Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield

*Thayer School of Engineering, and †Department of Biological Sciences, Dartmouth College, Hanover, NH 03755; and ‡Mascoma Corporation, 16 Cavendish Court, Lebanon, NH 03766

Edited by Roy H. Doi, University of California, Davis, Davis, CA, and approved July 22, 2008 (received for review February 9, 2008)

We report engineering *Thermoaerobacterium saccharolyticum*, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation. The homoethanologenic phenotype was stable for >150 generations in continuous culture. The growth rate of strain ALK2 was similar to the wild-type strain, with a reduction in cell yield proportional to the decreased ATP availability resulting from acetate kinase inactivation. Glucose and xylose are co-utilized and utilization of mannose and arabinose commences before glucose and xylose are exhausted. Using strain ALK2 in simultaneous hydrolysis and fermentation experiments at 50°C allows a 2.5-fold reduction in cellulase loading compared with using *Saccharomyces cerevisiae* at 37°C. The maximum ethanol titer produced by strain ALK2, 37 g/liter, is the highest reported thus far for a thermophilic anaerobe, although further improvements are desired and likely possible. Our results extend the frontier of metabolic engineering in thermophilic hosts, have the potential to significantly lower the cost of cellulose ethanol production, and support the feasibility of further cost reductions through engineering a diversity of host organisms.

Bioenergy | Cellulosic ethanol | Thermophile

Motivated by potential sustainability, security, and rural economic benefits, ethanol produced from cellulosic biomass is a leading candidate among alternatives to petroleum-derived transportation fuels (1, 2). Metabolic engineering of microorganisms responsive to the needs of cellulosic ethanol production has received considerable attention and effort over the last two decades with utilization of xylose and other non-glucose sugars as a major focus. In particular, mesophilic recombinant microorganisms producing ethanol at high yield from non-glucose sugars present in biomass have been developed by increasing ethanol yields in enteric bacteria (3, 4) and by conferring the ability to use non-glucose sugars to *Zymomonas mobilis* (5) and yeast (6, 7). The high cost of converting biomass to sugars is the primary factor impeding establishment of a cellulosic biofuels industry (8, 9). One approach to lowering this key cost is to use thermophilic bacteria for biofuel production. Cellulolytic thermophiles such as *Clostridium thermocellum*, and hemicellulolytic thermophiles of the genera *Thermoaerobacter* and *Thermoaerobacterium* could be used in conjunction to hydrolyze and ferment all of the sugars in biomass (10). Use of the hemicellulolytic organisms alone at high temperatures could potentially lower the quantity of added cellulase required. For example, Patel et al. (11) report lactic acid production from cellulose at low cellulase loadings, by using a thermophilic *Bacillus* species. *T. saccharolyticum* JW/SL-Y5485 is one such hemicellulolytic organism with the ability to hydrolyze xylan and ferment the majority of biomass-derived sugars at thermophilic temperatures.

All described thermophilic saccharolytic anaerobes produce organic acids in addition to ethanol. In *T. saccharolyticum* (12) and most other thermophiles, acetic acid is formed from pyruvate via ferredoxin:ferredoxin reductase (POR), phosphate acetyltransferase, and acetate kinase, while lactic acid is formed from pyruvate by L-lactate dehydrogenase. Extensive efforts using classical mutagenesis techniques to obtain stable strains exhibiting high-ethanol yields over a range of conditions have not been successful (13). Genetic systems suitable for engineering thermophiles have long limited strain development, but have started to emerge (14–16) along with the first reports of metabolic engineering in thermophilic, saccharolytic hosts (17, 18).

Here, we report engineering *T. saccharolyticum* JW/SL-Y5485 to produce ethanol as the only significant organic product.

Results

Knockout mutants of *T. saccharolyticum* were obtained with the following genotypes: L-ldh− (18), ack− pta−, and ack− pta− L-ldh− strain ALK1. An analysis of fermentation products in xylose-grown cultures of these strains (Fig. 1) showed that the L-ldh− mutant did not produce detectable lactic acid and produced increased yields of ethanol from pyruvate. The ack− pta− mutant did not produce acetic acid, produced ethanol at increased yield, and produced >25-fold less hydrogen. Strain ALK1 exhibited similarly reduced hydrogen yields and produced ethanol as the only detectable organic product. The fraction of reduced ferredoxin converted to reduced nicotinamide species by ferredoxin:NAD oxidoreductase (FNOR), inferred from stoichiometric analysis [supporting information (SI) Table S1], was 0.48, 0.53, 0.99, and 1.0 in the wild-type, L-ldh−, ack− pta−, and ALK1 strains, respectively. Hydrogenase activity was present in cell extracts of the ALK1 and wild-type strains at 5.8 ± 1.5 and 2.3 ± 0.6 μmol hydrogen consumed per minute per mg protein, respectively.

Strain ALK2, obtained by cultivating strain ALK1 in continuous culture for approximately 3,000 h with progressively higher

Conflict of interest statement: Several of the authors are employees or hold a consulting position with the Mascoma Corporation, which has a financial interest in the organism described here.

This article is a PNAS Direct Submission.

Data deposition: The sequences reported in this paper have been deposited in the GenBank database [accession nos. AY278026 (L-ldh gene of *T. saccharolyticum*) and EU311773 (pta and ack genes of *T. saccharolyticum*)].

§To whom correspondence should be addressed. E-mail: lee.lynd@dartmouth.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0801266105/DCSupplemental.

© 2008 by The National Academy of Sciences of the USA
feed xylose concentrations, exhibited a greater capacity for xylose consumption in both batch and continuous culture. More than 99% of the feed xylose was used at concentrations up to 70 g/liter with a mean ethanol yield of 0.46 g of ethanol/g xylose in continuous culture at a pH of 5.2–5.4 without base addition (Fig. S1). The maximum ethanol concentration and volumetric productivity was 33 g/liter and 2.2 g L\(^{-1}\) h\(^{-1}\), respectively. No decrease in ethanol yield was observed over hundreds of generations in continuous culture without antibiotic selection.

The growth rate of strain ALK2 is comparable with the wild-type strain, with fermentation of \(~80\) mM xylose completely used in less than 10 h for both strains (Fig. 2). The cell yield, calculated from the maximum cell concentration observed, was 0.12 g/g xylose for strain ALK2 and 0.15 g/g xylose for the wild-type strain. The 20% lower cell yield observed for strain ALK2 compared with the wild-type strain is similar to the 23% decrease in ATP gain per mole xylose fermented resulting from loss of acetate kinase activity in the mutant (Table S2). A maximum cell specific production rate from xylose of 1.4 g of ethanol g cells\(^{-1}\) h\(^{-1}\) is calculated for strain ALK2 from the ratio of the maximum specific growth rate of 0.37 h\(^{-1}\), the cell yield, and the ethanol yield of 0.46 g of ethanol/g xylose.

Specific activities of enzymes in the proposed pathway from pyruvate to ethanol were assayed in the ALK2 strain (Table 1). Activities were found for POR, FNOR, acetaldehyde dehydrogenase (ALDH), and alcohol dehydrogenase (ADH). In contrast to the wild-type strain, FNOR, ALDH, and ADH activities in the ALK2 strain all have higher specific activities with the cofactor NADPH than with NADH.

Fermentation of sugar mixtures and cellulose loading required for cellulose hydrolysis, both matters of considerable applied interest, are examined in Figs. 3 and 4. Strain ALK2 was cultivated in a 1-L fed-batch fermentor with glucose, xylose, galactose, and mannose each present initially at 12.5 g/liter for a total concentration of 50 g/liter. An equiweight mixture of these sugars at a concentration of 330 g/liter was fed at 3 g/h from 8–24 h into the fermentation. Consumption of xylose and glucose was essentially simultaneous (Fig. 3), with both sugars still present after 16 h and below detection limits after 20 h. Consumption of mannose began when the glucose/xylose concentration reached approximately 5 g/liter, and consumption of galactose began when the mannose concentration reached a similar concentration. At the point glucose and xylose concentrations approached zero, the mannose concentration was reduced by 98%, and the galactose concentration was reduced by 92%. A final ethanol concentration of 37 g/liter was produced from mixed sugars with a maximum ethanol productivity of 2.7 g/liter\(^{-1}\) h\(^{-1}\) and an average ethanol productivity of 1.5 g/liter\(^{-1}\) h\(^{-1}\).

Simultaneous saccharification and fermentation (SSF) of Avicel, a predominantly crystalline model cellulosic substrate, was undertaken in batch mode at an initial concentration of 50 g/liter by using a commercial cellulase preparation (Spezyme CP) from *Trichoderma reesei*. SSF with *T. saccharolyticum* ALK2 was undertaken at 50°C, the maximum temperature at which the enzyme preparation was stable in our hands, and was carried out without supplemental \(\beta\)-glucosidase because *T. saccharolyticum* is able to ferment cellulose. SSF with *Saccharomycyes cerevisiae* D5A was undertaken at 37°C, close to the maximum temperature tolerated by this organism, both with and without supplemental \(\beta\)-glucosidase because this yeast does not produce this enzyme. Experiments with yeast were performed at a cellulose loading of 10 filter paper units (FPU)/g cellulose, which is representative of conditions anticipated for an industrial process and does not entail substantial saturation of the
hydrolysis rate with respect to cellulase loading. Thereafter, experiments with \textit{T. saccharolyticum} were performed iteratively at various cellulase loadings until results matched those obtained with yeast.

As seen in Fig. 4, results at an enzyme loading of 4 FPU/g cellulose obtained with \textit{T. saccharolyticum} ALK2 are very similar to results obtained with \textit{S. cerevisiae} at 10 FPU/g cellulose with supplemental /H9252-glucosidase. Without supplemental /H9252-glucosidase, SSF with \textit{S. cerevisiae} at 37°C and 10 FPU/g cellulose is slower than \textit{T. saccharolyticum} at 50°C with 4 FPU/g cellulose. Concentrations of cellobiose and glucose were low (\textlessthan}0.5 g/liter) after 4 h in all SSF experiments, suggesting that cellulose hydrolysis was rate-limiting and that significant inhibition by bulk phase concentrations of hydrolysis products was not operative.

Discussion

\textit{T. saccharolyticum} ALK2 produced ethanol as the only significant organic end-product under all conditions examined. This strain differs from engineered mesophilic xylose-using strains that achieve near-theoretical ethanol yields in several significant ways. It converts pyruvate to ethanol via a pathway involving POR with electron transfer from ferredoxin to NAD(P) (Fig. 1), whereas previously developed mesophilic strains use pyruvate decarboxylase. Whereas strain ALK2 utilizes xylose and glucose

![Graph A](image1)

Fig. 2. Batch fermentation of xylose at 55°C in bioreactors controlled at pH 6.0. (A) Wild-type strain and (B) ALK2 strain. Xylose (filled green circles), ethanol (open brown circles), lactic acid (open red diamonds), acetic acid (open blue squares), and cell dry weight (+) were determined as indicated in the Materials and Methods section. Carbon recovery for the wild-type fermentation is 107% and the ALK2 fermentation is 102%.

![Graph B](image2)

Table 1. Specific activities of enzymes in the pyruvate to ethanol pathway

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Specific activities (\textmu mol·min-1·mg-1 protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALK2</td>
</tr>
<tr>
<td>POR</td>
<td>1.9</td>
</tr>
<tr>
<td>FNOR–NADH</td>
<td>0.73</td>
</tr>
<tr>
<td>FNOR–NADPH</td>
<td>2.3</td>
</tr>
<tr>
<td>Aldh–NADH</td>
<td>0.005</td>
</tr>
<tr>
<td>Aldh–NADPH</td>
<td>0.019</td>
</tr>
<tr>
<td>Adh–NADH</td>
<td>0.012</td>
</tr>
<tr>
<td>Adh–NADPH</td>
<td>0.23</td>
</tr>
</tbody>
</table>

*Data from ref 12.
†SD, standard deviation.

Fig. 3. Mixed sugar fed-batch fermentation. Strain ALK2 at 55°C without pH control (pH 5.2–5.4). Feeding of 3 g liter-1h-1 commenced at 8 h and ended at 24 h. Xylose (filled green circles), glucose (filled purple diamonds), mannose (filled red triangles), galactose (filled blue squares), ethanol (open brown circles), and cell dry weight (+).
ALK2, one of the two moles of pyruvate decarboxylase-minus strain of *E. coli*-metabolizing pyruvate via NADH-forming pyruvate dehydrogenase (19). The results reported here support the feasibility of engineering the large group of bacteria that metabolize pyruvate by POR to achieve high ethanol yields, including *C. thermocellum* which exhibits one of the highest rates of cellulose utilization known (13).

The shift from NADH to NADPH specificity in key ethanol pathway enzymes observed in the ALK2 strain was also observed in a non-engineered *Thermoanaerobacter ethanolicus* strain adapted for tolerance to 4% v/w exogenous ethanol (20). The NADH/NAD + ratio in the *T. ethanolicus* wild-type strain was elevated during pulses of ethanol in continuous culture, whereas the adapted strain was largely unaffected. The NADH to NADPH shift is likely an adaptive response to overcome NADH inhibition of glycolysis at moderate ethanol concentrations (21).

The observed 2.5-fold reduction in cellulase requirements for SSF using *T. saccharolyticum* ALK2 at 50°C compared with yeast at 37°C is significant in light of the dominant impact of the cost of hydrolysis, and cellulase in particular, on process economics (9, 22). Our choice of 50°C for SSF was dictated by the limited temperature stability of the cellulase preparation used rather than the organism. Thus, further reductions in cellulase loading may be anticipated as more thermostable cellulases are developed.

Notwithstanding the noteworthy capabilities of strain ALK2, further work remains before the organism will be suitable for industrial application. Robust fermentation of sugars arising from pretreated lignocellulose will need to be demonstrated in media with minimal supplementation. The concentrations of ethanol produced by strain ALK2, 37 g/liter in fed batch culture and 33 g/liter in continuous culture, are higher than previously reported for thermophilic bacteria (13). These concentrations are, however, only approximately half the maximum concentration of added ethanol that will cease growth by ethanol-adapted thermophilic strains (23–27). Moreover, whereas ethanol can readily be recovered at the maximum concentrations tolerated by thermophiles, this is not the case for the maximum concentrations produced thus far. Closing the gap between the maximum concentrations of ethanol produced and maximum concentrations tolerated is still to be achieved for *T. saccharolyticum*, although examples of success in closing similar gaps have been reported for other organisms (10).

Materials and Methods

Gene Cloning and Plasmid Construction. The *pta*, *ack*, and *L-ldh* (18) genes (GenBank no. EU313773 and AY278026) from *T. saccharolyticum* were identified by degenerate primer PCR of conserved protein sequences and subsequent direct sequencing of genomic DNA. The *pta* and *ack* genes are located adjacent to each other on the genome.

By using standard cloning techniques, 1.2- and 0.6-kb regions 5′ and 3′ of the *pta* and *ack* genes were amplified with primer sets P1, P2 and A1, A2 and

Table 2. Fermentation parameters for xylose-utilizing recombinant organisms

<table>
<thead>
<tr>
<th>Organism</th>
<th>Xylose, g/liter</th>
<th>Fermentation mode</th>
<th>Ethanol yield, grams of ethanol per gram of substrate</th>
<th>Volumetric productivity (g ethanol liter⁻¹ h⁻¹)</th>
<th>Final ethanol, g/liter</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. saccharolyticum ALK2</td>
<td>70</td>
<td>Continuous</td>
<td>0.46</td>
<td>2.20</td>
<td>33.1</td>
<td>this study</td>
</tr>
<tr>
<td>S. cerevisiae RWB217</td>
<td>20</td>
<td>Batch</td>
<td>0.44</td>
<td>0.48</td>
<td>8.7</td>
<td>6</td>
</tr>
<tr>
<td>E. coli LY01 (KO11 der.)</td>
<td>95</td>
<td>Batch</td>
<td>0.47</td>
<td>0.88</td>
<td>42.4</td>
<td>29</td>
</tr>
<tr>
<td>E. coli FBR5</td>
<td>50</td>
<td>Continuous</td>
<td>0.44</td>
<td>1.0</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Z. mobilis CP4:pZB5</td>
<td>60</td>
<td>Batch</td>
<td>0.48</td>
<td>0.32</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>S. cerevisiae 1400</td>
<td>50</td>
<td>Batch</td>
<td>0.46</td>
<td>0.3</td>
<td>23</td>
<td>32</td>
</tr>
</tbody>
</table>

An attempt was made to find the best parameters reported in the literature for each strain under conditions as comparable as possible. The experiments shown were not done under constant conditions however, and variables such as medium composition and cell concentration may have a significant impact.
D5A was grown in YPD medium. All reagents used were from fermentation types as described in the following paragraph. Cultured in MTC medium (25). Carbohydrate and complex additives varied inoculation. Mixed sugar fed-batch fermentations were initiated with 12.5 g/liter growth phase that were centrifuged and resuspended in fresh media before 55°C, a pH of 5.5, and 200 rpm in a 3-L bioreactor with a 1-L working volume. Fermentors were made anaerobic through sparging with nitrogen gas headspace and a 5% vol/vol KO11 for fuel ethanol production. 14. Mai V, Lorenz WW, Wiegel J (1997) Transformation of Thermoanaerobacterium sp. 16. Tyurin MV, Sullivan CR, Lynd LR (2005) Role of spontaneous current oscillations during 21:1453–1460.

The fermentation volume was initially 1-L in a 3-L bioreactor. Thermophilic SSF reactions contained 50 g/liter Avicel PH-105 (FMC), 10 g/liter yeast extract, and 5 g/liter trypotine. The pH was maintained at 5.0 and run at 37°C. Both SSF reactions were inoculated at 25% vol/vol from a continuous culture fed with 20 g/liter glucose in either MTC medium at 50°C with T. saccharolyticum ALK2 or YPD at 37°C with S. cerevisiae DSA with a 24-h residence time. Trichoderma reesei derived cellulases (Spezyme CP, Genencor) and β-glucosidase (Novozyme 188, Novozymes) were added as indicated in the text.

Analytical Methods. Fermentation metabolites were analyzed by HPLC (28) with an Aminex HPX-87H column (Bio-Rad Laboratories). Hydrogen was analyzed by GC on a carbonbox-1000 column with nitrogen as the carrier gas with a TCD detector (Perkin–Elmer). Residual cellulose was determined by quantitative saccarification (28). Dry weights were determined from 10 mL samples after filtration, washing, and drying for 16 h at 90°C. Carbon balances presented in Fig. 2 were determined by measurements of initial carbohydrate concentrations and final carbon-containing end products, including cell dry weight by using the general empirical formula for cell composition of CH2N2O5S. Carbon dioxide was accounted for by stoichiometric correlations to ethanol and acetic acid formation. Carbon contained in yeast extract and extracellular protein was not included in the carbon recovery. Total carbon was calculated based on the following equation, and carbon recovery was calculated as the quotient of the average of the first-two and last-two time points taken during the fermentation.

Enzymatic Assays. Crude cell extracts were prepared by sonication and assayed anaerobically at 60°C at the reaction concentrations and conditions reported previously (12). The assays were performed as follows: Hydrogenase–methyl viologen reduction by hydrogen, POR–methyl viologen reduction by pyruvate, FNOR–benzyl viologen reduction by NAD(P)H, ALDH–NAD(P)H reduction by acetyl-CoA, ADH–NAD(P)H reduction by acetaldehyde. Reported data are the average of three assays. Hydrogenase activity was determined with a cell extract from strain ALK1, all other assays were determined with cell extracts from ALK2.

ACKNOWLEDGMENTS. We thank Mike Adams for useful discussions. This work was supported by National Institute of Standards and Technology Grant 60NANB1D0064, Maascoma Corporation, and Link Foundation Fellowships (to A.J.S. and S.G.D.).

Gene expression was determined with a cell extract from strain ALK1, all other assays were determined with cell extracts from ALK2.

Shaw et al.

Fig. S1. Continuous cultures grown on increasing concentrations of feed xylose during the strain adaptation process. Data points are measured values of substrate, products, and cell mass after three residence times at a constant feed rate and concentration. Residual xylose was less than 1 g/L for each steady state. The yield of ethanol per gram xylose remained constant at different dilution rates and feed concentrations.
Table S1. Data supporting values in Fig. 1 in the text

<table>
<thead>
<tr>
<th>Strain</th>
<th>Xylose</th>
<th>LA</th>
<th>AA</th>
<th>Ethanol</th>
<th>H₂</th>
<th>CR</th>
<th>Y_L/X</th>
<th>Y_A/X</th>
<th>Y_E/X</th>
<th>Y_N/X</th>
<th>Y_P/X</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>28.0</td>
<td>0.8</td>
<td>11.9</td>
<td>34.8</td>
<td>25.3</td>
<td>102</td>
<td>0.03</td>
<td>0.43</td>
<td>1.24</td>
<td>0.90</td>
<td>1.70</td>
</tr>
<tr>
<td>L-ldh'</td>
<td>28.0</td>
<td>0.0</td>
<td>11.3</td>
<td>37.0</td>
<td>26.7</td>
<td>104</td>
<td>0.00</td>
<td>0.40</td>
<td>1.32</td>
<td>0.95</td>
<td>1.73</td>
</tr>
<tr>
<td>pta/ack'</td>
<td>28.0</td>
<td>0.7</td>
<td>0.0</td>
<td>46.8</td>
<td>0.9</td>
<td>102</td>
<td>0.02</td>
<td>0.00</td>
<td>1.67</td>
<td>0.03</td>
<td>1.70</td>
</tr>
<tr>
<td>ALK1</td>
<td>28.0</td>
<td>0.0</td>
<td>0.0</td>
<td>48.4</td>
<td>1.0</td>
<td>104</td>
<td>0.00</td>
<td>0.00</td>
<td>1.73</td>
<td>0.04</td>
<td>1.73</td>
</tr>
</tbody>
</table>

Substrate and product concentrations of wild-type, L-ldh', pta/ack', and ALK1 strains are reported in mM with percent carbon recovery (CR). Fermentation conditions were as described in the Materials and Methods section for batch tube fermentation. Product yields are: \(Y_{L/X} \), lactic acid yield per mole xylose; \(Y_{A/X} \), acetic acid yield per mole xylose; \(Y_{E/X} \), ethanol yield per mole xylose; and \(Y_{P/X} \), total product yield per mole xylose. Fluxes normalized to pyruvate as reported in Fig. 1 were calculated with the following equations:

- \(\alpha_{L-LDH} = \frac{Y_{L/X}}{Y_{P/X}} \)
- \(\alpha_{POR} = \frac{(Y_{A/X} + Y_{E/X})Y_{P/X}}{Y_{P/X}} \)
- \(\alpha_{PTA/ACK} = \frac{Y_{A/X}}{Y_{P/X}} \)
- \(\alpha_{ALDH/ADH} = \frac{Y_{E/X}}{Y_{P/X}} \)
- \(\alpha_{FNOR} = Y_{E/X}Y_{P/X} \)
- \(\alpha_{H2ase} = \frac{Y_{H/X}}{Y_{P/X}} \)
Table S2. Product concentrations of wild-type and ALK2 strains corresponding to figure 2.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Substrate, mM</th>
<th>Products, mM</th>
<th>CDW</th>
<th>G\textsubscript{ATP/S}</th>
<th>Y\textsubscript{XS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALK2</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>1.4</td>
</tr>
<tr>
<td>WT</td>
<td>74</td>
<td>9</td>
<td>40</td>
<td>74</td>
<td>1.6</td>
</tr>
</tbody>
</table>

CDW, cell dry weight in grams per liter; G\textsubscript{ATP/S}, molar ATP gain per mole substrate consumed; Y\textsubscript{XS}, yield of cell dry weight per gram substrate consumed.