On the origin and highly likely completeness of single-domain protein structures

Yang Zhang*, Isaac A. Hubner†, Adrian K. Arakaki*, Eugene Shaknovich‡, and Jeffrey Skolnick*‡

*Center of Excellence in Bioinformatics, University at Buffalo, State University of New York, 901 Washington Street, Buffalo, NY 14203; and †Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138

Edited by Harold A. Scheraga, Cornell University, Ithaca, NY, and approved December 30, 2005 (received for review October 27, 2005)

The size and origin of the protein fold universe is of fundamental and practical importance. Analyzing randomly generated, compact sticky homopolypeptide conformational structures in generic simplified and all-atom protein models, all have similar folds in the library of solved structures, the Protein Data Bank, and conversely, all compact, single-domain protein structures in the Protein Data Bank have structural analogues in the compact model set. Thus, both sets are highly likely complete, with the protein fold universe arising from compact conformations of hydrogen-bonded, secondary structures. Because side chains are represented by their C\(^\alpha\) atoms, these results also suggest that the observed protein folds are insensitive to the details of side-chain packing. Sequence specificity enters both in fine-tuning the structure and thermodynamically stabilizing a given fold with respect to the set of alternatives. Scanning the models against a three-dimensional active-site library, close geometric matches are frequently found. Thus, the presence of active-site-like geometries also seems to be a consequence of the packing of compact, secondary structural elements. These results have significant implications for the evolution of protein structure and function.

Protein structures represent very interesting systems in that they result from both physical chemical principles (1) and the evolutionary selection for protein function (2). Focusing on the tertiary structures adopted by protein domains (roughly defined as independent folding units) (3), a number of key questions must be addressed. How large is the protein fold universe (4–6)? Is it essentially infinite, or is there a limited repertoire of single-domain topologies such that at some point, the library of solved protein structures in the Protein Data Bank (PDB) (7) would be sufficiently complete that the likelihood of finding a new fold is minimal? If the number of folds is finite, how complete is the current PDB library (6, 8, 9)? That is, how likely is it that a given protein, whose structure is currently unknown, will have an already-solved structural analogue? The answer to these questions is not only of intrinsic interest, but has practical applications to structural genomics target selection strategies (5, 10). More generally, can the set of protein folds and its degree of completeness be understood on the basis of general physical chemical principles, or is it very dependent on the details of protein stereochemistry and evolutionary history (11)?

In recent work that builds on the other studies (8, 12, 13), we suggested that the library of single-domain proteins already found in the PDB is essentially complete in the sense that single-domain PDB structures provide a set of structures from which any other single-domain protein can be modeled (9, 14). By using sensitive structural alignment algorithms that assess the structural similarity of two protein structures, even when proteins belonging to different secondary structure classes are compared (e.g., comparing \(\alpha\)-proteins to \(\alpha/\beta\) and \(\beta\)-proteins), protein structures in the PDB can be found with very similar topology; i.e., the arrangement of their secondary structural elements (\(\alpha\)-helices and/or \(\beta\)-strands) is similar (9). Moreover, protein structure space is extremely dense in that there are many apparently nonhomologous structures that give acceptable structural alignments to an arbitrary selected single-domain protein. However, the structural alignment usually has unaligned regions or gaps. Starting from these alignments, state-of-the-art refinement algorithms can build full-length models that are of biological utility [with an average root-mean-square deviation (rmsd) to native of 2.3 Å for the backbone atoms] (14). Furthermore, incorrectly folded models generated by structure prediction algorithms also have structural analogues in the PDB, an observation again consistent with PDB completeness (15). Nevertheless, one might argue that comparing PDB structures against themselves as well as with structures generated using knowledge-based potentials extracted from the PDB (which retain some features of native proteins), although suggestive that the PDB is complete, does not establish that the universe of single-domain protein structures is complete; nor even if true, does it establish the reason for such completeness.

Here, we address these issues and show the surprising result that the highly likely completeness of the PDB results from the requirement of having compact arrangements of hydrogen-bonded (H-bonded), secondary structure elements and nothing more. By studying compact homopolypeptide conformational structures having a typical distribution of secondary structures, we further show that the resulting library of computer-generated compact structures is found in the current PDB, and, conversely, the generated library of compact structures is complete, i.e., all compact, single-domain proteins in the PDB have a structural analogue in a rather small set of computer-generated models. These studies go significantly beyond previous work, where relatively small supersecondary structural elements are generated assuming that the protein is a homopolymer confined to a semiflexible tube that mimics H-bonding (16), to show that by using a simpler, physics-based force field, the complex topologies of single-domain proteins result. Furthermore, if we scan the set of randomly generated, compact structures against a three-dimensional active-site template library (17), close geometric matches for a considerable number of known active sites can be found. The possible implications of these results for both protein design and evolution are discussed below.

Results

We consider a homopolypeptide chain (terming a “sticky” homopolypeptide below) with a very minimal potential consisting of H-bonding, excluded volume, and a uniform, pairwise attractive potential between side chains. For the atomic model, folding is purely \textit{ab initio} with no bias to any preselected secondary structures. These results have significant implications for the evolution of protein structure and function.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: AFT, Automated Functional Template; PDB, Protein Data Bank; rmsd, rms deviation; d rmsd, distance rmsd.

To whom correspondence should be sent at the present address: Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 250 14th Street NW, Atlanta, GA 30318. E-mail: skolnick@gatech.edu.

© 2006 by The National Academy of Sciences of the USA
structure (18); however, its H-bond potential is biased to helices; thus, it is limited to the study of helical proteins. In contrast, the H-bond scheme in the reduced model works equally well for all protein secondary-structural classes. Furthermore, to enable all secondary-structure classes to be explored, the reduced model employs a local bias toward the assigned secondary structure (which is not obligatory), where the length and location of each biased secondary structure element is randomly selected based on PDB statistics. The actual distribution can be found in Fig. 5, which is published as supporting information on the PNAS website. Each secondary structural element is followed by a loop, and in α/β proteins, the order of α-helices and β-strands is randomly chosen, each with 50% probability.

Global Folds of Compact Homopolypeptides with Protein-Like Secondary Structures Are All in the PDB. Collapsed, low-energy conformations of 100- and 200-residue-long, sticky homopolypeptides were generated for the reduced protein model, whereas, because of computational cost, only 100-residue homopolypeptides were considered in the detailed atomic model (18). For each chain length in the reduced protein model, a set of chains with 150 different secondary-structure assignments is simulated (50 α-, 50 α/β-, and 50 β-proteins). For the atomic model, because its H-bond scheme does not work well for β-strands, mainly α-proteins result. For both protein representations, the topologies of the generated computer models for the set of compact, homopolypeptide chains are highly divergent. Typically, the population of the largest cluster is <5% of the total number of structures, and there is minimal energetic separation between different clusters. In contrast, in a typical structure prediction on a real protein sequence, the largest cluster population is ~50% (19).

We selected pairs of structurally related proteins by their TM-score, a metric of structural similarity, identified by the structural alignment program TM-ALIGN (15). Compared with the conventional rmsd between a pair of structures, the TM-score is more sensitive to the similarity in global topology of the compared structures. It is normalized so that its magnitude is independent of protein size, with a value of 0.30 and a standard deviation of 0.01, for the best structural alignment of an average pair of randomly related structures (15, 20) and a value of 1.0 for two identical protein structures.

Fig. 1. Rmsd vs. alignment coverage of computer-generated models matched with the closest representative structure in the PDB. (Left) For each homopolypeptide with a given secondary structure pattern, 14 models (Top 1, 10, 25, 50, 75, 100, 125, 150, 175, and 200 clusters) are selected; for each, only the match of the highest TM-score identified by TM-ALIGN is presented. (A) The 100-aa (AA) atomic, off-lattice models. (B) The 100-aa reduced lattice models. (C) The 200-aa reduced lattice models. (Right) Corresponding representative examples of the structural alignments in different categories are shown. Thick backbones are from models; thin backbones are from PDB structures. Red indicates residue pairs whose distance is <5 Å; those separated by >5 Å are shown in magenta (model) and blue (PDB structure), respectively.
0.45 (with a z-score of \(\approx 15\)) are indicative of highly significant structural similarity. In all cases, the randomly generated compact structures have related folds in the PDB. The atomic models have an average rmsd of 3.9 Å with its closest structural neighbor from the PDB, 83% average coverage, and an average TM-score of 0.52 (z-score of 22). For the 100-residue-long reduced models, these numbers are 3.9 Å, 83%, and 0.51 (z-score of 21), respectively. Thus, there is no difference in average results between the atomic and reduced protein models, indicative of their robustness and invariance to model details. This similarity further indicates that the helix-length distribution in the atomic model, in particular, and most likely in general, is dictated by the balance between compactness and H-bonding. In Fig. 1 Right, we show representative examples of structures belonging to the different secondary structural classes of proteins compared with the closest PDB structure. It is evident that protein structures of quite complex topology are generated and that all have close structural matches in the PDB.

However, because proteins containing 100 residues are relatively small, the fact that the set of compact, sticky homopolypeptide structures can be found in the PDB, although suggestive, does not convincingly demonstrate that for longer sequences with more complicated topologies, such structures also will be found in the PDB. Thus, we considered 200-residue proteins in the reduced protein model. Again, the results are highly significant: the average coverage is 73%, with an average rmsd of 5.4 Å and a significant TM-score of 0.44 (z-score of 14). As demonstrated in the examples in Fig. 1C Right, even for proteins with very complex topologies, there are corresponding structural analogues in the PDB. As the chain length increases, on average, the corresponding structural alignments to PDB structures contain a larger number of gaps, especially for \(\beta\)-proteins; nevertheless, the global topology is matched, with the majority of the core region aligned. Based on our previous work, rather high-quality comparative models could be built from these alignments (14), even if one secondary-structural element is missed as can sometimes happen in the most extreme cases. It is precisely in this sense that all compact homopolypeptide structures are in the PDB. This essential point is discussed in further detail below and in Supporting Materials and Methods and Figs. 6 and 7, which are published as supporting information on the PNAS web site. Thus, the results summarized in Fig. 1 strongly suggest that the requirements to generate the complex topologies found in the PDB are inherently geometric and just involve the packing of compact structures containing H-bonded, secondary-structure elements.

Is presence of H-bonded, secondary structures necessary to reproduce the set of single-domain protein structures found in the PDB at a reasonable level of accuracy, or is compactness alone sufficient? To examine this issue, we generated an ensemble of compact, freely jointed chains (FJC) (21) that lack both regular secondary structure and H-bonds, but that retain C\(^\alpha\) atom-excluded volume interactions. We then performed the identical analysis as in Fig. 1. The results are summarized in Fig. 2 and are qualitatively different (see also Fig. 8, which is published as supporting information on the PNAS web site). For the resulting ensemble of compact FJC models that are 100 and 200 AA residues in length, the average TM-score is \(\approx 0.30\). This value is just the average TM-score of structural alignments cover \(\approx 2/3\) of the core of the protein. Full-length

![Fig. 2.](image)

Fig. 2. Rmsd vs. alignment coverage for the compact freely jointed chain models selected by TM-align to the closest representative PDB structure. (A) The 100-aa (AA) chains. (B) The 200 AA chains. For each chain, 20 independent Monte Carlo simulations are generated, which have excluded volume interactions (C=−C\(^{-}\) distance > 3 Å) and a bias to the radius of gyration (G) of an average protein of length L, i.e., \(G = 2.2L^{0.38}\). For each independent simulation, up to 14 clusters chosen as in Fig. 1 are used in the structure comparison. Red indicates residue pairs whose distance is < 5 Å; those separated by > 5 Å are shown in magenta (model) and blue (PDB structure), respectively.

All Single-Domain PDB Structures <150 Residues Are in the Library of Compact Homopolypeptide Global Folds, Implying both Are Complete. Thus far, we have shown that all of the generated compact, sticky homopolypeptide structures are found in the PDB. Next, we demonstrate the converse that for a representative set of nonhomologous proteins in the PDB between 41 and 150 residues in length, the “PDB150 set,” all single-domain protein structures are found in the library of computer-generated, compact homopolypeptide structures. After clustering all PDB structures at the level of 30% sequence identity, the resulting PDB150 set contains 913 representative single-domain proteins, of which there are 213 \(\alpha\)-proteins, 116 \(\beta\)-proteins, 580 \(\alpha/\beta\)-proteins, and 4 proteins with little if any secondary structure. Here, we exclude proteins having irregular, extended structures by using a radius of gyration (G) cutoff, i.e., \(G < 1.5G_o\), where \(G_o\) (\(= 2.2L^{0.38}\)) denotes the average value of radius of gyration for a protein of length \(L\) (23). Nevertheless, a significant number of PDB structures with dangling tails remain after filtration, thereby making structure comparison with the compact, homopolypeptide library a somewhat more difficult test.

As shown in Fig. 3A, if we use the set of 15,000 clustered structures generated for the 200-residue, compact, sticky homopolypeptide chains (150 proteins, each with a distinct, randomly selected pattern of secondary structure times the top 100 clusters), then the resulting library of generated compact structures is complete with respect to the PDB. In fact, single-domain proteins in the current PDB structural repertoire can be matched to the compact structure fold library with an average rmsd of 4 Å, 75% coverage, and TM-score = 0.47 (z-score of 17).

To demonstrate that the resulting set of structures is buildable (that is, continuous chains with physically reasonable C\(^\alpha\) virtual bonds could be constructed from the structures), we selected the 10 worst PDB-compact homopolypeptide matches on the basis of their TM-score whose value is \(\approx 0.37\); not surprisingly, many have dangling tails that are responsible for this relatively low TM-score. As described in Table 1 and Figs. 9–11, which are published as supporting information on the PNAS web site, these alignments cover \(\approx 2/3\) of the core of the protein.
models can be built by using the protein structure prediction program TASSER (19, 35); the average TM-score after TASSER modeling improved to 0.62 (z-score of 32). In all but one case (again because of a dangling tail), TASSER also improved the quality of the core regions. It is in this sense that structural space is complete: The compact homopolypeptide models are buildable, and the global topology of all proteins in the PDB can be recovered by using straightforward modeling techniques to add the unaligned residues that mainly occur in the loops. The final model sometimes contains minor modifications in the core. In Fig. 3B, we reduce the size of the compact homopolypeptide library to 7,000 structures by reclustering the set of 15,000 models, a similar size to the PDB library used in Fig. 1. Now, the average rmsd is 4 Å, with 75% average coverage and a TM-score of 0.46 (z-score of 16). In Fig. 3C, we again reduce the number of models by half to 3,500 distinct structures by reclustering the 7,000 models using a smaller TM-score cutoff. Here, the average rmsd is 4.1 Å, the average coverage is 74%, and the average TM-score is 0.45 (z-score of 15). Thus, even when the structure library is reduced by half, the set of representative homopolypeptide conformations is still a complete representation of the PDB. Moreover, as indicated by the trend shown in Fig. 3, the space covered by such structures is very dense with many compact, sticky homopolypeptide structures that give acceptable structural alignments to PDB structures. In Fig. 3 Lower, we show structure alignments of representative PDB structures for the three different secondary structure classes to members of the compact, 15,000-member sticky homopolypeptide structural library. This library and the set of alignments to the PDB150 set are included in Supporting Materials and Methods.

The fact that the library of compact sticky homopolypeptide structures (that have not been subject to any evolutionary selection) is complete with respect to the PDB as well as the converse argues that both are highly likely to be complete. That is, they fully represent the set of topological arrangements of secondary-structural elements that single-domain proteins may adopt. Furthermore, structures of acceptable quality can be built by using the structural alignment as the starting conformation. This probable completeness is the result of the packing of H-bonded, secondary structure in compact proteins. This finding also explains why misfolded decoys generated by protein structure prediction algorithms are found in the PDB, because they too are just compact structures containing H-bonded, secondary-structural elements.

How can it be that such an apparently small number of compact structures is complete for single-domain protein structures, especially because we only consider 150 distinct secondary structure patterns (a number arbitrarily chosen for reasons of computational cost)? The reason is that a given structure can be the source of many different structural alignments, all of which can yield buildable, full-length protein models. The set of compact structures with randomly selected protein-like secondary structures can be thought of as a set of “basis vectors” or building blocks that span the space of single-domain folds. Because structural alignments sample an exponentially large number of possibilities (24), given a reasonable set, the ability to cover the PDB converges rather rapidly as a function of the number of disparate protein structures, a picture confirmed by Fig. 3.

Nonlocal Substructures Bearing a Close Relationship to Active-Site Geometries Are Found in the Compact, Sticky Homopolypeptide Structure Library. Given the global similarity between single-domain proteins and the set of compact sticky homopolypeptide structures, we next examine the corresponding relationship between nonlocal substructures (local in space, but not local in sequence). Because of their biological relevance, we explored the extent to which the geometry of functionally important, nonlocal substructures is also a consequence of the packing of compact, secondary-structural elements. We first scanned 750 sticky ho-
mopolypeptide structures (150 proteins with distinct secondary structure times the top five clusters for the 200 AA models) and the same number of native structures (a nonredundant set at a 40% sequence identity cutoff), with a library of sequence-independent, active-site templates, the Automated Functional Template (AFT) library (17). Each AFT contains three to five independent, active-site templates, the Automated Functional Template (AFT) library (17). Each AFT contains three to five functional residues and is comprised of the functional residues Cα and Cβ atoms and the Cα atoms of the adjacent residues. The Cβ atoms partially account for the orientation of the active-site side chains. To eliminate the direct influence of evolution that would lead to trivial results, before native structures were scanned, all enzymes sharing the first two EC digits with that of the AFT under analysis were excluded.

As shown in Fig. 4, in both sets, we find substructures whose geometries are very close to those of active sites, even though we remove from consideration those native structures corresponding to enzymes functionally related to the AFT under analysis. For instance, with a tolerance of 0.5 Å in the distance rmsd (drmsd) from the restrictive cutoff (the maximum drmsd observed between a true positive hit and the corresponding AFT) (17), we detected matches for 23% of the AFTs in at least 1% of the homopolypeptide structures and matches for 31% of the AFTs in at least 1% of the native structures (see Fig. 12, which is published as supporting information on the PNAS web site). Both distributions are remarkably similar, bearing in mind that the AFTs are directly derived from very specific arrangements of functional residues in native enzyme active sites. Thus, the existence of active-site-like geometries also seems to be a consequence of the packing of compact, secondary-structural elements. They occur at a remarkably high frequency, even under conditions where there is no selection pressure to adopt such geometries. Furthermore, if we require matches with a tolerance of a 0.5-Å drmsd in at least one of 3,500 sticky homopolypeptide structures (the same set shown in Fig. 3C, which is complete with respect to the PDB), then we observe that the set is 48% complete with respect to our active-site library.

These results have a number of interesting implications: First, although the idea of designing new functions by finding backbone geometries that match known active sites and then inserting the functionally important residues has been successfully used in a number of cases (25–27), the blue curve in Fig. 4, which corresponds to structures in the PDB library, suggests that this finding could be a general design paradigm for enzymes. However, its generality must be demonstrated. Second, our results suggest that there is nothing particularly special about active-site geometries. What is special is the fact that when specific constellations of residues adopt this geometry, then a particular enzymatic function results. Third, the fact that active-site geometries occur with such relatively high frequency in our library of compact, sticky homopolypeptides (where no evolutionary pressure whatsoever has been exerted to select for them) suggests that in the very early stages of protein evolution, the probability that they could be discovered by chance is remarkably high. Evolution then could act to optimize enzymatic efficiency.

Conclusions

Our results strongly suggest that the observed repertoire of single-domain protein tertiary structures found in the PDB is the result of geometric effects due to the packing of compact, H-bonded, secondary structural elements and is not the result of evolutionary selection nor the intimate details of side-chain packing. Furthermore, the results are robust and independent of the particular model that is used (detailed atomic, off-lattice model vs. reduced, on-lattice model). Although the set of compact, sticky homopolypeptides generates reasonable tertiary structures, they are definitely not biological proteins in that they do not have a unique native state. This state requires a protein sequence (with a reasonable distribution of hydrophobic residues to induce collapse and hydrophilic residues to make the protein water-soluble) whose minimum free energy structure has an energy gap from other alternative folds. It is here that thermodynamics enters and where evolution has selected sets of sequences that satisfy this requirement. The global fold of the protein also is fine-tuned by the sequence-specific details including side chain packing. Thus, the assumptions of fold-recognition algorithms (28, 29) are consistent with nature in that fold and sequence are decoupled: there likely is a limited library of allowed structures consistent with the general physical chemical principles of compactness and H-bonding, and the “goal” of evolutionary selection is to find sequences compatible with such structures and that are energetically stabilized with respect to the sea of alternative folds. It is likely that the evolution of sequences and structures that resulted in the modern “protein universe” operated on a large, but limited, set of structures. Certainly, possible folds were unequally sequestered by evolution; the uneven usage of folds and sequences is well established (2, 30). However, in all likelihood, the limited repertoire of starting structural possibilities, established in this work, seriously impacted the course of evolution of the protein universe; it also has significant implications for protein design.

By studying the completeness of a library of compact homopolypeptides that contain a protein-like distribution of H-bonded, secondary-structural elements, we have demonstrated that the resulting set of computer-generated, compact structures can be found in the PDB and, conversely, for single-domain proteins in the PDB, even when a very small set of secondary structural elements are used (here, 150 different sequential arrangements), the resulting library is likely complete at the level of low-to-moderate resolution structures. That is, they contain the majority, if not all, of the core secondary structure elements of all compact, single-domain proteins and that structures of biological utility can be generated with simple modeling procedures that use one of these compact homopolypeptide’s structures as the starting template. This finding suggests that both the PDB and the compact homopolypeptide structural libraries are complete. Furthermore, it is highly likely that a necessary and sufficient condition for this completeness is the packing of compact, H-bonded secondary-structural elements. Although this conclusion might seem trivial, it is commonly believed that the complex folds adopted by proteins are the result of the fine tuning of the details of side-chain packing and are specially

Fig. 4. Fraction of the 150 active-site functional templates, AFTs that hit at least 1% of 750 sticky homopolypeptide structures (magenta histogram), at least 1% of 750 native structures (blue histogram), or at least one of 3,500 compact sticky homopolypeptide structures (yellow histogram) at a given drmsd interval from the corresponding restrictive cutoff.
selected for during the course of evolution. This work suggests the contrary: the library of folds that are adopted is because of relatively simple and robust considerations of the packing of compact, H-bonded secondary-structural elements. In essence, single-domain proteins are in the small chain limit: they have a relatively small number of secondary-structural elements whose random packing yields a set of structures that span the space of protein folds. When the chains are completely flexible (i.e., lacking in secondary structure) and their number of degrees of freedom is on the order of the number of residues, this is not the case, and the resulting compact structure fold space is not complete.

Because our results suggest that the PDB has already explored the universe of compact single-domain protein folds, the target selection strategy of structural genomics (10, 31) might need to the universe of compact single-domain protein folds, the target complete.

freedom is on the order of the number of residues, this is not the contrary: the library of folds that are adopted is because of relatively simple and robust considerations of the packing of H-bonded, secondary-structural elements in compact structures, with a remarkable richness of detail that follows from these few, simple assumptions.

Methods

Protein Models. To assess the generality of the results, we used two protein models with different protein representations, force fields, and conformational search schemes that are based on replica exchange Monte Carlo sampling (18, 19, 36). If the results turn out to be insensitive to protein representation and conformational search scheme, then this finding is suggestive that the conclusions are robust and insensitive to details. If not, one would have to be cautious in interpreting how well the simulations mimic the universe of single-domain protein structures. In practice, we employ both an atomic model that is off-lattice (i.e., the atoms are in continuous space) with a full heavy-atom representation of the backbone and a reduced protein representation where the protein backbone is represented by its Cα atoms that are confined to a high coordination number lattice (19). Both models represent each side chain by a Cβ atom. Although isotropic to polyanaline, these are generic protein representations that depict the most minimal geometric features shared by all proteins and should allow us to examine the most general features underlying the origin of the set of protein folds. Additional methodological details are in Supporting Materials and Methods.

Structure Generation and Analysis. Folding starts from a set of randomly generated, expanded states. The resulting compact structures were clustered based on their mutual structural similarity and ordered according to their population using the SPICKER structure clustering algorithm (37). The top 5, 10th, and then every 25th structure to the 200th structure was compared with a template library of 6,967 proteins that cover the PDB at a 50% pairwise sequence identity cutoff. The structural similarity of each pair of native and homopolypeptide structures was assessed by using a recently developed structural alignment algorithm, TM-ALIGN (15), which uses the TM-score (20) as the metric of structural similarity. We also report the corresponding rmsd and coverage, the fraction of aligned residues, from the best structural alignment. Additional details are in Supporting Materials and Methods and also Table 2, which is published as supporting information on the PNAS web site.

This work was supported in part by Division of General Medical Sciences of the National Institutes of Health Grants GM-48835, GM-068760, and GM-37408.

Supporting Materials and Methods

Tools for the Generation and Analysis of Folded Protein Structures. To generate the ensemble of compact homopolypeptide conformations, a protein model, protein force field, and conformational search scheme are required. Then, given an ensemble of structures, we require clustering algorithms to select representatives from a diverse set of conformations. Finally, we need a sensitive algorithm to identify the structural analogs of the computer-generated conformations from a representative set of structures in the PDB and vice versa. In what follows, we describe the tools that address these issues.

Protein Models, Force Fields, and Conformational Search Protocols. Since there does not yet exist a perfect force field capable of folding an arbitrary protein to its native structure, it is important to assess the sensitivity of the results to the particular force field and protein representation used. If the results are insensitive to protein representation (i.e., whether or not a continuous space, detailed atomic model, or a Cα plus Cβ, CAS, lattice-based model is used), the particular force field, and the conformational search scheme, then this result is suggestive that the resulting conclusions are robust. If, on the contrary, qualitatively different results emerge depending on the details of how the models are constructed, then one would have to be cautious in interpreting how well the simulations mimic the completeness of protein structural space. In what follows, we present an overview of the two models, their associated force fields, and conformational search protocols.

Detailed Atomic Model, Force Field, and Conformational Search Scheme. The first model employs a detailed atomic representation of the protein and accounts for all heavy atoms (1, 2). The backbone atoms are typed as peptide N, Cα, carbonyl C, and O. We consider a homopolypeptide where each side chain has a Cβ atom. Atomic radii were calibrated to achieve realistic Ramachandran plots. Bond lengths, chain connectivity, and excluded volume are always maintained. The potential contains two components: pairwise interactions and hydrogen-bonding (H-bonding). Two-body interactions are
represented by a square well, contact potential that does not require the knowledge of native structure (if any) of the protein to be simulated. Atoms A and B, with hard-sphere radii \(r_A \) and \(r_B \), separated by a distance \(D \) are in contact if \(0.75(r_A + r_B) < D < 1.8(r_A + r_B) \) and interact with a potential \(E_{AB} \). In addition to the pair potential, a backbone H-bonding, \(E_{HB} \), function is used to ensure proper secondary structure formation. The relative strength of H-bonding and pairwise interaction is controlled by \(\alpha \), which balances polymer elongation and collapse.

As shown in Fig. 5, a H-bond is counted when the four atom pairs associated with donor nitrogen and hydrogen and acceptor carbonyl oxygen and carbonyl carbon are within a square well, eliminating the need for angle calculations and increasing computational efficiency. The indicated distances are as follows: \(d_1 \) is the distance between the donor nitrogen and acceptor oxygen; \(d_2 \) is the distance between the donor nitrogen and acceptor carbonyl carbon; \(d_3 \) is the distance between the donor hydrogen and acceptor oxygen; and \(d_4 \) is the distance between the donor hydrogen and acceptor carbonyl carbon. In this particular variant, interactions are only allowed between residues \(i \) and residues \(i + 2, i + 3, \) and \(i + 4 \). Thus, H-bonds using this potential are essentially limited to helical conformations. The H-bond energy, \(E_{HB} \) (in dimensionless units), for specific distance parameters is given in the accompanying H-bond potential file tabulated in the format \(d_1, d_2, d_3, d_4, \) and \(E \).

The total energy of a given conformation, \(E_{total} \), is given by

\[
E_{total} = \alpha E_{HB} + (1 - \alpha) E_{AB} \cdot (1)
\]

Based on previous work, we set \(\alpha = 0.9 \). For a test set of seven proteins, in the native state the ratio of \(E_{AB} \) to \(E_{HB} \) is \(\approx 3:1 \), even though the strength of an average atom-atom contact is only 1/10 that of the energy of a H-bond.

The dihedral move set (1, 2) satisfies detailed balance (1, 3), with the amplitudes of moves drawn from a Gaussian distribution with zero mean and 2° variance for the
backbone and 10° variance for the side-chain χ angles. Conformations are searched using replica exchange Monte Carlo (4).

CAS Reduced Protein Model, Force Field, and Conformational Search Scheme. The conformation of a protein in the CAS model is described by its C^α atoms and the side-chain centers of mass (SG), taken here to be a C^β (5). The force field used in this study is a subset of the full TASSER force field (a protein structure prediction algorithm) (5) and consists of: (i) Uniform hydrophobic interactions between side-chain residues for the purpose of generating compact conformations; (ii) H-bonding described in further detail below; (iii) excluded volume; and (iv) an energetic bias to a preassigned secondary structure. For helices this is an energetic bias toward loosely defined helical conformations, whereas for β-strands this is a weak bias toward extended conformations. The secondary structures regions are assigned in the following way: Each secondary structure fragment (helix or strands) is followed by a short loop. The sizes of the secondary structures and loops are randomly taken from a distribution derived according to PDB statistics (Fig. 6). For $\alpha\beta$ proteins, the helices and strands are randomly ordered, each with 50% probability of assignment.

H-Bond Interactions in the CAS Model. Since H-bonding is essential to the results, we present the explicit details of the H-bond scheme. The strength and occurrence of H-bonds in the CAS model are defined by the contact order (CO, residue distance along sequence) and relative orientation and geometry of donor and receptor residues. As shown in Fig. 7, if we define $cc=\vec{c}_i \cdot \vec{c}_j$, $bb=\vec{b}_i \cdot \vec{b}_j$, $pp=\vec{p}_i \cdot \vec{p}_j$, $qq=\vec{q}_i \cdot \vec{q}_j$, $br_i=|\vec{b}_i - \vec{r}|$, $br_j=|\vec{b}_j - \vec{r}|$, and $r=|\vec{r}|$, the H-bonding energy in the CAS model can be calculated by the following automated procedure:

For a hydrogen bond between residues that are located in an α-helix,

If $ss \neq \beta$ and CO = 3 and $bb > bb_\alpha$, then
If $cc > cc_\alpha$ and $r < r_\alpha$ and $pp > pp_\alpha$ and $qq > qq_\alpha$, then

$$E_{HB} = \lambda_\alpha (1 - |cc - cc_\alpha|)(1 - |bb - bb_\alpha|)/[(1 + |bri - br_\alpha|)(1 + |brj - br_\alpha|)]$$

For a hydrogen bond between residues that are located in antiparallel β-strands,

If $ss \neq \alpha$ and $CO > 4$ and $bb < bb_\beta$, then

If $cc > cc_\beta$ and $r < r_\beta$ and $pp < pp_\beta$ and $qq < qq_\beta$, then

$$E_{HB} = \lambda_\beta |bb|cc/[(1 + bri/2)(1 + brj/2)].$$

For a hydrogen bond between residues that are located in parallel β-strands,

If $ss \neq \alpha$ and $CO > 20$ and $bb > bb_\beta$, then

If $cc > cc_\beta$ and $r < r_\beta$ and $pp > pp_\beta$ and $qq > qq_\beta$, then

$$E_{HB} = \lambda_\beta bb^* cc/[(1 + bri/2)(1 + brj/2)]. \quad (2)$$

Here $ss \neq \alpha(\beta)$ means neither putative donor nor receptor residues are assigned as an α-helix (β-strand). $\lambda_\alpha(\beta) = 1$ if both donor and receptor residues are each assigned as an α-helix (β-strand); otherwise $\lambda_\alpha(\beta) = 0.5$. $\varepsilon = 5.0$ Å for α-helix and 4.6 Å for β-sheet. All other parameters are calculated from the statistics of 100 high-resolution structures in PDB (50 in α-proteins and 50 in β-proteins according to DSSP assignments), and are summarized in Table 2.

This H-bond scheme is mainly designed for the backbone atoms inside α-helices and between β-strands. But rarely some backbone atoms in the loop or tail regions also may
form a H-bond with other backbone atoms if their relative geometry satisfies any of the above conditions.

Starting Conformations, Move Sets, and Sampling. The protein chain is confined to a high-coordination number lattice (5), and the only input for the 150 chains is the secondary structure assignments. All conformations start from a random, extended coil. Unlike the full TASSER algorithm (5), no fragments are excised from the PDB, nor are idealized secondary structural elements used. Parallel Hyperbolic Monte Carlo sampling (6), an improved variant of Replica Exchange Monte Carlo (4), is used to explore conformational space. Conformational updates consist of two to six bond movements and multibond sequence shifts (5).

The SPICKER Clustering Algorithm. To select representative structures from the trajectories of either the atomic or CAS protein models, we employ the structure clustering algorithm, SPICKER (7). SPICKER is a greedy algorithm where members of each cluster are selected as follows: For a given pairwise rmsd cutoff, R_{cut}, the first cluster contains the structure with the most neighbors (that comprise the “cluster center structure”), as well as the structures of all its neighbors. The second cluster contains the structure with the second largest number of neighbors, excluding all members of the first cluster, as well as the structures of all its neighbors, etc. As shown elsewhere, SPICKER (7) has been extensively benchmarked (5, 8-10) and found to show improvement over previous clustering algorithms (11) in selecting representative lowest free energy structures.

TM-ALIGN: A New Structural Alignment Algorithm. Since our goal is to compare the computer-generated compact structures with protein structures found in the PDB, a tool to generate structural alignments between them is needed. Structural alignments assess the structural similarity between a pair of structures, where the set of equivalent residues required for the comparison is not a priori given. Therefore, an optimal alignment needs to be identified; this is in principle NP-hard (12). Various different heuristic approaches have been proposed to search for this “best” structure alignment.
given a metric of structural similarity. These differ mainly in the metric used to assess the alignments and the search algorithm that identifies the putative best alignment. Representative approaches include DALI (13), CE (14), STRUCTAL (15), and SAL (16). For example, STRUCTAL (15) and SAL (16) use the interstructural residue-residue distance based Levitt-Gerstein, \(LG \), score matrix and maximize the cumulative \(LG \)-score (15) or relative rms distance (rmsd) (17), by a heuristic iterative Needleman-Wunsch dynamic programming approach (18). During the iterations, both algorithms use a rotation matrix that is constructed to minimize the rmsd between a pair of structures. However, the average rmsd of randomly related proteins depends on the length of compared structures, which renders its absolute magnitude meaningless (17).

The recently proposed TM-score (19) overcame this issue, where the TM-score is defined as

\[
\text{TM-score} = \max \left[\frac{1}{L_{\text{Target}}} \sum_{i}^{L_{\text{ali}}} \frac{1}{1 + \left(\frac{d_i}{d_0(L_{\text{Target}})} \right)^2} \right]. \quad (3)
\]

Here, \(L_{\text{Target}} \) is the length of target protein that the other structure is aligned to; \(L_{\text{ali}} \) is the number of aligned residues; \(d_i \) is the distance between the \(i \)th pair of aligned residues.

\[
d_0(L_{\text{Target}}) = 1.24 \sqrt{L_{\text{Target}}} - 15 - 1.8
\]

is a distance parameter that normalizes the distance so that the average TM-score is independent of protein size for a random structure pair. The TM-score \{whose range is \((0,1]\}\} has an average value of 0.17 for a pair of randomly related structures (19) and a value of 1.0 for two identical protein structures.

Our recently developed structural alignment algorithm TM-ALIGN (20) exploits these insights and extends the approaches of STRUCTAL (15) and SAL (16), by using the TM-score rotation matrix to speed up the identification of the best structure alignments. When the best structural alignments between a pair of randomly related structures are
considered, the average TM-score is 0.30, and the standard deviation (SD) is 0.01. We examine this issue further in Fig. 8, where we show the histogram of the TM-score of the best structural alignment of 158 distinct, compact conformations of 200 residue freely jointed chains, FJC, to the representative PDB template library of 6,967 proteins that cover the PDB at a 50% sequence identity cutoff. Interestingly, the average TM-score of 0.30 is independent of the particular set of unrelated structures that are compared. It is the same average value for structural alignments of FJC to PDB structures or for structural alignments of unrelated single domain proteins in the PDB. Of course, we have to remove the set of related protein structures in the PDB to calculate the SD for randomly related structure pairs; this is why the FJC are used to obtain this value.

The TM-ALIGN algorithm is ≈ 4 times faster than CE (14) and 20 times faster than DALI (13) and SAL. On average, the resulting structure alignments have higher accuracy and coverage than those provided by these most often-used methods. Here, this approach is used to identify the optimal structural alignments between the computer-generated conformations and PDB structures. Besides the rmsd and the alignment coverage, TM-ALIGN also reports the TM-score. The TM-ALIGN program is available from the authors upon request.

TASSER Modeling Starting from Compact Homopolypeptide Templates. We selected the 10 proteins in the PDB150 set that have the worst structural matches to our 15,000-member library of compact, homopolypeptide models, based on their TM-score, which is available from the authors upon request (see Table 1). We then used TASSER to build full-length models for these 10 proteins starting from the TM-ALIGN structural alignments, where the spatial contact and distance restraints are taken from the selected compact, homopolypeptide templates to guide the TASSER simulation. The results are summarized in Table 1. Although the TM-score of the structural alignments is modest (≈ 0.37), the alignments provide the correct topology for $\approx 2/3$ of the core-region residues. Among the reasons for the modest TM-score is the presence of long tails in a number of the templates. One of the tasks of TASSER is to connect the continuous fragments by building appropriate loops. The average global rmsd from the corresponding PDB structure of the
first TASSER model is 5.11 Å. Most targets have a rmsd <6.5 Å, except for 1fjgl that has a long, unfolded tail in the N terminus (see Fig. 9). If we cut the tail (from PRO1 to SER18), then the global rmsd is 5.8 Å.

TASSER also considerably improves the topology of the structurally aligned regions. The average rmsd to native of the compact homopolypeptide templates and the refined TASSER models is 4.79 and 4.15 Å, respectively, from the PDB structure for the same aligned residues (see Table 1). Fig. 10 shows a representative example, 1at0_, which demonstrates a significant improvement due to TASSER’s ability to readjust the protein’s core. There is only one target, 1nkws, where the rmsd of the TASSER model is higher than that of the TM-ALIGN structural alignments. In this example (see Fig. 11), TASSER places the N-terminal in the wrong direction, a known problem of TASSER in modeling the orientation of long tails as well as mutual orientation of protein domains.

Three-Dimensional (3D) Active-Site Template Library. For the detection of substructures whose geometry resembles enzyme active sites, we use an updated version of our library of Automated Functional Templates (AFTs) (21). The AFTs are based on the 3D arrangement of residues important for defining the molecular function of a given enzyme. The procedure for building an AFT consists of three steps: (i) Retrieval of functionally important substructures from all PDB structures associated with a specific EC number; (ii) generation of tentative distance-based templates describing the active site; and (iii) a specificity assessment of the AFTs. Previously, we defined an AFT as the spatial arrangement of k functional building blocks (3 ⩽ k ⩽ 5), each composed of the Cα atom of a functional residue, the two adjacent Cα atoms, and (for non-glycine residues) one pseudoatom corresponding to the side-chain center of mass (SG). To better suit the present analysis, since we focus on sticky homopolypeptides (whose only side chain heavy atom is a Cβ), we use the Cβ rather than the SG pseudoatom. Also, to speed up the calculations, we set k = 3. We now base the AFTs on functionally important substructures where all involved residues are annotated with the ACT_SITE key name in the Swiss-Prot (22) database (indicating a direct contribution to the enzyme’s activity). Finally, we use a stricter definition for the restrictive cutoff to establish the significance of a match:
the maximum distance rms (drmsd) (the average rmsd between corresponding distances in the compared substructures), observed between a true positive hit and the corresponding AFT. The permissive cutoff is defined so that the expected number of false positive matches is <0.005 per true negative structure. Following this procedure, a library of 150 AFTs associated with 118 different EC numbers is obtained.

Scanning of Native Structures and Sticky Homopolypeptides with the AFT Library. We used our AFT library to scan, in a sequence-independent manner, three sets of structures: (i) The top five clustered structures generated by the simulation for each of the one hundred fifty 200-residue homopolypeptides (750 structures); (ii) the same number of native structures from the PDB; and (iii) the representative set of 3,500 compact homopolypeptide structures used to assess the completeness of the compact fold library with respect to the PDB. The 750 native structures are nonredundant (at the level of 40% sequence identity), with lengths ranging from 163 to 230 residues and an average length of 199.7 residues. To eliminate direct effects due to evolution, before scanning the set of native structures with a given AFT, we remove those that correspond to enzymes whose EC numbers share the first two components of the EC number of the AFT under analysis.

By way of illustration, we show in Fig. 11 the relative frequency distributions of substructures of the top 10 AFTs that have the best match to one of the 750 sticky homopolypeptide structures. Given that the sticky homopolypeptide structures are generated at random with no knowledge of the AFT geometry, the results suggest active site geometries at the level of \(C^\alpha\) and \(C^\beta\) atoms arise from the packing of compact secondary structural elements and at the level of substructure geometry are not special. We find that there is no relationship with the set of enzymes functions that have the best match and ancient enzymes.

Structural Alignment Library. In the library of aligned structures, there are 913 representative PDB structures and three sets of computer-generated models for the compact sticky, homopolypeptide models: (i) 100-residue chains by atomic off-lattice
modeling; (ii) 100-residue chains by reduced on-lattice modeling; and (iii) 200-residue chains by reduced on-lattice modeling. The files are in the following directories:

- **100_255**: 255 models of 100 residue proteins (all are α-proteins) from the atomic, off lattice model.

- **100_150 × 14**: 100 residues, 150 chains each with 14 clusters (i.e., Cluster-1, 2, 3, 4, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200) from the reduced, on-lattice model. For the file name, “a” stands for α-proteins; “b” for β-proteins; “ab” for αβ-proteins.

- **200_150 × 14**: 200 residues, 150 chains each with 14 clusters (i.e., Cluster-1, 2, 3, 4, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200).

- **200_15000**: 200 residues, 150 chains each with the top-100 clusters.

- **200_7000**: 200 residues, 7000 models from clustering of the 200_15000 set.

- **200_3500**: 200 residues, 3500 models from clustering of the 200_7000 set.

- **150_PDB**: 913 compact PDB structures whose length is between 41 and 150 residues with a pairwise sequence identity <30%.

- **X.PDB**: PDB structures (“X” stands for PDB IDs).

- **X.ali_15000**: TM-ALIGN structure alignment of X to the closest model from the 200_15000 set.

- **X.ali_7000**: TM-ALIGN structure alignment of X to the closest model from the 200_7000 set.
o **X.ali_3500**: TM-ALIGN structure alignment of X to the closest model from the 200_3500 set.

o **Summary15000**: Summary of TM-ALIGN results of the PDB150 set to the 200_15000 set.

o **Summary7000**: Summary of TM-ALIGN results of the PDB150 set to the 200_7000 set.

o **Summary3500**: Summary of TM-ALIGN results of the PDB150 set to the 200_3500 set.

o **10worst**: Structural alignments of the 10 worst PDB150 proteins to the closest homopolypeptide model in the 15,000 compact, homopolypeptide library.

