Quality control of overexpressed membrane proteins

Eric R. Geertsma, Maarten Groeneveld, Dirk-Jan Slotboom, and Bert Poolman*

Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

Communicated by H. Ronald Kaback, University of California, Los Angeles, CA, March 4, 2008 (received for review January 21, 2008)

Overexpression of membrane proteins in Escherichia coli frequently leads to the formation of aggregates or inclusion bodies, which is undesirable for most studies. Ideally, one would like to optimize the expression conditions by monitoring simultaneously and rapidly both the amounts of properly folded and aggregated membrane protein, a requirement not met by any of the currently available methods. Here, we describe a simple gel-based approach with green fluorescent protein as folding indicator to detect well folded and aggregated proteins simultaneously. The method allows for rapid screening and, importantly, pinpointing the most likely bottlenecks in protein production.

Results

In Gel Mobility Shift of GFP Fusion Proteins. We initially expressed six membrane proteins in E. coli with a GFP-His6 moiety fused to their C termini. The proteins represent members of four evolutionary unrelated families and are all polytopic integral membrane transporters [supporting information (SI) Table S1]. After cell disruption, the total cellular protein extract of the different cultures was analyzed by SDS/PAGE and in gel detection of GFP fluorescence. For all GFP fusion proteins, a single prominent fluorescent band was observed (Fig. 1 Upper, right lanes). The gel was also analyzed by Western blotting and immunodetection with an antibody directed against the His tag to detect the expressed proteins. The blot revealed a band at the same position as the fluorescent signal but, surprisingly, also an additional band of an apparent molecular mass that was ~10 kDa higher (Fig. 1 Lower, right lanes). Two bands were observed for all GFP fusion proteins tested, but the ratios of the intensities varied between different proteins.

To analyze the origin of the dual migration, we compared the electrophoretic mobility of the GFP fusion proteins with that of the same proteins without GFP fusion (Fig. 1, left lanes). Nonfused proteins did not show the dual electrophoretic mobility and migrated as single bands. With these nonfused proteins as a reference, the apparent molecular mass of the upper band of the GFP fusions was in agreement with the predicted mass increase from the fusion with GFP (+27 kDa), whereas the lower fluorescent band migrated only 10–15 kDa higher than the band of the nonfused protein. These observations suggest that the GFP moiety of the fusion protein in the upper band was fully denatured, consistent with the predictable migration in SDS/polyacrylamide gels and the absence of fluorescence. The anomalous migration of the lower band can be explained by the preservation of the structure of the GFP moiety, which is consistent with the observed fluorescence.

Because the correct folding of the GFP moiety in GFP fusion proteins

The authors declare no conflict of interest.

*To whom correspondence should be addressed. E-mail: b.poolman@rug.nl.

This article contains supporting information online at www.pnas.org/cgi/content/full/0802190105/DCSupplemental.

© 2008 by The National Academy of Sciences of the USA

PNAS | April 15, 2008 | vol. 105 | no. 15 | 5722–5727
proteins is known to depend on the productive folding of the preceding protein domain (5, 6), the observed dual in gel migration of the GFP fusion proteins could be representative of the folded and aggregated protein populations produced under these expression conditions. Clearly, methodology allowing such rapid and simultaneous quantification of both folded and aggregated protein would be of great value during, for instance, optimization of protein expression and purification conditions. We thus set out to establish whether the dual in gel migration of the GFP fusion proteins is a suitable indicator for the amounts of folded and aggregated protein present in a sample.

The Intensity Ratios of the Two Bands Depend on Expression Levels.
To determine whether the double bands of the expressed GFP fusion proteins were not a mere artifact but indeed originated from different folding states of the expressed proteins, we investigated whether the ratio between the intensities of the two bands changed when the expression conditions were altered to produce more or less aggregated protein. High expression levels generally produce more aggregated protein in inclusion bodies than lower expression levels. In our experiments, the expression of the GFP fusions was controlled by the PBAD promoter, and therefore variation in the expression levels was achieved by altering the concentration of the inducer L-arabinose in the medium during induction. A wide range of inducer concentrations, spanning 4 orders of magnitude, was used. We analyzed the electrophoretic mobility of nine membrane protein GFP fusions (22) (Table S1) by in gel GFP fluorescence and immunoblotting (Fig. 2, Upper and Lower, respectively). For each protein, the combined signal of the two bands on the immunoblots increased with the inducer concentration, indicating higher overall expression levels. However, the distribution of the intensities over the two bands varied markedly. At high inducer concentrations, the relative contribution of the upper band was highest, but at low inducer concentrations, for several proteins the higher band was absent, and only the lower (fluorescent) protein could be detected, consistent with a high fraction of properly folded protein.

To exclude that the dual migration was specific for the combination of the expression host E. coli MC1061 and the AraC/PBAD expression system (22), we also studied the expression of the GFP fusions of GltP, YdjN, and SstT in E. coli BL21(DE3) controlled by the T7 system. Again, dual migration of the GFP fusion proteins was observed (Fig. 2) (7). Thus, the dual migration is not specific for the combination of the expression host E. coli MC1061 and the AraC/PBAD expression system. Noticeably, the intensities of the upper bands of the proteins expressed with the T7 system were high compared with the lower bands. The ratios between the two equaled or exceeded those of proteins expressed by using the AraC/PBAD system with high inducer concentrations [1 × 10⁻¹% (wt/vol) arabinose]. Apparently, the expression conditions with the T7 system disfavored the formation of fluorescent proteins.

In conclusion, the intensities of both bands of the GFP fusion protein were affected by the relative promoter strength. Overall, low expression levels increased the relative contribution of the lower, fluorescent band, whereas high expression levels increased the proportion of the upper band.

Characterization of the Fluorescent GFP Fusion Species. Initial demonstration of the suitability of GFP as an indicator for the productive folding of (soluble) proteins was done by relating whole-cell GFP fluorescence to protein solubility (5). Accordingly, we verified whether the GFP fluorescence measured in gel was in correspondence to the fluorescence as determined in vivo in nondisrupted cells. E. coli cells expressing LacS-GFP were imaged by confocal microscopy. The cells displayed fluorescence at their periphery as expected for a membrane protein GFP fusion (Fig. 3, Upper). Cells exposed to increasing concentrations of inducer showed an optimum in fluorescence at ~1 × 10⁻³% (wt/vol) L-arabinose (67 μM; Fig. 3). This result is in perfect agreement with the fluorescence of the lower band of LacS-GFP as detected in gel (Fig. 2).

Next, we related the intensity of the fluorescent signal of the GFP fusion protein to the activity of the lactose transporters LacS and LacY and the glutamate transporter GltP. The initial rate of transport, which is indicative of the amount of functionally expressed protein, was determined in cells expressing these proteins to different levels (Fig. 4). Initial rates of lactose counterflow transport by LacS increased up to an inducer concentration of 1.5 × 10⁻³% (wt/vol) arabinose (Fig. 4A). Above this concentration, the transport rate decreased and leveled off to ~30% of the maximal activity observed. Similar results were obtained for LacS-GFP (data not shown). In cells expressing LacY-GFP, transport activity increased up to inducer...
concentrations of 1×10^{-3}% (wt/vol) arabinose but decreased slightly toward higher inducer concentrations (Fig. 4B). The initial rate of glutamate transport of GltP-GFP leveled off above 1×10^{-3}% (wt/vol) arabinose (Fig. 4C). In all cases, the relation between the transport activity and the inducer concentration matched the course of the intensity of the GFP fluorescence in gel (for LacS, LacY, and GltP) and in vivo (for LacS), suggesting that the fluorescent species observed in gel represents the fraction active protein.

Characterization of the Nonfluorescent GFP Fusion Species. The previous observations suggest that the fluorescent species is indicative of folded protein and, consequently, that the nonfluorescent species represents aggregated or unfolded protein. In E. coli, incorrectly folded protein often leads to the formation of inclusion bodies. We determined whether insoluble aggregates were present in cells induced at two extremes of the arabinose concentrations, which are conditions at which the upper band for LacS-GFP was either absent (1×10^{-3}%) or prominently visible (2×10^{-3}%). Indeed, we could isolate inclusion bodies containing LacS from cells induced with the high arabinose concentration, but not from cells induced with the intermediate arabinose concentration (1×10^{-3}%) (Fig. S1). This observation confirms that the nonfluorescent GFP species is indicative of aggregated protein.

To validate this observation further, we analyzed whether the two GFP fusion species could be solubilized by mild detergents. Detergent-solubilized and properly folded membrane proteins are expected to sediment slower than their insoluble aggregates. If the upper band would consist of improperly folded and aggregated GFP fusion proteins, differential centrifugation should separate them from properly folded proteins. Cells, induced with high arabinose concentrations [1×10^{-1}% (wt/vol)] to induce the formation of the upper band, were disrupted and solubilized with 1% (wt/vol) n-dodecyl-β-D-maltoside (DDM) or Fos-choline-12 (FC-12). Both DDM and FC-12 are highly effective in solubilizing membrane proteins (8–10), and DDM has been used successfully in obtaining structures of many membrane proteins (3). Solubilized cells expressing GFP fusions of LacS, LacY, GltP, EcCIC, or NhaA were analyzed by in gel fluorescence and immunoblotting before and after ultracentrifugation (Fig. 5). The electrophoretic mobility and the intensities of the bands were not affected by the addition of the detergents (data not shown). However, after centrifugation, the band pattern changed significantly. For LacS, LacY, GltP, and NhaA, the lower, fluorescent band was almost quantitatively recovered for all fusion proteins solubilized in DDM (between 70% and 100% based on GFP fluorescence). For EcCIC, the recovery of this band was ~50% based on GFP fluorescence. For the DDM-solubilized proteins, centrifugation resulted in complete removal (LacS, LacY, EcCIC, and NhaA) or a significant reduction (GltP) of the upper nonfluorescent band. These results indicate that the upper nonfluorescent band indeed represents the aggregated fraction.

Although qualitatively similar results were obtained with FC-12-solubilized material, the absolute decrease of the intensity of the upper band after centrifugation was less pronounced. To analyze this observation in more detail, we performed size-exclusion chromatography (SEC) on the supernatant of disrupted and FC-12-solubilized cells expressing GFP fusions of...
LacS, LacY, and GltP (Fig. S2). For all proteins, the lower (fluorescent) band peaked near the expected elution volume for the monomeric (LacS and LacY) or trimeric (GltP) species in a detergent and lipid micelle. For LacS and LacY, the upper band eluted as a very broad peak and was more abundant in the initial fractions, whereas the lower band (partially unfolded, less compact proteins) for GltP-GFP, a large fraction of the upper, nonfluorescent band was lost during SEC. Whereas the intensities of the two bands were almost identical in the sample that was loaded onto the column, the intensity of the upper band in the elution fractions was severely reduced, possibly caused by retention of this species on the column or on the filter preceding the column. Overall, the results indicate that the fraction of the FC-12-solubilized GFP fusion that is represented by the upper band consists of misfolded protein, which surprisingly could not be pelleted easily. Possibly, this observation reflects the ability of FC-12 to solubilize aggregates of membrane proteins partially, preventing their complete sedimentation.

A final characterization was done to establish whether all of the aggregated protein was present in dense inclusion bodies or whether some of the misfolded material was membrane-associated. After cell rupturing, the dense and large inclusion bodies (and unbroken cells) should sediment in a low-speed centrifugation step and thereby separate from the membrane vesicles. We disrupted cells expressing LacS-GFP and analyzed the pellet and supernatant fractions obtained after low-speed centrifugation (Fig. S3). As expected, the pellet fraction showed a relative increase in the signal corresponding to the aggregated protein (upper band), indicating that part of the aggregated material was present as dense inclusion bodies (in agreement with Fig. S1). The pellet also contained a small amount of the lower, fluorescent band most likely because of the presence of intact cells that escaped disruption. In contrast, the supernatant fraction showed a relative increase in the signal of the lower fluorescent band, representing the well-folded protein. But surprisingly, the supernatant also contained some aggregated protein. The supernatant was further analyzed by sucrose density centrifugation (Fig. S3). Again, the lower-density fraction containing the membrane vesicles also contained some of the aggregated protein that migrated in the upper band, confirming that the aggregated material is present not only in dense inclusion bodies but also in a form that cofractionates with the membranes, thereby preventing removal by centrifugation. Similar observations were made for cells expressing LacY-GFP (data not shown).

Taken together, our observations indicate that the intensity of the upper band represents aggregated protein. Consistently, this fraction of the GFP fusion protein is less prone to solubilization by detergents. In contrast, the intensity of the lower, fluorescent band corresponds to the GFP fluorescence observed in whole cells and the amount of active protein present. It represents the fraction of the GFP fusion proteins that is functionally expressed and readily solubilized upon exposure to detergents.

Discussion

Optimization of the expression of membrane proteins in a functional state often is an iterative process in which parameters such as the vector design (e.g., type of promoter and affinity tags) and cultivation conditions (e.g., host, inducer concentration, and temperature) are varied while monitoring the quantity and quality of the protein produced (4). Available methods for evaluation are based on the quantification of either the amount of properly folded protein (fluorescence of GFP fusions and activity assays) or the amount of aggregated species (inclusion body isolations), whereas data on both species would provide information on the expression bottlenecks, which is essential to guide the optimization process. Here, we describe a generic method for the rapid simultaneous quantification of folded and aggregated membrane protein.

The method is based on the use of GFP as indicator for stably folded protein (5, 6) and exploits the ability of folded GFP to maintain its tertiary structure during analysis by SDS/PAGE (this work and refs. 11 and 12). The approach takes advantage of the differential electrophoretic mobility of folded and misfolded GFP fusions. Immunodetection allows determination of the ratio of both species. Dual migration of GFP fusions has been observed (11), but an explanation was not provided. All complementary techniques clearly indicate that the upper band represents the fraction of aggregated protein, whereas the lower, fluorescent band represents properly folded, membrane-inserted, and active protein.

The two protein species could be separated by differential centrifugation after solubilization with the detergent DDM. Aggregated proteins sediment faster than detergent-solubilized membrane proteins and pelleted at appropriate centrifugation velocities while the properly folded proteins stayed in the supernatant. Removal of the aggregates from solubilized membranes by centrifugation was less complete for the detergent FC-12 than for DDM. SEC of FC-12-solubilized GFP fusions indicated that FC-12 could partially solubilize the aggregated material. In favor of this interpretation are the recurrent observations that FC-12 is one of the most effective detergents for the solubilization of membrane proteins (8–10). FC-12 has not been very successful in the crystallographic analysis of membrane proteins. The only membrane protein thus far crystallized in the FC-12-solubilized state, the rat monoamine oxidase A, contains only one isolated transmembrane segment (13).

The reliability of the method presented depends to a large extent on the quality of GFP as folding indicator. Previously, this application was validated by relating the GFP fluorescence to the amount of fusion protein present in the appropriate cell fraction (inclusion bodies, soluble or membrane-bound) (5, 6). Here, we extend this validation by relating the GFP fluorescence to the activity of the fusion partner. We observed excellent correlation between the activity of the transporter proteins and GFP fluorescence.

Our observations on several unrelated membrane proteins are in line with those of others (4), claiming that high expression levels often lead to aggregated protein, whereas reduction of the protein production rate increases the fraction of properly folded protein (Fig. 2). Importantly, the production rates at which misfolding and aggregation emerged varied per protein and did not relate to their absolute expression levels. Additionally, the fraction of protein that was properly folded diminished for some proteins toward higher expression levels (e.g., LacS, EcCIC, and NhaA; Fig. 2) but stayed constant for others (e.g., GltP, DctA and GlpF; Fig. 2). Together, these observations emphasize that the optimization of protein expression needs to be done on an individual basis. The methodology presented here will facilitate this process.

The use of GFP fusions to optimize membrane protein overproduction can be integrated seamlessly with other downstream applications of GFP; e.g., a protocol to select the most effective detergents for solubilization of membrane proteins has been described (12). Also, by using fluorescent size-exclusion chromatography (FSEC), the stability of GFP fusions can be rapidly characterized without purification (14). To assure that purification procedures are sufficiently selective to remove the aggregated protein from the properly folded fraction, the in gel mobility shift assay presented here can be applied. Apart from these analytical applications, removal of the His-tagged GFP moiety by digestion with the tobacco etch virus (TEV) protease on a preparative scale allows further processing of the nonfused membrane protein for functional assays or crystallization trials.

In summary, we present a generic method for the simultaneous quantification of folded and aggregated membrane pro-
tein using GFP fusions. The method requires only standard equipment and small culture samples; it is not labor-intensive and can greatly facilitate the optimization of the overexpression of both membrane and soluble proteins.

Materials and Methods

Plasmid Constructions. *E. coli* MC1061 (15) was used as the cloning host. DNA manipulations were done according to standard protocols. All vectors used in this work were derivatives of pBADMychIsb (Invitrogen). The construction of pBADlacSC320A ΔIIA, pBADlacSC320A ΔIIA-GFP, and pBADClcLIC has been described (16, 17). Plasmid pBADClcLIC-GFP was constructed from a 4,045-bp SvaI-XbaI fragment of pBADClcLIC and an XbaI- digest PCR product (784 bp) holding an Ncol-free sequence coding for GFP. The sequence coding for GFP was obtained by blunt-end ligation of TEV-GFP-PS18 (16). A derivative of pBADlacSC320A ΔIIA was constructed by using ligation-independent cloning, genes cloned in pBADClcLIC were expressed with a small N-terminal extension (MGGGFA; resulting from cloning-related sequences) and a C-terminal TEV protease cleavage site (ENLYFQFG) followed by a His6 tag. Genes cloned in pBADClcLIC-GFP have similar modifications but additionally have the gene coding for the EFGP protein inserted between the sequences for the TEV protease cleavage site and the His6 tag. Plasmid pBADlacSC320A ΔIIA and pBADlacSC320A ΔIIA-GFP, containing the lacΔΔIIA gene, were constructed by ligation-independent cloning as described in ref. 17. LacΔΔIIA is a truncation mutant of LacS devoid of the regulatory IIA domain (16); for convenience, in the main text and figures we refer to LacΔΔIIA as LacS. The construction of derivatives of pBADClcLIC and pBADlacSC320A ΔIIA, containing gfp, dcta, ydN, and strI, will be described elsewhere. Derivatives of pBADClcLIC and pBADlacSC320A ΔIIA, containing lacY, ecCIcIC, nhaA, and glpF, were a kind gift from G. B. Erkens (University of Groningen). Derivatives of pWaldo, containing gfp, dcta, and ydN, were a kind gift from D. O. Daley (Stockholm University).

Transport Assays. LacS. Lactose counterflow transport was assayed in *E. coli* MC1061/pBADlacSC320A ΔIIA as described in ref. 16. LacY. Lactose transport driven by the proton motive force was assayed in *E. coli* MC1061/pBADClcLIC-LacY-GFP as described for LacS but at 23°C (19). GlpF. Glutamate transport driven by the proton motive force was assayed in membrane vesicles of *E. coli* MC1061/pBADlacSC320A ΔIIA-GFP as described in ref. 20.

Cultivation.* E. coli* MC1061 (15), TOPO1 (21), and BL21 (DE3) were cultivated at 37°C on Luria broth supplemented with 100 μg/ml ampicillin under vigorous aeration. Cultivation of *E. coli* MC1061 and *E. coli* TOPO1 containing derivatives of pBADMychIsb (Invitrogen) was started with a 1–2% (vol/vol) inoculum of an overnight culture. Cells were grown until OD660 = 0.6 was reached and induced with the appropriate amount of L-arabinose. Cultivation was continued for 2 h. Cultivation of *E. coli* BL21 (DE3) containing derivatives of pWaldo was done as described above for *E. coli* MC1061, but cells were induced with 0.4 mM IPTG.

Purification of Inclusion Bodies. Whole-cell pellets of *E. coli* MC1061/pBADlacSC320A ΔIIA, corresponding to ~7 mg of protein, were resuspended in 1.25 ml of 50 mM Tris HCl, 1 mM EDTA (pH 8.0), 0.73 M sucrose plus 2 mg/ml lysozyme and incubated on ice for 30 min. Subsequently, MnCl2, MgCl2, and HCl, 1 mM EDTA (pH 8.0), 0.73 M sucrose plus 2 mg/ml H9004 in 1.25 ml of 50 mM Tris HCl (pH 8.0), 1 mM MgSO4, 10% (wt/vol) glycerol, 1 mM PMSF, and trace amounts of DNase were added to final concentrations of 1.8 mM, 18 mM, and 0.8 mg/ml, respectively, and the sample was vortexed and incubated on ice for 30 min. After the addition of 3 ml of detergent buffer [20 mM Tris HCl (pH 7.5), 200 mM NaCl, 10 mg/ml deoxycholate, 10 mg/ml Nonidet P-40, 2 mM EDTA, and 10 mM 2-mercaptoethanol], the sample was vortexed thoroughly and centrifuged for 5 min at 10,000 × g at 4°C. Next, the pellet was resuspended twice in 3 ml of Tris–Triton buffer [20 mM Tris HCl (pH 7.5), 0.5% (wt/vol) Triton X-100, 1 mM EDTA plus 10 mM 2-mercaptoethanol] and centrifuged for 5 min at 10,000 × g at 4°C, followed by two rounds of resuspension in 3 ml of Tris–DTT buffer [50 mM Tris HCl (pH 8.0), 1 mM EDTA plus 10 mM DTT] and centrifugation at 10,000 × g for 5 min at 4°C. Pellets were resuspended in 200 μl of 7 M urea and stored at −80°C until use.

In Gel Fluorescence and Immunodetection. Whole-cell samples corresponding to ~1 mg of protein were resuspended in 400 μl of ice-cold 50 mM KP (pH 7.2), 1 mM MgSO4, 10% (wt/vol) glycerol, 1 mM PMSF, and trace amounts of DNase. Glass beads (300 mg, 0.1-mm diameter) were added, and samples were shaken in a FastPrep device (Bio101) for 20 at force 6. This procedure was repeated once after cooling the samples for 5 min on ice. Aliquots (40 μl, 100 μg of protein) were taken, and 10 μl of 5X protein sample buffer [120 mM Tris HCl (pH 6.8), 50% glycerol, 100 mM DTT, 2% (wt/vol) SDS, and 0.1% (wt/vol) bromophenol blue] was added. Samples were stored on ice until use.

Protein samples were analyzed by 10% SDS/PAGE, and in gel GFP fluorescence was immediately visualized with an LAS-3000 imaging system (FujiFilm) and AIDA software (Raytest). Subsequently, gels were subjected to semidy electroblotting and immunodetection with a primary antibody raised against a His6 tag (Amersham Pharmacia Biotech). Chemiluminescence detection was done by using the Western light kit (Tropix, Inc.) and the Fujifilm LAS-3000 imaging system.

Differential Sedimentation of Folded and Aggregated Proteins. Whole-cell samples were prepared as described for in gel fluorescence and immunodetection. After bead beating, aliquots (100 μl, 250 μg) were transferred to TLA 100.1 centrifuge tubes. Samples were solubilized for 45 min at 4°C in the presence of 1% (wt/vol) DDM or FC-12 and occasionally mixed by brief vortexing. A small aliquot (20 μl, 45 μg) was removed to represent the sample before ultracentrifugation. Next, the remaining sample was centrifuged at 355,000 × g for 10 min at 4°C in a TLA 100.1 rotor (Beckmann). Samples were taken before and after centrifugation to monitor the band pattern by in gel fluorescence and immunodetection. A 200-μl fraction of the supernatant was analyzed by SEC with a Superdex 200 column (10/300 GL; Amersham Biosciences) prequillibrated with 50 mM KP (pH 7), 200 mM NaCl, and 0.04% (wt/vol) DDM, similar to that described in refs. 10 and 14. Fractions obtained from the SEC were analyzed as described for in gel fluorescence and immunodetection.

Isolation of Membrane Vesicles. Whole cells corresponding to ~160 mg of protein were resuspended in 40 ml of ice-cold 50 mM KP (pH 7.2), 1 mM MgSO4, 10% (wt/vol) glycerol, 1 mM PMSF, and a few milligrams of DNase. Cells were passed twice through a French pressure cell at 10,000 psi, supplemented with 2 mM EDTA (pH 7.5) (the resulting sample was labeled “disrupted cells” or “DDM”), followed by centrifugation at 400 × g for 10 min at 4°C in an JA 25.5 rotor. Without disturbing the pellet, 25 ml of the supernatant was removed (the resulting fraction was labeled “LS supernatant”). The remaining supernatant was disposed of, and the pellet was resuspended in ice-cold 50 mM KP (pH 7.2), to the original volume (40 ml); fraction labeled “LS pellet”). Aliquots (10 μl) of the fractions were analyzed by in gel fluorescence and immunodetection. The supernatant (1 ml) was resuspended in 5 ml of ice-cold 50 mM KP (pH 7.2) and homogenized (fraction labeled “bottom”). Aliquots (31 μl) of the fractions were analyzed by in gel fluorescence and immunoblotting.

Immunocytchemistry of LacS ΔIIA-GFP. Cells were pelleted, washed twice with ice-cold 50 mM KP (pH 7.2), plus 2 mM MgSO4 (KPM) to remove adhering medium components and L-arabinose, and resuspended to ~OD660 = 120 (~36 mg of protein per ml). After overnight incubation, cells were deenergized by incubation with 50 μM NaN3 plus 30 mM MgSO4 for 2 h. Aliquots of a cell suspension at OD660 of 0.6 were placed on a coverslip that held an imaging chamber (Molecular Probes); the chamber was sealed by a microscope slide. The cells were allowed to sediment for at least 30 min before imaging. The fluorescence of LacS and LacS-GFP was examined by confocal laser microscopy, by using a commercial ConfoCor2 combination (Zeiss) with a Plan-Apochromat ×63 NA 1.4 oil-immersion objective. Samples were excited at 488 nm, and emission was detected at 500–550 nm. Parallel with confocal images of fluorescence (8 bit, 512 × 511 pixels), cells were imaged by differential interference contrast with Nomarski optics.
ACKNOWLEDGMENTS. We thank G. van den Bogaart, D. M. Veltman, and A. M. Krikken for technical assistance with the confocal microscopy. We thank G. B. Erkens and D. O. Daley for the kind gift of several plasmids used in this work. This work was funded by European Membrane Protein Consortium (E-MeP, 504601), The Netherlands Organisation for Scientific Research (NWO, Vidi fellowship to D.-J.S.) and the Netherlands Proteomics Centre.

Supporting Information

Geertsma et al. 10.1073/pnas.0802190105

Fig. S1. Insoluble inclusion bodies isolated from cells expressing LacS to different levels. Expression of LacS by *Escherichia coli* MC1061 cells was induced with the percentages of L-arabinose indicated above the panels. Molecular masses (in kDa) and positions of the marker proteins are indicated on the left of each panel. (Left) Coomassie-stained gel. (Right) Immunoblot decorated with anti-His tag antibody.
Fig. S2. Size-exclusion chromatography (SEC) on FC-12-solubilized cells. *E. coli* MC1061 cells were induced with 1×10^{-1}% (wt/vol) L-arabinose for 4 h at 25°C (LacS and LacY), and *E. coli* C43 cells were induced with 0.4 mM IPTG for 16 h at 17°C (GltP). Disrupted cells were solubilized with 1% (wt/vol) FC-12, and after ultracentrifugation the supernatant was analyzed by SEC. Samples taken before (−) and after (+) ultracentrifugation, and relevant fractions from the SEC were analyzed by *in gel* fluorescence and immunodetection using an anti-His tag antibody. Black and white arrows indicate the positions of nonfluorescent and fluorescent species of the GFP fusion proteins, respectively.
Fig. S3. Isolation of membrane vesicles. E. coli MC1061 cells were induced with 1 × 10⁻¹¹% (wt/vol) L-arabinose for 4 h at 25°C to allow expression of LacS. Cells were disrupted by two passes through a French pressure cell. (Left) The disrupted cells before centrifugation and the supernatant (LS supernatant) and pellet (LS pellet) after fractionation by low-speed centrifugation were analyzed. (Right) The supernatant of the low-speed centrifugation was further fractionated by sucrose density centrifugation. The top (low density; 5 ml) and bottom (high density; 1 ml) fractions of the sucrose gradient were analyzed.
<table>
<thead>
<tr>
<th>Protein (IIA)</th>
<th>Function</th>
<th>Source organism</th>
<th>Transporter family</th>
<th>Family nr.</th>
<th>Size, kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>LacY</td>
<td>Lactose/H⁺ symporter</td>
<td>E. coli</td>
<td>MFS</td>
<td>2.A.1</td>
<td>46.5</td>
</tr>
<tr>
<td>GltP</td>
<td>Glutamate/H⁺ symporter</td>
<td>E. coli</td>
<td>DAACS</td>
<td>2.A.23</td>
<td>47.2</td>
</tr>
<tr>
<td>EcClC</td>
<td>Cl⁻/H⁺ antiporter</td>
<td>E. coli</td>
<td>CIC</td>
<td>2.A.49</td>
<td>50.3</td>
</tr>
<tr>
<td>NhaA</td>
<td>Na⁺/H⁺ antiporter</td>
<td>E. coli</td>
<td>NhaA</td>
<td>2.A.33</td>
<td>41.4</td>
</tr>
<tr>
<td>DctA</td>
<td>Dicarboxylate/H⁺ symporter</td>
<td>E. coli</td>
<td>DAACS</td>
<td>2.A.23</td>
<td>45.4</td>
</tr>
<tr>
<td>LacS(ΔIIA)</td>
<td>Lactose/H⁺ symporter</td>
<td>S. thermophilus</td>
<td>GPH (MFS)</td>
<td>2.A.2</td>
<td>52.3</td>
</tr>
<tr>
<td>YdjN</td>
<td>Unknown</td>
<td>E. coli</td>
<td>DAACS</td>
<td>2.A.23</td>
<td>48.7</td>
</tr>
<tr>
<td>SstT</td>
<td>Serine/Na⁺ symporter</td>
<td>E. coli</td>
<td>DAACS</td>
<td>2.A.23</td>
<td>43.5</td>
</tr>
<tr>
<td>GlpF</td>
<td>Glycerol facilitator</td>
<td>E. coli</td>
<td>MIP</td>
<td>1.A.8</td>
<td>29.8</td>
</tr>
</tbody>
</table>

MFS, Major Facilitator Superfamily; DAACS, Dicarboxylate/Amino Acid:Cation (Na⁺ or H⁺) Symporter Family; CIC, Chloride Carrier/Channel Family; NhaA, Na⁺:H⁺ Antiporter (NhaA) Family; GPH, Glycoside-Pentoside-Hexuronide:Cation Symporter Family; MIP, Major Intrinsic Protein Family. Family names and numbers are derived from the Transport Classification Database [Saier MH, Jr (1988) Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea, and eukarya. *Adv Micro Physiol* 40:81–136].