Microbial carbohydrate depolymerization by antigen-presenting cells: Deamination prior to presentation by the MHCII pathway

Jinyou Duan, Fikri Y. Avci, and Dennis L. Kasper*

Department of Medicine, Channing Laboratory, Brigham and Women’s Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115

Communicated by John B. Robbins, National Institutes of Health, Bethesda, MD, February 1, 2008 (received for review October 4, 2007)

After uptake by the endosome of an antigen-presenting cell (APC), exogenous proteins are known to be degraded into peptides by protease digestion. Here, we report the mechanism by which pure carbohydrates can be depolymerized within APC endosomes/lysosomes by nitric oxide (NO)-derived reactive nitrogen species (RNSs) and/or superoxide-derived reactive oxygen species (ROSs). Earlier studies showed that depolymerization of polysaccharide A (PSA) from Bacteroides fragilis in the endosome depends on the APC’s having an intact inducible nitric oxide synthase (iNOS) gene; the chemical mechanism underlying depolymerization of a carbohydrate within the endosome/lysosome is described here. Examining the ability of the major RNSs to degrade PSA, we determined that deamination is the predominant mechanism for PSA processing in APCs and is a required step in PSA presentation to CD4+ T cells by MHCII molecules. Structural characterization of the NO-derived product PSA-NO indicates that partial deaminative depolymerization does not alter the zwitterionic nature of PSA. Unlike native PSA, PSA-NO is presented by iNOS-deficient APCs to induce CD4+ T cell proliferation. Furthermore, metabolically active APCs are required for PSA-NO presentation. In contrast to PSA degradation by RNSs, dextran depolymerization in the endosome depends on ROSs, including hydrogen peroxide- and superoxide-derived ROSs. This study provides evidence that MHCII pathway-mediated carbohydrate antigen processing in APCs is achieved by chemical reactions. RNSs and ROSs may be involved in the presentation of glycopeptides by MHC molecules via the processing of other carbohydrate-containing antigens, such as bacterial or viral glycoproteins or glycoconjugate vaccines.

Antigen processing | MHC class II | Reactive nitrogen species

Carbohydrates are increasingly recognized as key mediators of immune reactions (1, 2). Capsular polysaccharides expressed on the surface of many pathogenic bacteria are carbohydrates traditionally thought to stimulate an immune response that, in all cases, was assumed to be T cell independent (3). However, our earlier studies showed that polysaccharides with a zwitterionic charge motif can indeed activate CD4+ T cells after processing and presentation through the MHCII pathway (1). Information has been lacking on the chemical mechanism(s) underlying this processing.

In terms of T cell activation, polysaccharide A (PSA) [its structure as shown in supplementary information (SI) Fig. S1], the major zwitterionic polysaccharide (ZPS) from Bacteroides fragilis and the best characterized ZPS (4, 5), has profound biological importance. During intestinal colonization in mice, PSA-expressing B. fragilis directs maturation of the mammalian immune system. Mono-association of germ-free mice with a WT PSA-bearing B. fragilis strain—but not with an isogenic mutant incapable of synthesizing PSA—corrects systemic T cell deficiencies, redresses Th1/Th2 imbalances, and directs lymphoid organogenesis (5). Toll-like receptor 2 (TLR2) coordinates an innate and adaptive immune response to PSA (a TLR2 agonist) that results in production of IFN-γ—a key factor in the Th1 differentiation observed in colonization studies (6).

Once within the APC endosomes/lysosomes, PSA is degraded to a smaller molecule (~10–15 kDa) before being presented to CD4+ T cells (1). The surprising dependence of this degradation on inducible nitric oxide synthase (iNOS) suggests a processing mechanism distinct from the enzymatic cleavage responsible for cellular processing of protein antigens. Given the established importance of PSA and the lack of information on processing of this ZPS or any other carbohydrate, we sought to define the chemical mechanism(s) responsible for PSA processing. An in-depth understanding of this key process may elucidate non-enzymatic processing of numerous antigens through this pathway.

Results

Degradation of Carbohydrates Within APC Endosomes by Reactive Nitrogen Species (RNSs) and Reactive Oxygen Species (ROSs). After exposure of APCs to cytokines or microbial products, iNOS is up-regulated and generates large quantities of nitric oxide (NO) by catalyzing the oxidation of L-arginine (7). NO is a short-lived radical that forms various NO-derived RNSs. To delineate the mechanism of NO-dependent processing of PSA in APCs, we identified the role of iNOS in the processing of PSA in CD11c+ dendritic cells (DCs). It had been shown that iNOS is required for PSA processing by total splenic mononuclear cells, but no work had been performed on processing specifically in DCs, the most relevant APCs for presenting PSA to T cells.

After 72 h of uptake and processing, PSA is degraded to a different extent in WT and in iNOS−/− DCs (Fig. 1 A), and N-acetyl PSA (the fully N-acetylated product of PSA) is degraded equally in both WT and iNOS−/− DCs (Fig. 1 B). Because, in response to external stimuli, ROSs and RNSs produce synergistic and/or antagonistic effects in APCs (8), these data suggest that, in addition to RNSs, other reactive species (for instance, ROSs) in APCs may effectively process polysaccharides with a zwitterionic charge (PSA) or a negative charge (N-acetyl PSA). Furthermore, the substantially greater suppression of PSA degradation in iNOS−/− DCs than in WT DCs (Fig. 1 A) indicates that RNSs are the predominant reactive species responsible for PSA processing. However, N-acetyl PSA processing in WT DCs does not differ significantly from that in iNOS−/− DCs (Fig. 1 B). Because deaminative depolymerization at free amino or N-sulfo groups—but not at N-acetyl groups—of

The authors declare no conflict of interest.

*To whom correspondence should be addressed. E-mail: dennis.kasper@hms.harvard.edu.

This article contains supporting information online at www.pnas.org/cgi/content/10.1073/pnas.0800974105/DCSupplemental.

© 2008 by The National Academy of Sciences of the USA
Amino sugars of glycosaminoglycans (9, 10) has been well described, we concluded that RNS-mediated processing of PSA occurs through a deamination reaction.

Release of NO in monocytes/macrophages (but not DCs) is strictly controlled by myeloperoxidase (MPO), which serves as a gatekeeper. Therefore, in MPO−/− monocytes/macrophages, large amounts of NO are generated (11). PSA is degraded more in MPO−/− CD11b+ cells than in WT CD11b+ cells (Fig. 1C). RNSs react with superoxide (the precursor of ROSs in phagocytic cells) to form peroxynitrite (12), which (as shown below) has no effect on PSA depolymerization. Because MPO−/− macrophages have an excess of NO that suppresses any effect of ROSs on PSA degradation, this degradation results primarily from RNSs. Furthermore, in MPO−/− CD11b+ cells, processing of N-acetyl PSA is significantly reduced (Fig. 1D) from that of native PSA; this finding again indicates that deamination is the most important chemical reaction of RNSs during PSA processing and suggests that ROSs are primarily responsible for processing N-acetyl PSA.

Like carbohydrates with zwitterionic charges (PSA) or negative charges (N-acetyl PSA), neutral carbohydrates (e.g., dextran) are degraded within the APC endosome/lysosome. After uptake by APCs, dextran is significantly degraded to a smaller molecular size (Fig. S2). Degradation is partially suppressed by the superoxide scavenger MnTBAP or the hydroperoxide scavenger pyruvate but not by the hydroxyl radical scavenger 2,3-dimethyl-2,3-dihydrobenzofuran(13). Taken together, these data indicate that carbohydrates can be depolymerized within the APC endosome/lysosome by RNSs and/or ROSs by chemical mechanisms that vary with the fine structure of the polysaccharide polymer.

Identification of RNSs Degrading PSA. We next asked which RNSs can chemically degrade PSA. Thus far, only NO, nitrous acid, N-nitrosothiol, and peroxynitrite have been shown to be capable of degrading carbohydrate polymers (9, 10, 12). Specifically, these RNSs degrade heparin, heparan sulfate, and chondroitin sulfate through a common deaminative mechanism (9, 10). In contrast, peroxynitrite selectively degrades hyaluronic acid and chondroitin sulfate but not heparin (12) and degrades carbohydrate polymers via an unidentified mechanism thought to resemble chemical depolymerization by free hydroxyl radical attack. We investigated whether NO itself and/or peroxynitrite can degrade PSA.

A 1:3 dilution of NO-saturated solution significantly degrades PSA at neutral pH (Fig. S3A). In contrast, N-acetyl PSA, which contains no free amino groups, is completely resistant to NO attack (Fig. S3B), a result suggesting that NO degrades PSA through a deaminative mechanism. We converted NO into nitrogen dioxide with carboxyl-PTIO (carboxyl-2-[4-carboxyphenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) to diminish the NO available for PSA degradation. This chemical reaction generates products with greater molecular size than those seen without carboxyl-PTIO treatment (Fig. S3A). The incomplete inhibition of the NO attack on PSA by carboxyl-PTIO is probably due to either the presence of NO remnants or the formation of another deaminative reagent, nitrous acid.

We compared the effect of peroxynitrite and hydroxyl radical—because both can depolymerize hyaluronic and chondroitin sulfate (9, 12)—on the molecular size of PSA. PSA is susceptible to degradation by the hydroxyl radical generated during autoxidation of ferrous cation (13), and this susceptibility is greatly suppressed by the hydroxyl radical scavenger D-mannitol (Fig. S3C). In contrast, at neutral pH, 3 mM 3-morpholinosydnonimine hydrochloride (SIN-1), the peroxynitrite generator, does not reduce the molecular size of PSA. As a positive control, we degraded hyaluronic acid slightly with 3 mM SIN-1 (Fig. S4). Like PSA, under the same conditions, N-acetyl PSA was resistant to peroxynitrite attack (data not shown). Thus, the zwitterionic charge motif of PSA did not account for the molecule’s protection from peroxynitrite attack.

To date, the interaction between nitroxyl and carbohydrates has not been explored, although nitroxyl is reportedly more toxic to (or reactive with) cells than is NO itself (14). In vitro, nitroxyl can be generated by protonation of Angeli’s salt (sodium tribromodinitrate) (15). As shown in Fig. S3 and Fig. S5, mM Angeli’s salt slightly reduces the molecular size of PSA in the presence or
findings in other APCs (macrophages) (6).

...induces T cell proliferation in cocultured CD4 mice, a model that requires activation of T cells by ZPSs (17). In contrast with oxygen (15), nitroxyl-induced degradation of PSA is probably achieved through deamination.

In the Absence of iNOS, the Deaminative Product PSA-NO—but Not Native PSA—Activates T Cells in Vitro and in Vivo. RT-PCR analyses revealed that PSA induces iNOS mRNA expression in WT DCs but not in iNOS−/− DCs. Furthermore, up-regulation of iNOS gene transcription in DCs correlates with NO radical production (Fig. 2A and B). This observation is consistent with our previous findings in other APCs (macrophages) (6). In vitro, native PSA induces T cell proliferation in cocultured CD4+ T cells and DCs from the spleens of WT mice (Fig. 2C) but not in cocultured cells from the spleens of iNOS−/− mice. CD4+ T cells deficient in iNOS do proliferate when PSA-NO (a NO-derived product of PSA, molecular mass = ±16 kDa, see Materials and Methods) is cocultured with iNOS−/− DCs. Because T cells from WT and iNOS−/− mice differ in terms of cell death and immune memory (16), we tested whether PSA activates iNOS−/− T cells when WT DCs are used as APCs. If iNOS−/− DCs are replaced by WT DCs, native PSA does activate iNOS−/− T cells—a result demonstrating that the failure of PSA to activate T cells from iNOS−/− mice is attributable to iNOS deficiency in APCs rather than T cells. The requirement for iNOS in activation of T cells by native PSA but not by PSA-NO supports our report that iNOS is essential for processing of intact PSA (1). These in vitro data provide a solid immunological basis for the finding in vivo that both intact PSA and PSA-NO induce abscess formation in WT mice, a model that requires activation of T cells by ZPSs (17). In contrast, intact PSA (but not PSA-NO) fails to facilitate abscess formation in iNOS−/− mice (Table 1).

PSA-NO Activates T Cells Through the MHCII Pathway. PSA-NO induces human CD4+ T cell proliferation at concentrations of 100, 10, and 1 μg/ml (Fig. 3E). Interestingly, PSA-NO is more active than native PSA on a stoichiometric basis and elicits the strongest T cell proliferative responses at 1 μg/ml among the doses tested.

Both colchicine (which blocks microtubule polymerization) and brefeldin A (which blocks trafficking between the Golgi apparatus and the endoplasmic reticulum) effectively inhibit PSA-NO-induced activation of human CD4+ T cells (Fig. 3A). Furthermore, PSA-NO presentation to T cells by human APCs depends on the MHCII HLA-DR molecule but not on the MHCII HLA-DP and HLA-DQ molecules or the MHC molecules HLA-A, -B, and -C and their isotype controls (Fig. 3B). In similar blocking experiments in a mouse T cell proliferation assay, colchicine, brefeldin A, and monoclonal antibody (mAb) to I-A/I-E inhibit PSA-NO-induced T cell activation when mouse DCs are used as APCs (Fig. 3C). Because the superantigen staphylococcal enterotoxin A (SEA) can bypass antigen trafficking and bind directly to MHC molecules on the surface of an APC, we tested whether fixed APCs can still elicit T cell responses when presented with PSA-NO (Fig. 3D). Unlike superantigens, PSA-NO fails to activate T cells after DCs are fixed with formaldehyde (Fig. 3D).

Table 1. Abscess formation induced by PSA or PSA-NO in WT or iNOS−/− mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Strain</th>
<th>Challenge*</th>
<th>No. of animals with abscess/total (%)</th>
<th>P†</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C57BL/6J</td>
<td>PBS</td>
<td>1/8 (12.5)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>PSA</td>
<td>7/8 (87.5)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>PSA-NO</td>
<td>6/8 (75)</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>B6129P2-Nos2Pm1Laup/J</td>
<td>PSA</td>
<td>2/8 (25)</td>
<td>NS</td>
</tr>
<tr>
<td>E</td>
<td>PSA-NO</td>
<td>7/8 (87.5)</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

*Inocula were given via the i.p. route with SCC.
†Compared with PBS control (n = 2).

\[\textbf{Fig. 2.} \text{ iNOS in mouse APCs is necessary for intact PSA—but not for PSA-NO—to induce CD4}^+ \text{ T cell activation in vitro and abscess formation in vivo. (A) After stimulation with PSA or LPS for 18 h, iNOS mRNA expression was identified in WT but not in iNOS−/− DCs (n = 3). (B) After stimulation of DCs with PSA or LPS for 72 h, nitrite production in cell supernatants was determined. Data are mean ± SD values, *P < 0.04 (n = 3). (C) PSA, PSA-NO, or control SEA was added to cocultures of DCs and CD4+ T cells from either WT or iNOS−/− mice. Key for cell combinations tested: WT (DCs + T), DCs and CD4+ T cells from iNOS−/− mice; and WT DCs + iNOS−/− T, DCs from WT mice and CD4+ T cells from iNOS−/− mice (n = 3).}\]
and 1H–1H NMR (COSY) spectra (Fig. S7); the results matched our original structural elucidation of PSA (4).

Discussion

It is well known that the MHCI and MHCII pathways present proteins or protein conjugates to T cells. In both pathways, protein antigens are processed to peptides by proteases before being loaded onto the MHC molecule and presented. Glycolipids are presented to T cells by the CD1 molecule, either directly or after enzymatic degradation (18). In addition to the general belief that ROSs and RNSs within activated neutrophils and macrophages can destroy ingested microbes, it was recently reported that carbohydrate chains in heparan sulfate-containing proteoglycans are degraded through an NO-dependent mechanism (19). Here, we report that RNS and ROS processing of carbohydrate antigens (or other antigens) into products to be presented to T cells by APCs. Our elucidation of the mechanism of polysaccharide processing by these reactive species extends our understanding of nonprotein antigen processing within the endosome (20).

CD11c+ DCs are the APCs likely to be responsible for PSA presentation during intestinal colonization of animals with B. fragilis (5). To characterize the role of iNOS in PSA processing in DCs, we first provided evidence that PSA up-regulates NO production at both the gene and the protein level (Fig. 2 A and B). This iNOS up-regulation in APCs is probably mediated through the NF-κB signaling pathway resulting from PSA stimulation of TLR2 on the APC surface (6). The essential role of iNOS in DC maturation accounts for differences in expression of MHCII molecules on the surfaces of WT and iNOS−/− DCs (21) and for varied processing of PSA actually presented on the cell surface. To determine the total amount of processed PSA in DCs, we analyzed whole-cell lysates—rather than the endosomal/lysosomal compartment alone—in WT and iNOS−/− DCs (Fig. 1 A and B). By comparing the molecular sizes of PSA and N-acetyl PSA in lysates from these two types of DCs, we determined that RNSs are the major reactive species responsible for processing PSA and that degradation is the chemical reaction involved. Because deamination requires a free amino or N-sulfonyl group, we compared PSA with N-acetyl PSA, which lacks the free amino group. Our conclusion that deamination is responsible for PSA depolymerization is based on (i) greater reduction in processed PSA recovered from WT than from iNOS−/− DCs (Fig. 1A); (ii) less change in processed N-acetyl PSA recovered from WT versus iNOS−/− DCs (Fig. 1B); (iii) drastic reduction in processed PSA recovered from MPO−/− CD11b+ macrophages (increased NO) versus WT CD11b+ cells (Fig. 1C); and (iv) significant reduction in degradation of N-acetyl PSA in MPO−/− CD11b+ macrophages, despite the presence of increased NO (Fig. 1D).

Our data show that N-acetyl PSA, which lacks the free amino group required for PSA deamination, is processed to a smaller molecular species by ROSs; N-acetyl PSA is not processed by MPO-deficient macrophages but is readily processed by iNOS-deficient DCs. Similarly, dextran, which is widely used to study endocytosis and/or trafficking in APCs, is degraded within the endosome/lysosome by ROSs (Fig. S2). Taken together with our data on the deaminative degradation of PSA, these results indicate that carbohydrates can be processed by ROSs and/or RNSs through different mechanisms, depending on the structure of the particular carbohydrate. Clearly, free amino-containing carbohydrates are more susceptible to RNSs in APCs.

RNSs, including NO and nitroxylic, chemically degrade PSA through deamination. Under controlled conditions, a product that has been partially deaminated (e.g., PSA-NO) is obtained. Either prolonging treatment of PSA with NO or increasing the NO concentration results in formation of smaller degraded products. Similarly, a highly degraded molecule is created by treatment of PSA with one representative ROS—hydroxyl radical formed as a result of autoxidation of a reduced metal, Fe2+—at an increased reactant concentration or for increased reaction periods (data not shown). However, processing of PSA and N-acetyl PSA in APCs apparently is finely controlled, and the predominant products (≈10 kDa) degraded by RNSs and/or ROSs are consistently produced.

To test whether the deaminative products can be presented to and activate T cells in vitro and in vivo in the absence of iNOS,
we purified the NO-derived product PSA-NO (~16 kDa, Fig. S3A).
In the absence of iNOS, only the degradative product
PSA-NO—but not native PSA—activates T cells in vitro and in vivo.
It is interesting that iNOS-expressing DCs express lower levels of
surface membrane proteins (e.g., MHCI, CD80, and CD86)
than WT DCs (21). Despite the requirement for MHCI and CD86 expression in PSA activation of T cells, ~16-kDa PSA-NO
still induces more vigorous T cell responses in these cells than
full-sized PSA does in WT DCs (Fig. 2C). It is possible that
PSA-NO is more readily available for presentation because it
requires no depolymerization. This concept is consistent with
the report of increased release of interleukin 2 after presentation of
a short MUC1 (tumor antigen) peptide by DCs (22).
Complex protein antigens and long synthetic peptides are
expected to require intracellular processing before presentation
on MHCI. Small peptides derived from some (but not all)
antigens can directly bind to cell-surface MHCI molecules and be
presented equally well by fixed and nonfixed APCs (23).
We found that blockage of PSA-NO trafficking through the
MHCI pathway in APCs eliminates T cell responses. Presentation of
PSA-NO by APCs depends on HLA-DR (human) or I-A/I-E
(mouse). These data indicate that depolymerized PSA (PSA-
NO) is still presented through the MHCII pathway and thus that
NO has been shown to depolymerize several glycosaminogly-
cans through the deamination reaction, and it was proposed that
HNO2 and NO shared one common intermediate, the nitrosium
cation (NO+) (9, 10, 24). The nitrosium cation nitrosates free
amino groups or N-sulfate groups. The nitrosation of amino
groups or N-sulfate groups causes loss of nitrogen gas with a ring
contraction of 2-amino-2-deoxy sugars to 2,5-anhydro sugars
coupled to elimination of the aglycone (24). In addition,
4-amino-4-deoxy sugars are also amenable to the deamination
reaction through a reaction sequence similar to 2-amino-2-deoxy
sugars (25, 26). However, whether NO-mediated deamination
of 4-amino sugars results in the cleavage of the glycosidic bonds
depends on the glycosidic linkage of 4-amino-4-deoxy sugars in
the carbohydrate polymers (25, 26). For example, the deamina-
tion of 4-amino groups of 2-linked 4-amino-4,6-deoxymannopy-
nanosyl residues yields 2-linked rhamnopyranosyl and 2-linked
6-deoxyallofuranosyl residues, but the glycosidic linkages stay
intact (25). In contrast, the deamination of 4-amino groups of
3-linked 2-acetamido-4-amino-2,4,6-trideoxygalactopyranosyl
(AATp) residues yields cleavage at both C-3 and C-1 of AATp,
as was studied in detail by Lindberg et al. (26). It was established
that three possible deamination reactions on the free amino
group at C-4 of the 3-linked D-AAT residues yields cleavage into
these sugars. A perfect incorporation of one acetyl group per one
repeating unit of PSA-NO showed that all free amino
groups within our detection limit were intact. In addition, after
the N-acetylation, a change in the chemical shift of C-6 of the
AATp residue of PSA-NO (as in PSA) proved that N-acetylation
took place on the C-4 of AATp. Our structural characterization
of the degradation product PSA-NO showed that PSA-NO
shares the same chain structure with PSA—with most AATp
residues staying intact—a requirement for sustaining this
molecule’s zwitterionic nature and antigenicity (17).

This study demonstrates that B. fragilis PSA (~130 kDa)
duces NO production, which is responsible for the polysac-
charide’s depolymerization, and that the chemical mechanism
underlying PSA depolymerization is deaminative cleavage of
the molecule into products of ~10–15 kDa that can bind to
MHCI and be presented to the CD4+ T cell receptor. In contrast,
chemically preprocessed polysaccharide (~10–15 kDa) bypasses
this deaminative step as a requirement for presentation through
the MHCI pathway. The chemical mechanism described herein
complements the classic processing route for exogenous protein
antigens, in which the generation of peptides depends on pro-
tease digestion and provides new insight into T cell-dependent
carbohydrate processing.

Materials and Methods

Mice, Cells, and Monoclonal Antibodies. WT (C57BL/6), iNOS−/− (B6.129P2- Nos1tm1Lau/J), and MPO−/− (B6.129x1-1Mpo−/−/−) (The Jackson Laboratory)
mice (male, 6–8 weeks old) were maintained as described in ref. 1.

Human mononuclear cells were separated from blood and mouse mono-
nuclear cells (MNCs) were separated from spleens on Ficoll–Hypaque gradi-
ents. CD4+ T cells were purified from MNCs by negative selection (R&D Systems).
Mouse DCs or monocytes/macrophages were separated from MNCs
through CD11c1 and CD11b1 positive selection (Miltenyi Biotech).

Monoclonal antibody to HLA-DQ (SPV-L3) was from NeoMarkers; mAbs to
HLA-A, -B, and -C (W6/32) and HLA-DP (B7/21) were from Bio-
Legend; and mAbs to HLA-A, -B, and -C (W6/32) and HLA-DP (B7/21) were from
Leinco Technologies. All mAbs and isotype controls were free of azide.

PSA Purification, Radiolabeling, and N-Acetylation. PSA was purified from a
mutant B. fragilis strain overexpressing PSA as described in refs. 4 and 27. The
purity of PSA (lot 17, >99%) was assessed by SDS/PAGE, 1H-NMR spectroscopy,
and UV wavelength scans. PSA was radiolabeled by 20% oxidation of galacto-
duronic acid and reduction by NaBH4. The specific activity of 1H-PSA was
2,800 cpm/ng. N-acetyl PSA was prepared by PSA treatment with acetic anhy-
dride in 5% (wt/vol) NaHCO3.

In Vitro Assays of Carbohydrate Processing in APCs. To allow uptake and
processing, a modified procedure (1) was used, with incubation of 100 μg of
3H-PSA or 3H-PSA together with 500 μg of unlabeled PSA (used to
stimulate iNOS expression) for 72 h at 37°C with ~3 × 103 C57BL/6 splenic DCs
from either WT or iNOS−/− mice; ~7 × 103 CD11b+ monocytes/macrophages from
spleens of WT or MPO−/− mice were similarly treated. Cells were har-
gathered, washed three times with PBS, suspended in 10 mM Tris-HCl,
and digested directly with papain (0.4 mg/ml) at 37°C for 3 h and, subse-
quently, with pronase (0.2 mg/ml) overnight. For degradation of dextran, 1/4 μCi
3H-dextran (~70 kDa) (American Radiolabeled Chemicals) was incubated in
~1 × 108 Raji cells for 18 h either alone or in the presence of 0.5 mM MnTBP,
1 mM pyruvate, or 10 mM D-mannitol. Endosomal lysates were obtained
as described in ref. 1.

RT-PCR. Splenic DCs (1 × 106/ml) were incubated with PSA (100 μg/ml) or
lipopolysaccharide (LPS) (Escherichia coli K-235, 100 ng/ml; Sigma–Aldrich)
for 18 h. Total RNA was extracted with an RNeasy kit (Qiagen), and purified RNA
was used for RT-PCR with the Superscript III One-Step RT-PCR System (Invitro-
gen). Primers (Operon Biotechnologies) were designed to amplify the CDNA of
gene size, 450 bp) were 5′-GTATGGGTAGATCGCTTGG-3′ and 5′-CAC
ATTGGGTTGAACAC-3′; iNOS primers were 5′-TACGGACACACGACC-3′
and 5′-CCGATCTCTCTCCTCCTCTGG-3′. The iNOS primers were
designed to amplify a 244-bp product of CDNA codified within a region of
the iNOS gene that was not included in the target construct and was absent in

Duan et al.
PNAS | April 1, 2008 | vol. 105 | no. 13 | 5187
In blocking experiments with human cells, colchicine (0.5 μM) was harvested 8 h later. Radioactive uptake was measured by liquid scintillation.

For the mouse T cell proliferation assay, PSA (100 μg/ml), PSA-NO (20 μg/ml), and SEA (10 ng/ml) were added to the coculture of 1 × 10^5 DCs and 2 × 10^5 CD4^+ T cells (200 μl per well). For blocking experiments with mouse cells, colchicine (0.5 μM), brefeldin A (50 μg/ml), or mAb (1.5 μg/ml) to I-A/E and its isotype IgG2b were cocultured with cells 30 min before addition of PSA-NO (20 μg/ml). In fixation experiments, DCs were fixed with 2% formaldehyde in PBS at 4°C for 30 min, and fixed DCs were washed twice with cold PBS before coculture with CD4^+ T cells. After 4 days, T cell proliferation was assayed as above.

Mouse Model for Intraabdominal Abscess Formation. In an intraabdominal abscess model (1, 29), mice were injected i.p. with 1 × PBS (control), PSA (50 μg), or PSA-NO (50 μg) mixed with sterile cecal contents (SCC). Animals were killed 6 days later and examined for abscess formation. Abscess data represent two experiments.

Statistical Analyses. Abscess induction differences between groups were evaluated by Fisher's exact test (Instat; GraphPad Software). Means from T cell proliferation assays were compared by unpaired t test.

ACKNOWLEDGMENTS. We thank Ms. Jaylyn Olivo and Ms. Julie McCoy for helpful editorial assistance and Drs. Sarkis K. Mazmanian and Rachel McLoughlin for reading this manuscript. This work was supported by National Institutes of Health/National Institute of Allergy and Infectious Diseases Grant RO1 AI039576 (to D.L.K.).

Supporting Information

Duan et al. 10.1073/pnas.0800974105

Supporting Text

Fast Protein-Liquid Chromatography (FPLC). Nonradiolabeled compounds were analyzed on a Superose 12 column (18 ml) with the Amersham Pharmacia FPLC system (GE Healthcare). The column was calibrated by refractive index (RI) detection of T-series dextran. Radiolabeled compounds were separated on either a Superose 6 column (23 ml) or a Superose 12 column (23 ml) with the BioRad FPLC system, and the elution profile (1 ml per fraction) was determined by radioactive counting of the fractions. These two columns were calibrated by standard ³H-labeled dextrans (~70 and ~10 kDa, American Radiolabeled Chemicals). The cpm values were normalized. The flow rates of all FPLC systems were 0.5 ml/min in 1/10 PBS (pH 7.2) supplemented with 0.05% NaN₃. All gel filtration profiles represent at least three experiments except those from experiments using cells from MPO⁻/⁻ mice, which were done twice.

Degradation of PSA by NO and Preparation of PSA-NO (~16 kDa). An NO-saturated solution (~2 mM, based on a solubility of 5.7 cmP₃P/100 ml at 20°C) in 0.2 M phosphate buffer (pH 7.4) was obtained as described in ref. 1. All solutions were deoxygenated exclusively with high-purity nitrogen gas. The NO stock solution (NO concentration, ~0.67 mM) was obtained by 1:3 dilution of the NO-saturated solution. PSA or N-acetyl PSA (50 µl of a stock solution of 6 mg/ml) was added to 500 µl of the NO stock solution at 37°C for 10 min, and the reaction was terminated by the addition of 500 µl of saturated ammonium sulfamate (2). For scavenging NO, 50 µl of PSA was added to 500 µl of NO stock solution containing 1.4 mM carboxyl-PTIO (Sigma–Aldrich). For preparation of PSA-NO, PSA was degraded by NO as above; the resulting products were separated by FPLC (Superose 12), and fractions corresponding to PSA-NO (~16 kDa) were collected.

Effect of Peroxynitrite or Nitroxyl on PSA Molecular Size. A stock solution of 6 mM Angeli’s salt (EMD Biosciences) was prepared in 0.1 M NaOH immediately before use. ³H-PSA or ³H-N-acetyl-PSA (400 ng/ml) was treated with Angeli’s salt (3 mM) overnight at room temperature. All solutions for anaerobic experiments were deoxygenated with nitrogen gas. The end products were analyzed by FPLC (Superose 6).

To compare the abilities of peroxynitrite and hydroxyl radical to degrade PSA, ³H-PSA (200 ng) was incubated overnight at room temperature with 500 µl of 3 mM SIN-1 (final concentration) and 2 mM FeCl₂ alone or with 5 mM D-mannitol in 0.2 M phosphate buffer (pH 7.4). As a control, hyaluronic acid (Sigma) was labeled with EDC-[³H]-NaBH₄ (specific activity, 20 cpm/ ng) (3), and the labeled preparation was treated with 3 mM SIN-1 as above. The final products were analyzed by FPLC (Superose 6).

Fig. S1. Deamination of AATp residue in one repeating unit of PSA.
Fig. S2. Dextran was degraded within endosome/lysosomes by ROSs. 3H-Dextran (\sim70 kDa) was incubated in $\sim 1 \times 10^8$ Raji cells for 18 h either alone or in the presence of 0.5 mM MnTBAP, 1 mM pyruvate, or 10 mM D-mannitol. The end products from endosomal lysates were analyzed on Superose 12.
Fig. S3. Effect of NO and peroxynitrite on the molecular size and degree of degradation of PSA. (A and B) PSA or N-acetyl PSA was treated with 2/3 mM NO solution. Native PSA, N-acetyl PSA, the NO-treated products of PSA in the absence or presence of carboxyl-PTIO (which depletes NO by converting it to NO₂), and the NO-treated product of N-acetyl PSA were separated by Superose 12 chromatography. The elution profiles are represented as refractive index (RI) response versus elution volume. PSA-NO (~16 kDa) was obtained by collection of appropriate eluting fractions of the NO-derived product (n = 3). (C) Comparison of the effects of peroxynitrite and hydroxyl radical on the molecular size of PSA. ³H-PSA was treated overnight with SIN-1 at room temperature. For comparison, ³H-PSA was incubated with FeCl₂ in the absence or presence of d-mannitol. The end products and native ³H-PSA were analyzed by FPLC (Superose 6) (n = 3). See text for interpretation of data.
Fig. S4. Slight degradation of hyaluronic acid (HA) by peroxynitrite. 3H-HA was treated overnight with the peroxynitrite generator SIN-1 (3 mM) at room temperature. The end product and native 3H-HA were assayed by FPLC (Superose 6).
Fig. S5. N-acetylation of PSA eliminated nitroxy (HNO/NO-)-induced degradation of PSA. 3H-PSA or 3H-N-acetyl PSA was treated overnight with the nitroxy generato Angelli's salt (3 mM) at room temperature under anaerobic or aerobic conditions. The end products, original 3H-PSA and 3H-N-acetyl PSA, were analyzed by FPLC (Superose 6).
Fig. S6. Dose dependence of human CD4⁺ T cell activation in vitro by PSA and PSA-NO.
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1</td>
<td>5.09 (5.09)</td>
<td>5.37 (5.37)</td>
<td>4.73 (4.73)</td>
<td>5.11 (5.11)</td>
</tr>
<tr>
<td>H-2</td>
<td>4.26 (4.26)</td>
<td>4.62 (4.62)</td>
<td>3.78 (3.78)</td>
<td>4.04 (4.04)</td>
</tr>
<tr>
<td>H-3</td>
<td>4.51 (4.48)</td>
<td>4.26 (4.25)</td>
<td>3.85 (3.85)</td>
<td>4.10 (4.10)</td>
</tr>
<tr>
<td>H-4</td>
<td>4.03 (4.00)</td>
<td>4.28 (4.28)</td>
<td>4.52 (4.52)</td>
<td>4.04 (4.04)</td>
</tr>
<tr>
<td>H-5</td>
<td>4.79 (4.77)</td>
<td>3.75 (3.74)</td>
<td>3.68 (3.67)</td>
<td>3.83 (3.83)</td>
</tr>
<tr>
<td>H-6</td>
<td>1.37 (1.36)</td>
<td>3.80 (3.80)</td>
<td>3.99 (3.97)</td>
<td>3.68 (3.67)</td>
</tr>
<tr>
<td>H-6'</td>
<td>4.09 (4.09)</td>
<td>3.70 (3.70)</td>
<td>3.70 (3.70)</td>
<td>3.70 (3.70)</td>
</tr>
<tr>
<td>NAc-Me</td>
<td>2.11 (2.11)</td>
<td>2.09 (2.09)</td>
<td>1.51 (1.51)</td>
<td>1.51 (1.51)</td>
</tr>
</tbody>
</table>

Fig. S7. The assignment of the 1H-NMR chemical shifts of PSA-NO and PSA (in parentheses). a, α-AATp(1→3)β-GalpNAc[(3→3](1→; b, α-Gal[(4→p-AATp(1→3)β-Galp[(4→p); c, β-Galf(1→3)β-Galp[(4→p); d, β-Galf(1→3)β-Galp[(4→p).