Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles

Lauren M. Jones**, Alfredo Fontanini**, Brian F. Sadacca**, Paul Miller*, and Donald B. Katz**

**Psychology Department, *Biology Department, †Volen National Center for Complex Systems, Volen 208/M5 013, Brandeis University, 415 South Street, Waltham, MA 02454

Edited by Charles F. Stevens, The Salk Institute for Biological Studies, La Jolla, CA, and approved September 26, 2007 (received for review June 13, 2007)

Although temporal coding is a frequent topic of neurophysiology research, trial-to-trial variability in temporal codes is typically dismissed as noise and thought to play no role in sensory function. Here, we show that much of this supposed “noise” faithfully reflects stimulus-related processes carried out in coherent neural networks. Cortical neurons responded to sensory stimuli by progressing through sequences of states, identifiable only in examinations of simultaneously recorded ensembles. The specific times at which ensembles transitioned from state to state varied from trial to trial, but the same states were reliably and stimulus-specific. Thus, the characterization of ensemble responses in terms of state sequences captured facets of sensory processing that are missing from, and obscured in, other analyses. This work provides evidence that sensory neurons act as parts of a systems-level dynamic process, the nature of which can best be appreciated through observation of distributed ensembles.

The time courses of sensory neural responses are rich with structure. Taking time into consideration increases the amount of information that can be extracted from neural codes (1–5) and changes the nature of that information (6–8). Such temporal complexity is the natural result of interactions among neural populations (9–11), a concept recently illustrated in studies of olfactory antennal lobe responses in insects (12–14).

The behavior of mammalian sensory systems has proven more difficult to characterize, due in part to the relative complexity of these networks and of the behaviors and neural activity that they subsume. Feedback and convergence found in mammalian brains are extensive and diffuse (15), a fact that contributes to high trial-to-trial variability of mammalian cortical sensory responses (16). This variability is usually dismissed as noise, a decision formalized by the use of across-trial averages such as peristimulus time histograms (PSTHs) (8) and compilations of sequentially recorded neurons (13) to characterize temporal codes.

If the variability in neural responses is not noise, however [if, for instance, it reflects network processes evolving at different speeds from trial to trial (17, 18)], then trial-averaging techniques will obscure features of the underlying neural processes. Recent evidence indirectly suggests that this possibility may be the case: repeating multineuronal temporal patterns that are not reflected in PSTHs follow application of sensory stimuli (19, 20) and precede initiation of motor behaviors (21–23), although the search algorithms used to identify such patterns are controversial (24, 25); furthermore, the speed of perceptual identification itself varies from trial to trial (26, 27) in a manner linked to the dynamics of network activity (27–30).

Here, we provide direct evidence that trial-to-trial variability is a reliable, information-rich part of ensemble sensory processing in awake rats, by using hidden Markov models (HMM [31]) to detect coherent rate patterning in populations of simultaneously recorded neurons. This method, which has been successfully used to study decision making (32), reveals that taste processing can be characterized as a progression of reliably stimulus-specific sequences of ensemble firing rate states. The specific times at which ensembles transition between states vary from trial to trial, but the sequences remain the same. Because trial-specific information is obscured in across-trial averages, stimuli are identified more successfully by using state sequences than trial-averaging techniques. This simple, dynamic characterization of primary sensory activity captures important facets of sensory codes that are missing from most classical analyses, suggesting that the variability between trials represents an important part of the structure of perceptual processing (33) and that the sense of taste makes use of true distributed codes (34).

Results

Sensory Responses Are Reliably Characterized as Sequences of Ensemble Firing Rate States. We implanted 32 electrodes into the gustatory cortex (GC) of four attentive rats (28) and recorded bilateral ensemble sensory responses in 13 separate sessions (9.3 neurons per session). By standard analysis, 38% of the neurons were classified as “taste-responsive” (Fig. 1A). Such responses were typically noisy from trial to trial, however (Fig. 1B). The coefficient of variation for response magnitudes was 0.76 ± 0.59 (average ± SD). Even in pairs of trials with similar response magnitudes, variability was high (Fig. 1C).

When the display was reorganized such that the responses of all simultaneously recorded neurons were aligned in time (Fig. 2A), coherence in the ensemble firing response to each stimulus was revealed: the firing rates of several neurons changed simultaneously at certain times (Fig. 2B). This characterization, showing that ensembles progressed through a series of three or four firing rate states (shaded regions of each panel) across 2.5 sec of poststimulus time. State sequences were punctuated by brief transitions during which HMM could not identify a state as most likely (<80% likelihood, denoted by the lack of shading).

Fig. 2B shows four more trials of each taste delivered in this session. In every case, the ensemble switched through a sequence of states, each stable for an order of magnitude longer than between-state transitions. The timing of the transitions changed from trial to trial, but the sequence itself was conserved. The ensemble patterns of firing rates (Fig. 2C) for a subset of states in each sequence were clearly stimulus-specific (i.e., were significantly different from all states specified by HMM of other tastes, P < 0.01, ANOVA interaction term for two-state comparisons).

Author contributions: L.M.J. and A.F. contributed equally to this work; L.M.J., A.F., and D.B.K. designed research; L.M.J. and A.F. performed research; L.M.J., A.F., B.F.S., and P.M. analyzed data; and L.M.J., A.F., B.F.S., P.M., and D.B.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

Abbreviations: GC, gustatory cortex; HMM, hidden Markov model; PCA, principal components analysis; PSTH, peristimulus time histogram.

© 2007 by The National Academy of Sciences of the USA
To test how well the HMM characterized spike trains across the 13-ensemble dataset, we performed a post hoc probability analysis [see supporting information (SI) Methods]. This analysis, which specifically examined how likely particular spike trains were to have come from particular rate functions, confirmed that the HMM fit the data well; across 309 neuron–taste pairs, the mean log ratio of probabilities comparing fits of HMM and PSTH with spike trains was 2.44 (P = 0.001) in favor of HMM, a highly significant difference (P < 0.001) even though the smoothed PSTH uses more than twice as many parameters to describe an average trial than HMM (200 compared with 68).

State-to-state transitions involved the coordinated activity of many neurons. Fifty-one percent of the neurons in each ensemble changed their firing rates (P < 0.01 by paired t test comparing firing rates in pairs of states) at transitions, including similar percentages of putative interneurons (58%) and pyramidal neurons (49%; see SI Fig. 5). An implication of this high percentage is that some neurons involved in state transitions are not recognized as taste-responsive in across-trial averaging (19, 28).

State Sequences Reflect Coherent Network Processing. To evaluate further the above characterization of sensory processing, we first asked whether transitions truly reflected coherent shifts in neural ensemble rates. We compared the data-derived results with those calculated on the basis of ideal simulated datasets, constructed to progress instantaneously from one underlying state to another. Inhomogenous Poisson spike trains were generated directly from the HMMs of the datasets but with periods of uncertainty removed; e.g., for one simulation, neurons fired at rates specified in Fig. 2C, with changes occurring at the midpoints of the transitions shown in Fig. 2B (see SI Methods). Fig. 3 demonstrates that these ideal transitions, which by design were as fast as could be achieved, were no faster than those in the actual data (48 ± 4 vs. 53 ± 3 msec, P > 0.05, t test). Thus, coherent GC ensembles transition between stable states as quickly as is theoretically possible.

Further, these rapid transitions are not an artifact of applying HMM to this kind of dataset; even subtle data perturbations significantly increase the length of transitions. We constructed trial-shuffled datasets, in which trials of the responses of each neuron to a particular taste were randomly swapped with other trials of the same neuron’s response to the same taste. This procedure disrupts within-trial coherence in the dataset but leaves intact all temporal information available in the PSTH. If the true rate changes are gradual (as they look in PSTHs; see Fig. 2) or unrelated to interneuronal coherence, trial shuffling should not increase transition durations.

In fact, when HMM is fit to such datasets, state-to-state transitions are significantly less well defined (Fig. 3); trial-shuffled data consistently switched from state to state more slowly (64 ± 5 msec) than unshuffled data (P < 0.01). Note that the difference between the original and trial-shuffled data is more than twice the size of the difference between the original and simulated data (which, again, transitions from state to state as quickly as possible); the small-seeming absolute increase in transition duration caused by trial-shuffling is, in relative terms, large. When spike trains were randomly swapped without regard to taste (taste/trial-shuffling), transition durations increased further; in fact, transitions become more prominent (742 ± 61 msec) than states after this shuffle. Rapid switches between

Fig. 1. Taste responses in GC neurons. (A1) Waveforms representing the average action potential shapes for the 10 neurons (each numbered in bottom right) of one simultaneously recorded ensemble; x axis, time; y axis, amplitude (μV). (A2) PSTHs of the response of each neuron to the four basic taste stimuli (top); x axis, time; y axis, firing rate (Hz); dashed vertical line, stimulus onset. (A3) Responses of each neuron to the four tastes, averaged across trials and across 2.5 sec of poststimulus time; color panels are taste-specific by classic analysis (28). (B) Upper) Raster plots of a neuron response on individual trials (rows). Each tick mark is an action potential. (Lower) Resultant PSTH; the red dashed line indicates the spontaneous firing rate. (C) Two pairs of trials from B, each matched for number of action potentials.
states in a sequence are therefore a true feature of the ensemble sensory responses and not an artifact of HMM analysis.

State Sequences Are Centrally Generated. It is highly unlikely that observed state sequences represent either a reflection of oro-facial behaviors (26, 33) or of reliable taste receptor activation sequence caused by such behaviors. For one thing, stimulus-specific state sequences routinely began within the first 200 msec of the responses, whereas stimulus-specific behaviors do not emerge until much later (26). Furthermore, analysis of video, captured simultaneously with ensemble recordings, reveals that even the time series of nondistinctive oral movements that are produced during the 1st sec of stimulus processing differ across trials and are not time-locked to states or state transitions in any appreciable way (SI Fig. 6; see also refs. 26 and 33). We found no significant Pearson correlations between behavioral latencies and the latencies of the first three neural state transitions (average $R^2 = 0.15 \pm 0.04$).

As one further test of this possibility, we examined the degree to which somatomotor neurons account for rate changes at transitions. Because much of the rat’s oral behavior is rhythmic (35, 36), the across-session power spectra of neurons with oral somatomotor receptive fields tend to be strongly modulated at 6–9 Hz (8). Such neurons were plentiful in our ensembles ($n = 21$), but they were no more likely to be involved in transitions than were other GC neurons (in fact, 51% of each subsample changed firing rates between successive states). In summary, several analyses all fail to show any evidence for any peripheral sensory or motor explanation for state sequences (8, 37).

State Sequences Provide Information Greater Than That Available in Averaged Temporal Codes. Fig. 4A shows three trials from the original dataset (Left, pink label); all three contain the identical state sequences (the assigned numbers of the states are overlain on each trial), with trial-specific timing of transitions. Numbers within each colored region label the state number. (C) Histograms showing firing rates of each neuron (open horizontal bars) in each state for each taste. Each box summarizes the states for the above taste, and each shaded panel within each box corresponds to a state (color-coded as above); the number of the state is listed above. [Scale bars (below each shaded panel): spikes per sec; y axis, neuron (numbered from 1 to 10).]
timing, then they should transmit stimulus-related information more cleanly than across-trial averages. We tested this possibility directly, by using a jackknife cross-validation procedure to quantify stimulus prediction in single trials. The analysis revealed that HMM correctly identified stimuli in $64 \pm 3\%$ of the individual trials (Fig. 4C), despite the use of as few as five trials to construct the model. This percentage was only modestly related to the number of neurons and taste neurons in an ensemble (SI Fig. 7). Trial shuffling significantly reduced the percentage of trials that could be correctly identified ($59 \pm 2\%, P < 0.02$); both trial/taste and trial/taste/neuron shuffling reduced stimulus identification to chance levels (both $28 \pm 3\%$).

We also compared directly the predictive efficacy of HMM with that of more commonly used approaches. First, we evaluated predictions based on jackknifed ensembles of PSTHs, which proved to be significantly less successful than HMM-based predictions ($54 \pm 4\%, P < 0.01$), despite using more parameters (see SI Methods). Next, we used principal components analysis (PCA) to classify jackknifed sets of trials by means of automatic and manual clustering techniques (see Methods) in low-dimensional space. This technique is the same one used to describe and classify temporal codes in insect olfactory responses (13, 38), here restricted to simultaneously recorded ensembles. Using automatic clustering, we were able to identify successfully $53 \pm 3\%$ of the trials (Fig. 4C), 11% fewer than HMM ($P < 0.01$); discrete clusters were difficult to discern in our sets of simultaneously recorded neurons (SI Fig. 8). Even when classification was optimized by using manually defined clusters, PCA performed significantly worse ($54 \pm 6\%$, Fig. 4C) than HMM ($P < 0.05$). The similarity in performance of the unsupervised PCA, manual PCA, and PSTH analyses likely reflects the fact that all assume trial-to-trial variability to be noise (38).

![Fig. 3](image). State transitions are rapid in simultaneously recorded neural ensembles. The average duration of transitions between states (\pm SEM) for the real data (pink bar) was equivalent to that for simulated data with instantaneously changing underlying states (light gray bar) and faster than that for both trial-shuffled (dark gray bar) and trial/taste-shuffled (medium gray bar) data. *, $P < 0.05$; **, $P < 0.001$.

![Fig. 4](image). State sequences predict sensory stimuli better than other techniques. (A) State sequences were more consistent for original (unshuffled) trials than after trial-shuffling, trial/taste-shuffling, or trial/taste/neuron-shuffling. Shown are three representative trials per dataset; as in Fig. 2, continuous lines represent the probability of a specific state (y axis), numbers label the dominant states, and the dashed line is 0.8 probability. (B) Across ensembles, the percentage of trials beginning with the same three-state sequence (y axis) is higher for the original data (pink bar) than for trial-shuffled (blue bar), trial/taste-shuffled (green bar), or trial/taste/neuron-shuffled data (orange bar). (C) The percentage of trials in which the taste was correctly predicted is higher for the original data (pink bar) than for trial-shuffled (dark blue bar), trial/taste-shuffled (green bar), or trial/taste/neuron-shuffled data (orange bar). HMM also performed better than ensembles of PSTHs (gray bar) and better than PCA (light blue bar). *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$, all paired t tests.

Jones et al. PNAS | November 20, 2007 | vol. 104 | no. 47 | 18775
Discussion

GC neurons produce temporally complex sensory responses (8, 28), as do neurons in other systems (1–8). Although sensory dynamics have been extensively characterized in systems with highly reliable responses (12), our understanding of inherently noisy awake mammalian cortical sensory responses (39) has progressed more slowly. Here, we show that sensory responses are coherent across ensembles of mammalian cortical neurons, which respond to tastes with reliable, taste-specific sequences of relatively stable firing-rate states. The information accessible in the state sequences is degraded by any shuffling of the data and thus reflects a genuine network property of sensory responses. It is unrelated to ongoing sensorimotor sequences and thus reflects central rather than peripheral mechanisms.

Our work takes its cue from the success of theoretical work treating neural activity as a function of coherent (40, 41) underlying states with minimal assumptions. Our results are consistent with previous findings showing that variability in the response of one neuron may predict variability in others (4, 19, 42, 43) in a way that carries information efficiently (44, 45) and with evidence that ensemble rate changes accompany “up/down” states in visual (46) and somatosensory cortex (47). It is clear that the use of averaged neuronal responses misses perceptually meaningful interactions between neurons. The slow changes in firing rate observed in PSTHs (Fig. 1) in fact create a false impression of taste information accumulating gradually in single neurons, obscuring the rapid transitions that are clearly observed in ensemble analysis. Recent modeling efforts have suggested that transient olfactory dynamics (13) also vary from trial to trial (17, 18), but here, we provide an empirical demonstration that sensory information available in single-trial ensemble codes exceeds that available in across-trial averages (see also ref. 48).

Although the significant differences between the performance of HMM and PSTH/PCA classifiers are not large in terms of absolute numbers (Fig. 4 B and C), this subtlety is to be expected; PSTHs are used because they do carry a great deal of information. The value of the conceptual advance offered here goes far beyond raw effect size. Coherent ensemble codes take into account the basic fact that neurons interact within networks, whereas other characterizations do not. In addition, such codes offer a plausible synchronization signal whereby an animal might determine the actual onset times of important stimuli within constant, ever-varying streams of action potentials; the zero time point used to construct PSTHs is something that the experimenter knows but that the animal does not. Finally, our state-sequence characterization is consistent in important ways with the nature of perception itself, which is reliable but variable in latency from trial to trial.

Coherent state sequences are likely the result of coordinated action in distributed, massively recursive neural systems (15, 46, 49). As such, they probably do not represent pure “sensory codes” to be interpreted by downstream “grandmother neurons.” Rather, we suspect that we are observing a process in which sensory input is being transformed into motor output through neuron–neuron interactions (perhaps underlain by asynchronous convergence upon GC of inputs from multiple brain regions; see ref. 15). Single-neuron analyses have suggested that information in GC taste responses progresses from being sensory to action-related within the first 1.5 sec after stimulus (8, 28). The three coherent ensemble states that we observe unfolding across this same period may reflect, in much sharper relief, explicit temporal multiplexing in sensory responses: rather than sensory coding, decision making, and motor coding being handled by separate regions in a spatial hierarchy, the distributed system may be processing sensory stimuli through a temporal hierarchy. As such, these data go beyond extant theories of taste function (15), which propose that the roles of neurons in the sensory neuroaxis are spatially determined, and beyond theories of sensory function that dismiss trial-to-trial variability.

Methods

Experimental Preparation. Methods conform to the Brandeis University Institutional Animal Care and Use Committee guidelines. Female Long–Evans rats (250–300 g) were anesthetized and implanted with bilateral GC-drivable microelectrode assemblies (16 wires per bundle) and intraoral cannulae (for stimulus delivery). After recovery, rats were trained to wait patiently in restraint for 40-μl aliquots of 100 mM NaCl, 100 mM sucrose, 100 mM citric acid, or 1 mM quinine HCl (tastes selected randomly without replacement).

Electrophysiology. Recordings were amplified (1,000–2,000), filtered (300–800 Hz), and digitized. Single neurons of >3:1 signal-to-noise ratio were isolated by using a waveform template, augmented with offline cluster cutting software (Plexon, Dallas, TX) (50). Resultant taste responses are similar to those observed with sharp 5-MΩ electrode penetrations (51, 52).

Taste Profile Analysis. A neuron was deemed a taste neuron if it responded differently to at least one taste than to others (53): the significance of the difference was established by using ANOVA and a subsequent post hoc test (Tukey’s HSD, P < 0.01). This is a relatively conservative measurement: a neuron producing strong but similar responses to all tastes will not be deemed taste-responsive.

HMM. HMMs reveal the degree to which data can be described as reflecting a sequence of stable “hidden states” (41). Trained on neural ensemble data containing neurons from both left and right GC (coherent firing rate changes are similar for uni- and bilateral GC neuron pairs; see ref. 19), the Baum–Welch algorithm (54) returns the set of underlying states, each defined as a vector of firing rates, one for each neuron, and the probability of transitioning from any one state to any other. We produced three- to seven-state solutions for a subset of the data, but higher-state solutions resembled the four-state solution; added states occurred only very briefly and once (data not shown). Hence, we chose five states as our upper limit.

For an extensive description of the procedure, assumptions, and robustness, see SI Methods.

Comparison of States. ANOVAs were used to compare ensembles of firing rates between states. States were considered significantly different only when the interaction P < 0.01 (which meant that states were deemed different when the shape of the neuron × rate distributions differed) and to be the same when the interaction P value exceeded 0.2. Few P values fell between 0.01 and 0.2. Tukey’s HSD (P < 0.01) revealed which neurons had different firing rates in each pair of significantly different states.

Data Shuffling. Three control datasets, each identical in size to the original dataset, were constructed for each session, by randomizing the trial ordering within groups of 2.5-sec spike trains. For trial shuffling, shuffling was done independently on 6–12 trial sets of the response of each neuron to a specific taste; when this procedure is applied to each neuron in the ensemble, the resultant “trials” (e.g., “trial 1” consisting of trial 3 of neuron 1, trial 5 of neuron 2, trial 1 of neuron 3, etc.) contain no information specific to simultaneous recordings but leave all information available in across-trial averages (e.g., PSTH) intact. For trial/taste shuffling, the set of trials encompassing the responses of a single neuron to all tastes was randomized, destroying the information in PSTHs but leaving any “cell-
specific” information intact. For trial/taste/neuron shuffling, an entire dataset was randomized.

All analyses performed on the original dataset were performed anew on shuffled datasets.

Simulated Datasets. Ideal simulated datasets contained ensembles of inhomogenous Poisson spike trains generated from the HMM solutions for the real datasets. Spike trains in these simulations changed rates coherently at transitions, and periods of uncertainty concerning the dominant underlying state were eliminated (for more detail, see SI Methods). Subsequent HMMs of these datasets revealed the lower limit on detectable transition times for datasets with the same numbers of neurons (at similar firing rates) to be those empirically recorded.

Prediction of Stimuli in Single Trials with HMM. Using the Baum–Welch algorithm (11), we determined the likelihood that “held-out” ensemble spike trains came from each of the four taste models constructed on n – 1 trials. The model that yielded the highest likelihood for each spike train was chosen as the taste prediction for that trial. This procedure was repeated such that each trial was held out once (jackknife cross-validation).

Prediction of Stimuli in Single Trials with PSTH Ensembles. PSTHs were computed (100-msec bins) for the response of each neuron to each taste, in n – 1 trials. Euclidean distances between single-trial responses and the four taste-specific firing rate models were then computed; the model with the smallest Euclidean distance was chosen as the taste prediction. The procedure was repeated such that each trial was held out once (jackknife).

Prediction of Stimuli in Single Trials with PCA. Single trials were represented as the time course of an ensemble response. For each trial, PCA was performed on a vector of length n × b (where n is the number of neurons in the ensemble and b is the number of time bins). As shown in ref. 38, bin size = 50 msec, thus, b = 50. The first six principal components (describing 39% of the variability) were used for clustering and classification on the basis of examination of scree plots.

We calculated the PCA on n – 1 trials of each taste (see SI Fig. 8) and then performed both an automated classification of trial types (k means clustering) and a jackknife cross-validation on manually determined clustering for each taste. For the latter, cluster centers were defined as the mean of all used responses to that taste for that ensemble. Each held-out trial was classified as belonging to the nearest cluster based on the Euclidean distance in PC space.

We thank the members of the Katz laboratory and Asaf Keller for insightful comments. This work was supported by National Institutes of Health Grant DC-007102 (to D.B.K.) and by grants from the Sloan–Swartz Center for Theoretical Neuroscience (to A.F. and L.M.J.).
Supporting Methods

Behavioral Analysis. Videos of rats’ orofacial behaviors were captured during tasting sessions, synchronized with neurophysiological data, and recorded on a DVD. The first 3 sec after taste delivery were divided into 0.03-sec bins (the length of a single frame of video), and a coder, blind to the hidden Markov model (HMM) solutions for that session, coded the animal’s behavior (or lack thereof) for each bin. Behaviors coded included rapid forward tongue protrusions, slow lateral tongue protrusions, fast low-amplitude mouth movements, gapes, and reflexive mouth openings (1, 2). Onset time for behavior in a trial was judged to be the time stamp of the bin containing first mouth movement after taste delivery; behavioral transitions were noted as the time stamp of the first bin of the new behavior. Each behavioral transition was compared with the first, second, and third state transitions for that trial, and linear regressions between behavioral and ensemble variables were performed across all trials.

HMM. HMMs define a number of underlying hidden states, which in our case correspond to histograms of the firing rates of cells. Assuming that spikes are produced with Poisson statistics, the probability of a neuron (labeled i with rate r_i) emitting a spike in a time bin when the system is in a state (labeled s) is defined as $E(i|s) = r_i(s) \cdot dt$, where $dt = 1$ msec and the probability of no spike is $E(0|s) = 1 - \sum_{i=1}^{N_c} E(i|s)$, where N_c is the number of cells recorded. The set of these spiking probabilities, simply proportional to the firing rates of cells, is known in standard terminology as the emission matrix, which must be found.

A second probability matrix that must be found is the transition matrix, which describes the probabilities of a transition from one state to another. Again, these probabilities are assumed to depend only on the state and to be independent of time (the Markov assumption). We denote the transition probability from state s to state s' from one time bin to the next as $T_{s,s'}$. For states to be persistent for much longer than the time bin of 1 msec, the diagonal elements are almost unity, $T_{s,s} \approx 1$. Because only
one state is reached in the next time bin, we have a normalization requirement, $\sum_{s'} T_{s,s'} = 1$ (the sum of all probabilities must be one).

To estimate both the emission matrix and transition matrix, we implemented the Baum-Welch algorithm. For the initial iteration, elements of the emission matrix were random, whereas diagonal elements, D, in the transition matrix were initialized in the range of $D = 0.99 - 0.999$, and off-diagonal elements were all equal to $(1 - D)/(N_s - 1)$ where N_s is the total number of states. The Baum-Welch algorithm operates by using initial values for the emission matrix and transition matrix (that is, it assumes a particular HMM underlies the system) to calculate the probabilities of the system being in a particular hidden Markov state at each time point, given the observed spike train for that trial. It then uses these state probabilities to update the emission matrix and the transition matrix. Successive iterations of the algorithm have been shown to approach a local maximum of the likelihood of observation of the sequence of events, stopping once the successive size of changes to the matrices and of changes to the fit are less than a tolerance factor (10^{-6}) or when the maximum number of iterations is reached (500). Because there is no guarantee of reaching the global maximum likelihood, we re-ran the algorithm 10 times for each dataset (the trials of a particular taste), each time with new parameter initializations, and we used the solution with the highest log-likelihood.

In each experimental trial, the probability $P[s(t_i)|\{o\}]$ of being in a state, s, in time-bin t_i, given the set of observed events ($\{o\}$, the spike trains) is the product of the probabilities of reaching that state given all the spikes up to that time point (the forward probability denoted $f[s(t_i)]$) and the probability of generating all of the following observed events given being in state s at time t_i (the backward probability denoted $b[s(t_i)]$). That is

$$P[s(t_i)|\{o\}] = f[s(t_i)] \cdot b[s(t_i)]. \quad [1]$$

The above formula yields the probability that is plotted in Fig. 2 in the main text and used throughout
The forward and backward probabilities are calculated iteratively, given the observed events and the assumed values for transition and emission probabilities. For example:

\[
\begin{align*}
 f[s(t_i)] &= E[o(t_i)|s] \cdot \sum_{s'} f[s'(t_i-1)] T_{s',s} \\

\end{align*}
\]

means the probability \(f[s(t_i)] \) of reaching state \(s \) at time \(t_i \) given all the observed spikes up until and including \(t_i \) is equal to the probability \(E[o(t_i)|s] \) of the observed event at that time \(o(t_i) \) if in state \(s \), multiplied by the probability of being able to reach state \(s \) given the likely states in the previous time bin. We assume a fixed initial state, so \(f[s(t_0)] = 1 \) (probability of being in state 1 is 1 at \(t_0 \)) then successive use of Eq. 2 for all states with consecutive time bins produces a complete set of forward probabilities. A similar, but time-reversed, method is used to obtain the backwards probability, \(b[s(t_i)] \)

\[
\begin{align*}
 b[s(t_i)] &= E[o(t_i)|s] \cdot \sum_{s'} b[s'(t_{i+1})] T_{s,s'} \\

\end{align*}
\]

The full sequence of backwards probabilities requires an assumption about the state of the system in the final time bin, \(T \), so before iterating, we set the backward probabilities equal to the just-calculated forward probabilities in the final time bin: \(b[s(T)] = f[s(T)] \).

The log-likelihood of a sequence given the particular matrices is obtained from the forward probabilities as:

\[
\log[L] = \sum_{t_i} \sum_s f[s(t_i)].
\]

Given a set of trials with the same tastant (same hidden Markov parameters) the total log-likelihood is the sum of log-likelihoods from individual trials. The model with the maximum log-likelihood across the entire data is chosen.

Post Hoc Probability Analysis by Reverse Correlation of HMM and Peristimulus Time Histogram (PSTH) to Spike Trains. To verify that the HMM is really better at describing the set of spike trains
than the PSTH, we asked the question “What is the probability of observing the empirical spike trains on each trial given the HMM and PSTH characterizations”? Specifically, we calculated the log of the ratio between two probabilities, the probability that the spike trains would be produced by the Poisson emissions at the set of firing rates produced by the HMM compared with the probability of being produced by the firing rates in the PSTH, for each cell and each tastant.

Assuming Poisson firing statistics, the probability density for a set of spike times \(\{t_i\} \) given a firing rate \(r(t) \) for a cell on a given trial is (3):

\[
P(\{t_i\}) = \exp \left[- \int r(t) dt \right] \prod_i r(t_i).
\]

We calculate the log likelihood ratio, \(L \), for a specific cell and tastant as:

\[
L = \left(\frac{1}{N_{\text{trials}}} \right) \sum_{\lambda} \sum_i \left[r_{HMM}^\lambda (t_i) - r_{PSTH}^\lambda (t_i) \right] - \left(1/N_{\text{trials}} \right) \sum_{\lambda} \int r_{HMM}^\lambda(t) dt + \int r_{PSTH}(t) dt
\]

where the sum over \(\lambda \) is over a number (\(N_{\text{trials}} \)) of different trials; \(r_{HMM}^\lambda(t) \) is the HMM rate for that trial; and \(r_{PSTH}(t) \) is the PSTH (the actual trial-averaged rate).

“Ideal” Simulated Ensemble Datasets. As described above and displayed in Fig. 2 in the main text, HMM solutions for the empirical datasets can be summarized in terms of: (i) the theoretical firing rates of each neuron in the ensemble within each state; and (i) the most likely underlying state at each moment of time. Using these parameters, it is simple to simulate new datasets with properties (firing rates, times of firing rate change) similar to those of the originals.

Of course, there are portions of each trial for which HMM could not determine a highly likely state (the translation from underlying state to trains of spikes and interspike intervals inevitably introduces finite calculated state-to-state transition times). To ensure that the simulations reflected instantaneously changing underlying states, we eliminated these periods of uncertainty. This was done by dividing each transition period (see Methods in the main text) into halves; the previous state was then extended
forward to the end of the first half, and the succeeding state was extended back to the beginning of
the second half. The resultant simulations contained absolutely no periods of uncertainty regarding
underlying hidden states, and therefore the state-to-state transitions that were calculated by HMMs fit
to the simulated data were at the theoretical minimum for ensembles of the same size and firing rates
as the empirical GC data.

Numbers of Parameters Used in Various Classification Tasks. The number of parameters used in
the post-hoc probability and cross-validation tasks will affect the performance of the classifier. All
things being equal, an increase in the number of parameters will improve performance (as the num-
ber of parameters nears the size of the dataset, the classifier effectively stops being a “model” of the
dataset and reproduces every single aspect of the data). This does not, however, create problems for
the comparisons reported here, because the number of parameters used in our HMM analyses are either
comparable with or fewer than those used in alternative classifiers. HMM parameters come in two
forms, the average firing rates of each neuron in a state and the transition times between states on each
trial. Their combination leads to a set of firing rates and times that is described using fewer variables
than a PSTH: for an ensemble of 10 neurons, across 8 2.5-sec trials, a PSTH analysis (with bin sizes of
125 msec or 20 bins per neuron) contains a total of 200 rate values (20 bins x 10 neurons); the HMM
for the same ensemble (whether shuffled or not) contains on average 4.2 states, hence 68 fitted values
(4.2 rates x 10 neurons, + 3.2 x 8 transitions). PCA requires as many parameters as the PSTH, since
each component comprises a vector of firing rates with as many parameters as cells, while the state of
the system evolves in this space with a new value for each time bin.

HMM Assumptions. The HMM makes a minimal number of assumptions about the states in coher-
ent state-sequences. Most notably, it assumes time-independence: single-neuron firing within states is
assumed to be stochastic, and state transitions are assumed to depend only upon the immediately pre-
ceeding state (4). This assumption is a simplification that allows us to catch the essence of a state using a minimal number of free parameters, but ultimately, neural activity is unlikely to be completely history-independent. Fortunately, the HMM is robust to violations of these assumptions (5). In fact, addition of biologically plausible history-dependence (e.g., refractory periods, synaptic depression/facilitation, bursting) to the emission probability of cells is not only possible (5) but can only improve the ability of HMM to match the real data. This means that, by assuming independence, we are placing a conservative lower limit on the value of our state-sequence characterization of the data; if anything, a state-sequence characterization is probably better than what we have described.

In summary, our basic HMM method has achieved its goal of demonstrating that coherent state-dependent activity is of importance, establishing a framework of analysis that can be extended and enhanced to obtain even more information from sets of spike trains.

Neurons Contributing to State Changes

\[
R^2 = 0.0019
\]

Likely Interneurons
Likely Pyramidal Neurons
Undetermined Neuron Type

Pre-Stimulus Firing Rate (Hz)

\(p = 0.05 \)
Mouth Opening
Forward Tongue Protrusion
Forward Tongue Protrusion
No movement
Forward Tongue Protrusion
Forward Tongue Protrusion
Low Amplitude Mouth Movement
Mouth Opening
Forward Tongue Protrusion
Forward Tongue Protrusion
Low Amplitude Mouth Movement
Mouth Opening
Forward Tongue Protrusion
Lateral Tongue Protrusion
Low Amplitude Mouth Movement
\[R^2 = 0.132 \]

\[R^2 = 0.0145 \]
NaCl
Sucrose
Citric Acid
Quinine