Depletion “skraps” and dynamic buffering inside the cellular calcium store

Bradley S. Launikonis*, Jingsong Zhou*, Leandro Royer*, Thomas R. Shannon*, Gustavo Brum†, and Eduardo Rios‡

*Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612; and ‡Departamento de Biofísica, Universidad de la República, Facultad de Medicina, Montevideo, Uruguay

Communicated by Clara Franzini-Armstrong, University of Pennsylvania School of Medicine, Philadelphia, PA, December 28, 2005 (received for review November 29, 2005)

Ca2+ signals, produced by Ca2+ release from cellular stores, switch metabolic responses inside cells. In muscle, Ca2+ sparks locally exhibit the rapid start and termination of the cell-wide signal. By imaging Ca2+ inside the store using shifted excitation and emission ratioing of fluorescence, a surprising observation was made: Depletion during sparks or voltage-induced cell-wide release occurs too late, continuing to progress even after the Ca2+ release channels have closed. This finding indicates that Ca2+- is released from a “proximate” compartment functionally in between store lumen and cytosol. The presence of a proximate compartment also explains a paradoxical surge in intrastore Ca2+, which was recorded upon stimulation of prolonged, cell-wide Ca2+ release. An intrastore surge upon induction of Ca2+ release was first reported in subcellular store fractions, where its source was traced to the store buffer, calsequestrin. The present results update the evolving concept, largely due to N. Ikemoto and C. Kang, of calsequestrin as a dynamic store. Given the strategic location and reduction of dimensionality of Ca2+-adsorbing linear polymers of calsequestrin, they could deliver Ca2+ to the open release channels more efficiently than the luminal store solution, thus constituting the proximate component. When store depletion becomes widespread, the polymers would collapse to increase store [Ca2+] and sustain the concentration gradient that drives release flux.

rapid changes in intracellular cytosolic [Ca2+] are required for signaling functions in many cell types (1). These changes are achieved via Ca2+- release through channels, Ryanoine receptors (RyRs), which must open and close quickly. To increase its speed, gating of RyRs relies on effects of the permeant ion, including channel opening by elevated cytosolic [Ca2+] (2). In muscle, the desirable fast kinetic features are already present in its elementary signaling events, Ca2+ sparks (3), which involve the nearly simultaneous opening (4) of a number of channels (5), followed by their synchronized closing (4). Thus, this gating does not follow the usual Markovian rules for channels that evolve independently but requires timekeeping and synchronization (6). In cardiac muscle, depletion of sarcoplasmic reticulum (SR) Ca2+ is the likely timer of channel closing, and the substantial depletion that follows the cardiac beat (7) was imaged as “blinks” associated with Ca2+ sparks (8). The sensor that translates depletion into channel closing appears to be the main intra-SR buffer, calsequestrin (CSQ) (9).

By contrast, in skeletal muscle, depletion associated with a twitch is only 8–15% (10). This low rate of depletion reflects a SR with larger terminal cisternae containing higher concentrations of a CSQ of greater binding capacity, thus constituting a much greater calcium reservoir. Despite the greater store, sparks of skeletal muscle are even briefer and more stereotyped than in cardiac muscle, which casts doubts on the signaling role of depletion in skeletal muscle and elsewhere.

To ascertain the magnitude and role of Ca2+ depletion, we combined shifted excitation and emission ratioing of fluorescein (SEER) imaging of [Ca2+] in the SR, [Ca2+] in frog skeletal muscle. First we sought images of the depletion associated with sparks, which we named “skraps” a priori, expecting mirror images of sparks. We had two surprises: Skraps did not mirror sparks but had their own suggestive kinetics. Also, cell-wide Ca2+ release was often accompanied by increases in free intrastore [Ca2+].

results

Simultaneous Imaging of [Ca2+] in Cytosol and SR Lumen. The evolution of [Ca2+] was monitored by the ratio of simultaneously recorded SEER (11) images (F1 and F2) of SR-trapped rhod-2 placed in the cytosol. Cytosolic [Ca2+] was monitored by the fluorescence, F3, of rhod-2 placed in the cytosol. Fig. 1A is a line-scan image of F3(x, t) in a frog muscle cell with permeabilized plasmalemma immersed in a sparks-promoting solution. Fig. 1B is the ratio R(x, t) of F1 and F2, obtained simultaneously with F3. R is a monotonic function of [Ca2+] calibrated in situ (11).

[Ca2+] varied between 300 μM and 1 mM in non-spark regions (10 cells). The circles in Fig. 1A were placed by an automatic detector of sparks. Those in Fig. 1B mark the corresponding spatiotemporal locations in the R image. No depletion was evident to the eye at these locations. For every spark, the surrounding subarray within the image was extracted (dashed rectangle); their average is in Fig. 1C (numbers of cells and events averaged are given in the Table 1). Fig 1D is the corresponding average of R images, with the spark overlapped as a contour. Instead of the expected depression in [Ca2+]R, we found a stable increase of ~5% of the resting value of R, or an increase of ~10% in [Ca2+] monitored by the dye.

Skraps of SR Depletion. [Ca2+] increases in mitochondria upon Ca2+ release (12) and mag-indo-1 loads in mitochondria as well as SR (11). When imaging in cells exposed to four inhibitors of mitochondrial Ca2+ uptake (Fig. 1E and F), the local increase in organellar [Ca2+] was greatly reduced, and a small depression was found on the central ridge of increased [Ca2+] at the time of the spark. The profiles of the normalized and filtered R(x, t) image are in Fig. 1G and H. The decay in R (blue trace) started at the same time as the spark (red trace), reaching a nadir, down 0.6% from the starting value after an interval of ~45 ms. The recovery had a time constant of 48 ms.

The skraps were defined better by replacing glutamate with sulfate in the solution, which widens sparks (as shown in Fig. 2A) probably by recruitment of channels (13). The local increase in organellar [Ca2+] was not found in sulfate, irrespective of the presence of mitochondrial inhibitors (Table 1). This effect of sulfate supports a mitochondrial origin of the increase, because sulfate is not a substrate for mitochondrial metabolism. Fig. 2B...
is the average R image at the location of sparks in sulfate. The panel reveals a steady depression and a transient skrap (shown in Fig. 2 C–E) after normalization and filtering. In sulfate the nadir is deeper, reaching 1.5%, and the recovery time constant is 251 ms. Differences in parameter values of the skrap in sulfate solution versus sulfate solution are entirely explained by the greater spark amplitude reached in sulfate (Fig. 7, which is published as supporting information on the PNAS web site).

The Delayed Onset of Skraps. The fractional change in ratio during skraps ranged from 0.006 (in reference solution) to 0.031 (in sulfate solution, in sparks of amplitude above the median), implying a reduction of \([\text{Ca}^{2+}]\) by at most 7.4%. A depletion of this magnitude is consistent with current estimates of \(\text{Ca}^{2+}\) current in a spark and \(\text{Ca}^{2+}\) content of the SR. By contrast, the kinetics of depletion were truly unexpected in that the phase of increasing depletion lasted too long. The flux of \(\text{Ca}^{2+}\) release underlying a spark (green trace in Fig. 2E) estimated by the rate of production of signal mass (14) was essentially over by the time the spark peaked. Surprisingly, \([\text{Ca}^{2+}]_{\text{SR}}\) continued to decrease afterward, reaching nadir 50 ms later.

\[\text{Ca}^{2+}\text{ Release Induced by Physiological Stimuli.} \] The paradoxical kinetics of skraps is reflected in physiological cell-wide transients. Upon mechanical peeling, the transverse tubular system reseals, restoring electrical excitability (15, 16). Shown in Fig. 3A is the cytosolic \(\text{Ca}^{2+}\) transient in response to an action potential in a peeled fiber. Fig. 3B shows the simultaneously recorded SEER ratio, and Fig. 3C shows their averaged time courses, with release flux as a green trace. Upon \(\text{Ca}^{2+}\) release, \([\text{Ca}^{2+}]_{\text{SR}}\) fell from 980 to 900 \(\mu\text{M}\), which is consistent with a depletion of \(\approx 8\%\) of total SR \(\text{Ca}^{2+}\) and within the range of earlier estimates of fractional release caused by an action potential (10). As plotted in blue in Fig. 3 A Inset and C, \([\text{Ca}^{2+}]_{\text{SR}}\) continued to decrease for 30 ms after cessation of release, repeating in the cell-wide signal the delay observed locally. The average delay was somewhat briefer than in sparks, perhaps because the action potential synchronizes not just the beginning but also the termination of sparks (17). Unlike skraps, cell-wide depletion did not visibly recover by 600 ms, which agrees with refilling times estimated by global photometry (18). The faster recovery of single skraps suggests that local depletion is replenished by diffusion from neighboring SR regions. The same hypothesis justifies that smaller skraps recover more rapidly.

A depletion delay of respect to the flux that causes it violates conservation laws unless \(\text{Ca}^{2+}\) is released to the cytosol from a proximate source, distinct from the SR-luminal solution and therefore invisible to the monitoring dye. The evolution of \([\text{Ca}^{2+}]_{\text{SR}}\) upon stimulation of prolonged cell-wide \(\text{Ca}^{2+}\) release revealed other properties of this proximate store.

\[\text{Ca}^{2+}\text{ Transients Inside the Cellular Store.} \] Fig. 4 shows successive xy scans in one fiber. Fig. 4A, rows a, shows images of \(F_3\) (monitoring \([\text{Ca}^{2+}]\) in the cytosol, \([\text{Ca}^{2+}]_{\text{cyto}}\); in rows b are images of \([\text{Ca}^{2+}]_{\text{SR}}\). Fig. 4B shows image-averaged \(F_3\) (red trace) and \([\text{Ca}^{2+}]_{\text{SR}}\) (blue trace). At the time indicated by the arrow in Fig. 4A, the solution was changed to a release-inducing (RI) solution, a low \(\text{Ca}^{2+}\), low Mg\(^{2+}\) saline that induces moderate \(\text{Ca}^{2+}\) release. \([\text{Ca}^{2+}]_{\text{cyto}}\) increased, stayed elevated for tens of seconds, then decayed rapidly to resting values. Surprisingly, here and in 11 other cells, there was also a transient increase in \([\text{Ca}^{2+}]_{\text{SR}}\).

An analogous transient, described in suspensions of SR vesicles upon stimulation by RyR-opening drugs was traced to intravesicular \(\text{Ca}^{2+}\) release from CSQ (19). The intrastore buffer is clearly involved in the present transients as well. The flux, shown in green in Fig. 4B, exhibits two peaks corresponding to the two steps in the cytosolic \(\text{Ca}^{2+}\) transient. The first peak caused only a small reduction in \([\text{Ca}^{2+}]_{\text{SR}}\) (blue), which implies that the SR lumen was highly buffered. The second peak was essentially cotemporal with the \([\text{Ca}^{2+}]_{\text{SR}}\) peak and perhaps was driven by it. Afterward, release continued at a lower rate, but \([\text{Ca}^{2+}]_{\text{SR}}\) declined rapidly, reflecting a greatly reduced \(\text{Ca}^{2+}\).
buffering power. It follows that the initial surge in $[\text{Ca}^{2+}]_{\text{SR}}$ resulted from a decrease in buffering power, namely in the number or affinity of Ca^{2+} binding sites of the store buffer. This change is expected from CSQ, because this protein polymerizes and gains Ca^{2+} binding sites in the presence of elevated $[\text{Ca}^{2+}]$, whereas the opposite occurs as $[\text{Ca}^{2+}]$ is lowered (20).

In Fig. 5, the response to low Mg^{2+} consisted of two separate cytosolic waves propagating slowly from left to right in the images (Fig. 5A). Whereas the first wave of release into the cytosol at 7 s was accompanied by marked increase in $[\text{Ca}^{2+}]_{\text{SR}}$, the second wave, which occurred at 31 s with a largely depleted SR, resulted in immediate and marked reduction in $[\text{Ca}^{2+}]_{\text{SR}}$ (Fig. 5A Right and B Right). This observation and Figs. 8 and 9, which are published as supporting information on the PNAS web site, establish a good SR Ca^{2+} load as a requisite for the intra-SR Ca^{2+} release.

Mitochondria contributed little to the signal and were iden-

Table 1. Properties of sparks and skraps

<table>
<thead>
<tr>
<th>Condition</th>
<th>A</th>
<th>ttn, ms</th>
<th>W, μm</th>
<th>τ, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Inhibited</td>
<td>0.00</td>
<td>44</td>
<td>3.50</td>
<td>46.3</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>0.01</td>
<td>70</td>
<td>3.95</td>
<td>702</td>
</tr>
<tr>
<td>Inhibited</td>
<td>0.01</td>
<td>66</td>
<td>3.70</td>
<td>200</td>
</tr>
<tr>
<td>SO$_4$, all</td>
<td>0.01</td>
<td>68</td>
<td>3.85</td>
<td>251</td>
</tr>
</tbody>
</table>

For skraps, amplitude (A) and full width at half magnitude (W) are measured at nadir; for sparks, amplitude and full width at half magnitude are measured at peak. Both inhibited conditions are in the presence of mitochondrial inhibitors, with the first inhibited condition in reference and the second in SO$_4$. "SO$_4$, all" includes events in SO$_4$ and SO$_4$, inhibited. τ, time constant of recovery; RT, rise time; ttn, time to nadir; NA, not applicable.

For skraps, amplitude (A) and full width at half magnitude (W) are measured at nadir; for sparks, amplitude and full width at half magnitude are measured at peak. Both inhibited conditions are in the presence of mitochondrial inhibitors, with the first inhibited condition in reference and the second in SO$_4$. "SO$_4$, all" includes events in SO$_4$ and SO$_4$, inhibited. τ, time constant of recovery; RT, rise time; ttn, time to nadir; NA, not applicable.
Fig. 5. [Ca2+]\textsubscript{SR} during waves of Ca2+ release. (A) xy scans of fluorescence \(F_3\) of rhod-2, selected from a series. (B) [Ca2+]\textsubscript{SR} \((x, y)\) derived from \(R(x, y)\). (C) SR mask. Shown are areas where \(R(x,y)\) before Ca2+ release was \(>2\). (D) Mitochondrial mask, where \(R\) was \(<1.5\). (E) Average of \(F_3\) (red trace) and \(R\) in SR mask (blue trace) or mitochondrial mask (black trace). The application of RI solution is indicated at the top of the graph. (Scale bar: 20 \mu m.) Two waves of Ca2+ release move toward the right in A. The first wave in B Center is accompanied by increase in [Ca2+]\textsubscript{SR}. The second wave, instead, causes a sharp decrease in [Ca2+]\textsubscript{SR}.
them, occupying a layer where it is adsorbed rather than bound (20). In this layer, Ca$^{2+}$ is able to diffuse laterally and should be readily deliverable to the open channels (20). According to the properties of CSQ in aqueous solutions, this polymer-specific bound Ca$^{2+}$ could constitute the proximate store, evolving as illustrated in Fig. 6: the rising phase of a spark (at time B in Fig. 6A) is due to Ca$^{2+}$ release from CSQ polymers (Fig. 6B); this delivery should cause depolymerization, i.e., disassembly of the proximate store (Fig. 6C); continuing depletion afterward would reflect repolymerization and refilling of the proximate store (Fig. 6D).

The [Ca$^{2+}$]$_{SR}$ transient during prolonged cell-wide release, reproduced in Fig. 6E, is explained likewise: Fig. 6F represents the resting situation (at times F in Fig. 6E). In the well loaded SR, CSQ is polymerized (20). During Ca$^{2+}$ release, [Ca$^{2+}$]$_{SR}$ will decrease near release sites, which should cause widespread depolymerization of CSQ (20) with loss of binding sites (20) and release of Ca$^{2+}$ to the SR lumen (Fig. 6G). Ca$^{2+}$ release afterward will find a less buffered SR, resulting in rapid decay in [Ca$^{2+}$]$_{SR}$ and further depolymerization of CSQ (Fig. 6H).

Whether a net increase in [Ca$^{2+}$]$_{SR}$ is observed will depend on the balance between exit rate of Ca$^{2+}$ from CSQ and flux through release channels. From the present observations it appears that twitches in response to isolated action potentials only result in reduction of [Ca$^{2+}$]$_{SR}$, whereas increases in [Ca$^{2+}$]$_{SR}$ require more prolonged stimulation of Ca$^{2+}$ release.

Advantages of a Dynamic Store. In 1968, Adam and Delbruck (23) proposed that ligand binding to cell surface receptors is enhanced by the two-dimensional diffusion that follows membrane adsorption of the ligands. This so-called reduction of dimensionality increases efficiency of diffusion (24) by a factor that may reach hundreds (25). The “perfect sink” version of this theory (26) applies to delivery of ions to an open channel. Because CSQ polymers are linear structures, of one dimension, adsorption to them would involve further reduction of dimensionality and diffusion enhancement. Given this dimensional advantage, CSQ polymers would function as “calcium wires,” which efficiently deliver Ca$^{2+}$ to the channel mouth (20).

As we have found, depletion of the SR lumen is small, probably too small to convey the robust signal that closes channels to terminate sparks. This conclusion is especially obvious considering that depletion is only starting to develop at the time the channels close, at the peak of the spark (Fig. 6A). However, depletion of the proximate store could mediate channel gating. Indeed, CSQ depolymerizes upon loss of bound Ca$^{2+}$. This structural change could have gating effects via triadin or junctin, as represented in Fig. 6C by an altered triadin and a closed channel. In this view, the proximate store would not just improve delivery of Ca$^{2+}$ but also signal the channel to close after a set number of ions are delivered to it. Such an “ion-counting” device (first contemplated under different assumptions in ref. 27) should be especially useful with Ca$^{2+}$, an ion with multiple signaling functions.

Finally, we have seen that under appropriate, albeit artificial, stimuli, the SR buffer may release bound Ca$^{2+}$ and cause a transient inside the SR. In the examples, these transients helped sustain the [Ca$^{2+}$] gradient that drives flux, thus delaying the effects of depletion under prolonged Ca$^{2+}$ release. Ca$^{2+}$ signaling is thought to be the role of membrane channels in cells and organelles (28). The intrastore Ca$^{2+}$ transients demonstrated here suggest a different strategy, control of the driving force for Ca$^{2+}$ release through changes in conformation or the aggregation state of cellular buffers. Combined with the targeted delivery of Ca$^{2+}$ by linear polymers, local control of store [Ca$^{2+}$] by buffer aggregation could contribute to the specificity of the signals over wide-ranging scales of time, space, and Ca$^{2+}$ concentration.

Methods

Single semitendinosus muscle fibers of *Rana pipiens* were imaged. Frogs were decapitated under anesthesia, a procedure approved by Rush University’s Institutional Animal Care and Use Committee. Muscles were incubated for 120 min at 18°C in Ringer’s solution with 10 mM Na$_2$ATP, 1.0 mM EGTA, 10.29 mM Na$_2$ creatine phosphate, 1 mM MgCl$_2$, 10 mM Hepes, 1 mM caffeine, 8% dextran, 25 µM N-benzyl-p-toluene sulfonamide (BTS; Sigma-Aldrich), 100 µM rhod-2, 0.186 mM CaCl$_2$, and 4.96 mM MgCl$_2$ for a nominal [Ca$^{2+}$] of 100 nM and [Mg$^{2+}$] of 0.4 mM. Sulfate solution had 74.5 mM K$_2$SO$_4$ instead of glutamate, no caffeine, 5.5 mM MgCl$_2$, and 0.186 mM CaCl$_2$, and further depolymerization of CSQ (Fig. 6H).

Whether a net increase in [Ca$^{2+}$]$_{SR}$ is observed will depend on the balance between exit rate of Ca$^{2+}$ from CSQ and flux through release channels. From the present observations it appears that twitches in response to isolated action potentials only result in reduction of [Ca$^{2+}$]$_{SR}$, whereas increases in [Ca$^{2+}$]$_{SR}$ require more prolonged stimulation of Ca$^{2+}$ release.

Advantages of a Dynamic Store. In 1968, Adam and Delbruck (23) proposed that ligand binding to cell surface receptors is enhanced by the two-dimensional diffusion that follows membrane adsorption of the ligands. This so-called reduction of dimensionality increases efficiency of diffusion (24) by a factor that may reach hundreds (25). The “perfect sink” version of this theory (26) applies to delivery of ions to an open channel. Because CSQ polymers are linear structures, of one dimension, adsorption to them would involve further reduction of dimensionality and diffusion enhancement. Given this dimensional advantage, CSQ polymers would function as “calcium wires,” which efficiently deliver Ca$^{2+}$ to the channel mouth (20).

As we have found, depletion of the SR lumen is small, probably too small to convey the robust signal that closes channels to terminate sparks. This conclusion is especially obvious considering that depletion is only starting to develop at the time the channels close, at the peak of the spark (Fig. 6A). However, depletion of the proximate store could mediate channel gating. Indeed, CSQ depolymerizes upon loss of bound Ca$^{2+}$. This structural change could have gating effects via triadin or junctin, as represented in Fig. 6C by an altered triadin and a closed channel. In this view, the proximate store would not just improve delivery of Ca$^{2+}$ but also signal the channel to close after a set number of ions are delivered to it. Such an “ion-counting” device (first contemplated under different assumptions in ref. 27) should be especially useful with Ca$^{2+}$, an ion with multiple signaling functions.

Finally, we have seen that under appropriate, albeit artificial, stimuli, the SR buffer may release bound Ca$^{2+}$ and cause a transient inside the SR. In the examples, these transients helped sustain the [Ca$^{2+}$] gradient that drives flux, thus delaying the effects of depletion under prolonged Ca$^{2+}$ release. Ca$^{2+}$ signaling is thought to be the role of membrane channels in cells and organelles (28). The intrastore Ca$^{2+}$ transients demonstrated here suggest a different strategy, control of the driving force for Ca$^{2+}$ release through changes in conformation or the aggregation state of cellular buffers. Combined with the targeted delivery of Ca$^{2+}$ by linear polymers, local control of store [Ca$^{2+}$] by buffer aggregation could contribute to the specificity of the signals over wide-ranging scales of time, space, and Ca$^{2+}$ concentration.
0.102 mM CaCl₂ for a nominal [Ca²⁺] of 50 nM. pH was 7.0, and osmolality was 260 mosM/kg. For mitochondrial inhibition, we added 5 μM rotenone, 1.25 μg/ml carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 1.25 μg/ml oligomycin, and 0.25 μg/ml antimycin. The composition of Ringer’s solution and relaxing solutions is published in ref. 29. For mechanically skinned fibers, the solution contained 117 mM K⁺, 1 mM Mg²⁺, 50 mM HDTA, 8 mM ATP, 10 mM creatine phosphate, 0.1 mM EGTA, 25 μM n-benzyl-p-toluene sulfonamide, 0.05 mM rhod-2, and 60 mM Hepes, pH 7.1. The RI solution (30) was as the reference solution but with no CaCl₂ and 0.54 mM MgCl₂ (nominal [Mg²⁺] = 0.01 mM).

Microscopy and Image Processing. SEER imaging was carried out as described in ref. 11 by using a TCS SP2 confocal system (Leica). Line-scan or x images were acquired at 0.625 ms per line and 0.23 μm per pixel. Simultaneous monitoring of [Ca²⁺]SR and [Ca²⁺]cyto required three interleaved images: F₁(x, t), F₂(x, t) and F₃(x, t), with excitation lines and emission bands described in ref. 11. SEER ratio images R(x, t) = F₁(x, t)/F₃(x, t) were used to derive [Ca²⁺] by equation 1 in ref. 11. [Ca²⁺] derived this way is monitored by mag-indo-I largely inside the SR. R(x, t) was low-pass-filtered at 0.25 of the Nyquist frequencies. F₃, of rhod-2 in the cytosol, was normalized by its average resting value F₃₀, for an uncalibrated indication of [Ca²⁺]cyto. Maximal Ca²⁺ release in cells immersed in a 100 nM Ca²⁺ solution saturated rhod-2 at F₃/F₃₀ > 10. F₃/F₃₀ was thus a nearly linear measure of [Ca²⁺]cyto.

Signal mass was calculated by equation 3 from ref. 33. The rate of change dM/dt of signal mass (Fig. 2E) is used to approximate time course of release flux during the average spark (13, 14).

Mechanically Skinned Fibers. Action-potential-induced Ca²⁺ release was elicited by field pulses (16). The analysis of images was analogous to that for local signals. Derivation of release flux used a simplified version of the removal method (31). Net release was the sum of a term proportional to [Ca²⁺]cyto, representing removal flow of Ca²⁺, plus a term proportional to d[Ca²⁺]cyto/dt, representing the accumulation of Ca²⁺ within the imaged area. The ratio of these terms was determined by making the flux small and negative at a point during the decay of [Ca²⁺]cyto when release channels close. Because only the ratio is determined, the resulting waveform yields flux with an undetermined scale factor.

Alternative Imaging of [Ca²⁺]SR. For imaging SR Ca²⁺ using a single-wavelength (nonratiometric) dye, fibers were loaded with fluo-5N acetoxyethyl (32). Fluorescence of F₁ was excited at 488 nm and imaged in the emission range of 495–545 nm simultaneously with F₃ (described above).

We thank D. George Stephenson (LoTrobe University, Melbourne) for advice on electrical stimulation of skinned fibers. This work was supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Disorders/National Institutes of Health (to E.R.). B.S.L. was a C. J. Martin Fellow of the National Health and Medical Research Council (Australia).
Fig. 7. Correlation of spark and skrap parameters. The large number of sparks recorded in sulfate (6299) made it possible to explore the correlation of spark and skrap properties. The events were separated in two groups, below or above median spark amplitude (which was 1.8). The figure plots skrap parameter values vs. average spark amplitude in these groups (filled symbols). The group of larger sparks had skraps with greater amplitude and slower recovery. The open single symbols plot the parameters of the skrap in reference solution vs. an abscissa set at the corresponding spark amplitude. The reference parameters fall close to the regression lines in sulfate, implying that the difference in parameter values of the skrap in reference and those in sulfate may be entirely explained by the different spark amplitude reached in these conditions.
Fig. 9. Intra-SR transient upon change in cytosolic $[\text{Ca}^{2+}]$.

A, SEER ratio images at the times indicated.
B, evolution of image-averaged ratio. Change in $[\text{Ca}^{2+}]_{\text{cyto}}$ indicated schematically at top.
ID: 051904a, 31, 32
Fig. 8. Increase in $[\text{Ca}^{2+}]_{\text{SR}}$ elicited by caffeine. A - E, xy scans of fluorescence $F_3/F_{3,0}$, monitoring $[\text{Ca}^{2+}]_{\text{cyto}}$ (top) and $[\text{Ca}^{2+}]_{\text{SR}}$ (x, y), derived from SEER R images obtained simultaneously. Initial $[\text{Ca}^{2+}]_{\text{SR}}$ was set by loading for variable intervals, then a 30 mM caffeine solution was applied. F, $F_3/F_{3,0}$ (red symbols) and $[\text{Ca}^{2+}]_{\text{SR}}$ (blue) averaged in the central one-third of each image. Filled or open symbols identify two experimental series. Images shown are for the series started at a higher $[\text{Ca}^{2+}]_{\text{SR}}$ (filled symbols). When the same stimulus was applied in a situation of lower initial SR load (open symbols), it failed to cause a $[\text{Ca}^{2+}]_{\text{SR}}$ transient. Letters (A-E) on axis identify the time of images A - E. Caffeine was introduced before image B (as indicated by top plot in F). Calibration bar: 20 µm. In B and C $[\text{Ca}^{2+}]_{\text{SR}}$ dips below resting level before increasing (arrows). Identifier: 081904a_ser017, 19.
Fig. 10. Intra-SR release in the presence of mitochondrial inhibitors. A, B, averages of $R(x,y)$ images obtained within the intervals A, B in panel D. C, their difference (B-A), with modified color scale, showing an absence of the characteristic longitudinal mitochondrial pattern. D, evolution of fluorescence F_3 of rhod-2 (red) and $[\text{Ca}^{2+}]_{\text{SR}}$ (blue), calculated from $R(x,y)$. The application of the RI solution is indicated by the step at top. A$_1$, B$_1$, images of F_3 at times A, B. ID: 022105b_s020, 4-7 and 9-11. This figure shows that intra-SR Ca$^{2+}$ transients can be obtained without contamination by changes inside mitochondria. It further shows that Ca$^{2+}$ release into the cytosol may be accompanied by an intra-SR Ca$^{2+}$ transient, provided that the SR load is high. As in fig. 5, a second instance of Ca$^{2+}$ release (arrow in D), from an SR with less load, is only accompanied by further depletion.
Fig. 11. Intra-SR release monitored with a single-λ dye. The fiber was loaded for 150 min in fluo-5N AM, then permeabilized and immersed in reference solution (see text), with 100 μM rhod-2. Release was induced by change to RI solution as indicated at top of panel C. A, images of fluorescence F_3, largely of rhod-2, monitoring [Ca^{2+}]_cyto, numbers indicate time of acquisition, seconds. B, images of fluorescence F_f, largely of fluo-5N trapped in SR. C, evolution of average fluorescence (normalized by initial value). Note increase in F_f associated with Ca^{2+} release.
Fig. 12. Intra-SR release monitored with a single-λ dye in singly stained cell. The fiber was loaded for 150 min in fluo-5N AM, then permeabilized and immersed in reference solution with no other dyes. Release was induced by change to RI solution as indicated at top of panel D. A, B, average of fluorescence images in the intervals indicated with brackets A, B in D. C, difference B – A, with clear SR pattern. ID: 092804a_s30, 5-7,9-11.