us to construct a histogram of bond dissociation forces extracted from many F–D curves (Fig. 2B), yielding a surprisingly large dissociation force of 805 ± 131 pN (147 events, 3 cantilevers) for the mean and standard deviation. To put this value in perspective, other investigators have determined that a few nanonewtons of applied force was required to rupture a single covalent bond (18). Obviously, once covalent bonds have ruptured, one cannot study reversible binding dynamics of single molecules but must average over the behavior of many single molecules. On the other hand, hydrogen bonds, although reversible, ruptured at tens of piconewton forces (19). To our knowledge, the dopa–Ti interaction is the strongest reversible binding interaction involving a small biological molecule ever reported, underscoring the unique nature of the observed dopa–Ti interaction.

In the absence of dopa, PEG-functionalized AFM tips showed essentially no hysteresis between approach and pull-off curves in experiments conducted under identical conditions (Fig. 6, which is published as supporting information on the PNAS web site), indicating that the PEG itself interacted very weakly with the Ti substrate. Furthermore, when N-Boc-protected tyrosine (N-Boc-Tyr) was substituted for dopa, only small-amplitude interaction forces (97 ± 28 pN) (Fig. 7, which is published as supporting information on the PNAS web site) were measured to Ti. This small interaction clearly demonstrates the significance of Tyr-to-dopa posttranslational modification in the adhesion of mussel adhesive proteins.

To gain further insight into the energetics of this interaction we determined the average dopa–Ti bond rupture force at several loading rates. The plot of force vs. loading rate is shown in Fig. 2C, revealing the expected trend of increased force to break the bond at higher loading rates (20). The linear fit to the data provided the dissociation energy and the distance \(x_b \) beyond which the bond is completely dissociated along the applied force direction (20, 21). The analysis revealed a dissociation energy of 22.2 kcal/mol and an \(x_b \) value of 2.16 Å for the dopa–Ti bond. The determined bond dissociation energy is close to the 25–30 kcal/mol range estimated by density functional theory for the bond formed between dopamine and TiO\(_2\) (22). Although the existence of metal–oxygen coordination is well established in biology, the metal–oxygen coordination bond formed by interaction of dopa with an oxide surface is a rare example of a coordination bond whose primary function is to achieve mechanical adhesion. Although the interaction is reversible in our single-molecule experiments, it may not be the case for whole mussel adhesive proteins, because cooperativity of multiple dopa–surface interactions could allow for enormous force transmission across the interface. As few as three or four dopa residues interacting with an oxide surface would eclipse the strength of a covalent bond, leading to irreversible cohesive failure (i.e., covalent bond breakage) within the bulk adhesive pad. This may help to explain previous observations that Mefp-3 and Mefp-5 proteins remain attached to surfaces after removal of the adhesive pad (23).

Effect of dopa Oxidation on Adhesion. Oxidation of the catechol side chain of dopa occurs in the alkaline marine environment, giving rise to quinones that further react to cross-link adhesive proteins via aryl–aryl coupling (di-dopa formation) or possibly via Michael-type addition reactions with amine-containing pro-
tein residues (9–12). The prevailing view is that these reactions play key roles in the bulk solidification of mussel glues; however, very little is known about the impact of these oxidation reactions on adhesion to substrates (14). Measurement of adhesive interactions between oxidized dopa and surfaces is complicated by the highly reactive nature of semiquinones and quinones. This technical concern was alleviated through the use of a large excess of unreactive methoxy-PEG during tip functionalization, yielding a single dopa molecule on the AFM tip. The excess methoxy-PEG molecules suppressed possible intermolecular reactions between oxidized dopa species and allowed us to investigate adhesive interactions between oxidized dopa and various surfaces in great detail.

An AFM tip containing a single dopa residue was first identified by obtaining F–D curves on Ti at neutral pH as described above. The pH of the aqueous solution was then increased to 8.3 or 9.7 to oxidize the dopa, after which additional F–D curves were recorded. Interestingly, at alkaline pH values, a bimodal distribution of force signals is observed consisting of large or small forces registered at similar pull-off distances (Fig. 3A). Statistical analysis of the pH 9.7 data yielded two nonoverlapping histograms with force values of 180 ± 60 pN (74% frequency) and 740 ± 110 pN (26% frequency) (Fig. 3B, dark blue bars and dark red bars, respectively). Similar force values were obtained at pH 8.3, except that the likelihood of observing a force value in the range 750–800 pN increased to 62%, whereas the likelihood of observing a force value in the 150–200-pN range decreased to 38% (Fig. 3B, light red bars and light blue bars, respectively). These observations are consistent with the observation of single-molecule fluctuations between two states in chemical equilibrium; i.e., between dopa and dopa–quinone (Fig. 3C). The equilibrium between dopa and dopa–quinone is shifted toward dopa–quinone at high pH (pKₐ = 9.2) (24). Considering the data in Fig. 3 as well as the neutral pH data shown in Fig. 2, we assign the high-force signal to the interaction of dopa with Ti and deduce that the low-force signal represents the interaction of dopa–quinone and its resonance structures with Ti, because these signals appeared only under oxidizing conditions. Assuming a value for the bond length, x₀, similar to that observed for dopa–Ti (2.1 Å), the calculated bond dissociation energy of dopa–quinone to Ti was only 5.3 kcal/mol (≈8.5 kT) (details are in Supporting Text, which is published as supporting information on the PNAS web site), confirming that oxidation of dopa substantially reduces adhesion to Ti. It is, therefore, unlikely that mussel adhesion to wet Ti or similar oxide surfaces is mediated by dopa–quinone and its resonance structures.

Adhesion Mechanism of dopa on Organic Surfaces. Finally, we used a similar methodology to elucidate the mechanism behind mussel adhesion to organic surfaces. In contrast to inorganic surfaces, we anticipated that oxidation of dopa under elevated pH may result in covalent coupling to organic surfaces. It has been speculated that reactions between dopa–quinone and either primary amines (10) or thiols (25), for example, give rise to bulk cohesive cross-linking of marine adhesive proteins. However, clear evidence for such reactions occurring at interfaces has been lacking.

Interfacial reactions between oxidized dopa and organic surfaces were probed in three steps. First, the characteristic single-molecule dopa–Ti interaction was identified through F–D curves obtained at neutral pH as described above. The Ti surface was then replaced with an amine-modified Si surface (Fig. 9, which is published as supporting information on the PNAS web site) (26) and force experiments with the same tip were performed at pH 9.7. Initial F–D curves showed no significant hysteresis, however within a short period (156 seconds; 78th contact/pull-off cycle) a dramatic increase in pull-off force to 2.2 nN is observed, after which an additional 800 contact/pull-off cycles revealed no measured interaction force (Fig. 4A). The extremely large force value together with the lack of subsequent adhesion events is consistent with covalent bond rupture, leading us to conclude that dopa–nitrogen adducts form under the conditions of our experiment (Fig. 4B). We do not know where covalent bond breakage occurs, however the magnitude of the rupture force is consistent with rupture of a silicon–carbon bond (2.0 ± 0.3 nN) (18), suggesting that the broken covalent bond may be at the organic–inorganic interface of the Si₃N₄ tip. Although the pH used in our experiments is somewhat higher than that of seawater, we believe that the results will be essentially similar at lower pH values, albeit with slower kinetics because of the shift in chemical equilibria of dopa–quinone/dopamine and NH₃+/NH₄⁺ toward dopa and NH₄⁺ species, respectively.

The overall picture of mussel adhesion that emerges from our findings is one of unique chemical versatility that permits strong adhesion to both organic and inorganic surfaces. The conversion of tyrosine to dopa is a crucial event in mussel adhesive protein processing that leads to multiple adhesive
roles for dopa at interfaces. On inorganic surfaces the unoxidized dopa forms high-strength yet reversible coordination bonds, whereas on organic surfaces oxidized dopa is capable of adhering via covalent bond formation. It may be that the remarkable ability of mussels to adhere to both organic and inorganic surfaces is related in part to the equilibrium that exists between dopa and dopa–quinone at marine pH, allowing both species to interact with surfaces. It is also notable that strong bonds between dopa and organic and inorganic surfaces formed in the presence of water, presumably a crucial characteristic for a protein adhesive operating in the wet marine environment. As our understanding of mussel adhesion expands, so do the prospects for exploiting this information for practical use. Indeed, the use of dopa and related catecholic molecules has recently emerged as a promising method for anchoring synthetic and biological macromolecules onto oxide surfaces for medical applications (27–29).

Methods

Tip Modification. Before surface modification, silicon nitride (Si$_3$N$_4$) tips were cleaned in an O$_2$ plasma (Harrick Scientific, Ossining, NY) for 3 min and then subsequently transferred to a piranha solution (sulfuric acid/H$_2$O$_2$, 8:2) for 30 min. After extensive rinsing with nanopure H$_2$O, the tips were transferred into 20% (vol/vol) 3-methoxy-PEG-N-hydroxy succinimide (mPEG-NHS; Nektar, Huntsville, AL), which had a molecular weight of 2,000, and Fmoc-PEG-N-hydroxy succinimide (Fmoc-PEG-NHS; Nektar), which had a molecular weight of 3,400, at a Fmoc-PEG-NHS/mPEG-NHS ratio of 1:5 to 1:10. The PEG functionalization was performed at a total PEG concentration of 5 mM in 50 mM sodium phosphate buffer/0.6 M K$_2$SO$_4$, pH 7.8, at 40°C and subsequently repeated in chloroform at room temperature for 3 h. Fmoc protecting groups were then cleaved by treating the tips in 20% piperidine (vol/vol in N-methyl-2-pyrrolidone) for 5 min, followed by coupling of N-Boc-dopa to the liberated amine in solution with 10 μl of diisopropylethylamine [N-nitrosobis(2-oxopropyl)amine]/hydroxybenzotriazole/dopar molar ratio of 1:1:1; 8 mM in N-methyl-2-pyrrolidone]. The use of excess mPEG-NHS during PEG functionalization of the tip served to limit the number of dopa residues on the tip, facilitating single-molecule force measurements. The same procedure was used for preparation of Boc-tyrosine-functionalized tips.

Surface Preparation and Characterization. A 20- to 50-nm (thin) layer of Ti on Si [crystal structure of (100)] wafer surfaces was prepared with an Edwards FL-400 e-beam evaporator (Boc Edwards, Sussex, U.K.). Before use, all surfaces were sonicated (model no. 3214 sonicator; Branson, Danbury, CT) in hexane, 2-propanol, and acetone and, subsequently, in piranha solution to generate an oxide layer. Amine-containing organic surfaces were prepared by functionalization of unmodified silicon wafers with 3-aminopropylmethoxysilane in anhydrous toluene after the cleaning process just described. The presence of surface amines was confirmed by x-ray photoelectron spectroscopy (Fig. 9). Unmodified and 3-aminopropylmethoxysilane-modified Si surfaces were analyzed by x-ray photoelectron microscopy, (Omicron, Taunusstein, Germany) equipped with a monochromatic Al Kα (1.486.8 eV), 300-W x-ray source and an electron gun to eliminate charge build-up. The iron-oxide surface was prepared by chemical vapor deposition through the reaction of iron chloride with water at a temperature range of 800–1,000°C (30).

AFM Experiment. All data were collected on an Asylum MFP-1D AFM instrument (Asylum Research, Santa Barbara, CA). Spring constants of individual cantilevers (Veeco Probes, Santa Barbara, CA, and Bio-Levers; Olympus, Tokyo, Japan) were calibrated by applying the equipartition theorem to the thermal noise spectrum (31). All AFM experiments were conducted in Millipore (Billerica, MA) water or water buffered with 20 mM Tris/HCl (pH 9.7 and 8.3) at room temperature. The progress of tip functionalization with 3-aminopropylmethoxysilane and PEG was confirmed by the appearance of characteristic force signals at each step in the modification procedure (Fig. 6). The vast majority of dopa-functionalized AFM tips yielded F–D curves with only a single dopa adhesion event, although, on one occasion, a tip generated two spatially resolved adhesion events during pull-off (Fig. 5). Control experiments performed with AFM tips modified as described above with Boc-tyrosine revealed only weak interactions with Ti surfaces (Fig. 7A). The presence of tyrosine was confirmed by force measurements on gold-evaporated surfaces (Fig. 7B).

Dynamic Force Experiments. AFM experiments were performed as described above at several loading rates. The actual loading rate was directly determined from each individual force–extension curve as follows. Four data points were taken near the rupture point and plotted as a function of time as determined from the AFM piezo-transducer ramp rate. The slope (dF/dt in nN/sec) was calculated by a linear least-square fit of the plots (32).

We thank Dr. Jason Ming Zhao for technical support and insightful discussions; Northwestern University for use of its Atomic and Nanoscale
Characterization Experimental Center; and the National Science Foundation for use of its Materials Research Science and Engineering Centers facilities, which are supported by the University of Chicago through Grant DMR 0213745. This work was supported by National Institutes of Health Grant DE 14193, Biologically Inspired Materials Program Grant NCC-1-02037 from the University Research Technology Institute of the National Aeronautics and Space Administration, and a seed grant from the University of Chicago’s Institute for Biophysical Dynamics.

Supporting Text

Determination of Bond Dissociation Energy. The bond dissociation energy was calculated from the pulling rate dependence of the pull-off force as described by Evans and coworkers (1). The relationship between force \(F \) and pulling rate \(r \) is given by

\[
F = \left(\frac{kT}{x_b} \right) \cdot \ln \left(\frac{r}{k_o \cdot kT / x_b} \right) = \left(\frac{kT}{x_b} \right) \cdot \ln r + \left(\frac{kT}{x_b} \right) \cdot \ln \left(\frac{k_o kT}{x_b} \right),
\]

[1]

where \(x_b \) is the bond length, \(kT \) is the thermal energy. \(k_o \) is given by

\[
k_o = v \cdot \exp \left(\frac{-E_b}{kT} \right),
\]

[2]

where \(v \) is the molecular vibration frequency \(\approx 10^{10} \text{ s}^{-1} \) and \(E_b \) is the bond dissociation energy.

Estimation of Bond Dissociation Energy for dopa-quinone on Ti. Because Eq. 1 is linear, a plot of \(F \) vs. \(\ln(r) \) would have a slope of \(\left(\frac{kT}{x_b} \right) \). Using \(x_b \ 2.16 \times 10^{-10} \text{ m} \) from Fig. 2C gives \(\left(\frac{kT}{x_b} \right) = 1.88 \times 10^{-11} \text{ (J/m)} \).
Based on the calculated slope and experimentally measured dopa–quinone–Ti force [180 pN at \(\ln(r) = 2.24 \) from Fig. 3B], the \(y \)-intercept is estimated to be 136 pN (see plot above). \(k_0 \) is then determined from,

\[
136 \text{ pN} = \left(\frac{kT}{x_b}\right) \cdot \ln\left(\frac{k_0 kT}{x_b}\right)
\]

yielding a \(k_0 \) value of \(1.32 \times 10^{13} \) (s\(^{-1}\)). Finally, using Eq. 2, the bond dissociation energy for dopa–quinone–Ti was estimated to be 5.3 kcal/mol using Eq. 2.
Fig. 5. Multiple force traces of single molecule binding of DOPA to iron oxide. The black vertical line represents the contact between tip and substrate. The blue and the red vertical lines (red) were spatially resolved multiple DOPA binding events. The curve indicated by the arrow exhibited two DOPA binding events in the same experiment.
Fig. 6. AFM force-distance traces of chemically modified silicon nitride AFM tips on Ti. a. A representative force-distance trace of a clean tip without chemical modification. Adhesion was not detected during cantilever retraction. b. A representative force-distance trace from an amine functionalized tip. Snap-on (arrow) during cantilever approach as well as a large force (~6 nN) on pull-off are suggestive of electrostatic interaction between the positively charged amine functionalized tip and negatively charged oxide surface. c. A representative force-distance trace from a PEG modified tip (no DOPA). The electrostatic interactions were attenuated by inert grafted PEG layers, resulting in a low intensity physical resistive force characteristic of a grafted PEG layer (arrow).
Fig. 7. AFM force-distance traces of tyrosine modified silicon nitride AFM tips: tyrosine interacts weakly to Ti surfaces. A. Representative force-distance traces of a tyrosine modified tip on Ti. Most scans showed no detectable binding signal (black), and <10% of scans showed weak signals (red). The histogram on the right represents the statistical analysis of the weak force signals (63 events). B. Representative force-distance traces of tyrosine modified tip on Au. To eliminate the possibility that the tip used in part A did not contain tyrosine, force-distance curves using the same tip were obtained on Au. The presence of tyrosine on the tip was confirmed by the presence of interaction forces centered at 397 ± 91 pN (99 events). This observation is consistent with π-electron interactions between the tyrosine phenyl group and the Au surface (33,34).
Fig. 8. Time trajectory display of the AFM force signals of DOPA (red) and DOPA-quinone (black) on Ti observed over a 1 h period at pH 8.3. The strong DOPA adhesive force was observed 62.4% of the time whereas the DOPA-quinone frequency was 37.6%.
Fig. 9. XPS characterization of amine functionalized Si surfaces. A clean unmodified Si surface (above) and after modification with APTMS (below). The appearance of nitrogen 1s (400 eV) and increase in carbon 1s signal (284.5 eV) in the spectrum indicates successful modification by the aminosilane compound.