A general framework for multiple testing dependence

Jeffrey T. Leek and John D. Storey

We develop a general framework for performing large-scale significance testing in the presence of arbitrarily strong dependence. We derive a low-dimensional set of random vectors, called a dependence kernel, that fully captures the dependence structure in an observed high-dimensional dataset. This result shows a surprising reversal of the “curse of dimensionality” in the high-dimensional hypothesis testing setting. We show theoretically that conditioning on a dependence kernel is sufficient to render statistical tests independent regardless of the level of dependence in the observed data. This framework for multiple testing dependence has implications in a variety of common multiple testing problems, such as in gene expression studies, brain imaging, and spatial epidemiology.

Notation and Assumptions

We assume that \(m \) related hypothesis tests are simultaneously performed, each based on an \(n \)-vector of data sampled from a common probability space on \(\mathbb{R}^n \). The data corresponding to hypothesis test \(i \) are \(x_i = (x_{i1}, x_{i2}, \ldots, x_{im}) \), for \(i = 1, 2, \ldots, m \). The overall data can be arranged into an \(m \times n \) matrix \(X \) where the \(i \)th row is composed of \(x_i \). We assume that there are “primary variables” \(Y = (y_1, \ldots, y_n) \) collected, describing the study design or experimental outcomes of interest, and any other covariates that will be employed. Primary variables are those that are both measured and included in the model used to test the hypotheses.

We assume that the goal is to perform a hypothesis test on \(E(x_i | Y) \). We will also assume that \(E(x_i | Y) \) can be modeled with a standard basis-function model, which would include linear models, nonparametric smoothers, longitudinal models, and others. To this end, we write \(E(x_i | Y) = b_i S(Y) \), where \(b_i \) is a \(1 \times d \)-vector and \(S(Y) \) is a \(d \times n \) matrix of basis functions evaluated at \(Y \). When there is no ambiguity, we will write \(S = S(Y) \) to simplify notation. Note that \(Y \) can be composed of variables such as time, a treatment, experimental conditions, and demographic variables. The basis \(S \) can be arbitrarily flexible to incorporate most of the models commonly used in statistics for continuous data.

The residuals of the model are then \(e_i = x_i - E(x_i | Y) = x_i - b_i S \). Analogously, we let \(E \) be the \(m \times n \) matrix, where the \(i \)th row is \(e_i \). We make no assumptions about what distribution the residuals follow, although by construction \(E[e_i | S(Y)] = 0 \). We allow for arbitrary dependence across the tests, i.e., dependence across the rows of \(E \). We assume that the marginal model for each \(e_i \) is known or approximated sufficiently when performing the hypothesis tests. That is, we assume that the marginal null model for each test is correctly specified.

Author contributions: J.T.L. and J.D.S. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

1 To whom correspondence should be addressed. E-mail: jstorey@princeton.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0808709105/DCSupplemental

© 2008 by the National Academy of Sciences of the USA.
The goal is then to test significance cutoffs. For these downstream methods the multiple testing dependence is not directly modeled from the data, so distortions of the signal differs from current methods, which address dependence indirectly by modifying the test statistics, adaptively modifying the null distribution, or altering all the downstream steps in the analysis are not affected by dependence and have the same operating characteristics as independent tests. Our approach

Leek and Storey PNAS

under no constraints. By utilizing the observed test statistics and of the model fit under the constraint of the null hypothesis to that

Fig. 1. A schematic of the general steps of multiple hypothesis testing. We directly account for multiple testing dependence in the model-fitting step, where all the downstream steps in the analysis are not affected by dependence and have the same operating characteristics as independent tests. Our approach differs from current methods, which address dependence indirectly by modifying the test statistics, adaptively modifying the null distribution, or altering significance cutoffs. For these downstream methods the multiple testing dependence is not directly modeled from the data, so distortions of the signal of interest and the null distribution may be present regardless of which correction is implemented.

In matrix form, the model can be written as

$$X = BS + E. \quad [1]$$

The goal is then to test \(m\) hypotheses of the form:

\[H_0 : b_i \in \Omega_0 \quad vs. \quad H_1 : b_i \in \Omega_1\]

where the null and alternative hypothesis tests are identically defined for each of the tests. This setup encompasses what is typically employed in practice, such as in gene expression studies and other applications of microarrays, brain imaging, spatial epidemiology, astrophysics, and environmental modeling (4, 7, 9, 13, 14).

Two Open Problems

The classical approach to testing multiple hypotheses is to first perform each test individually. This involves calculating a 1-dimensional statistic for each test, usually as some comparison of the model fit under the constraint of the null hypothesis to that under no constraints. By utilizing the observed test statistics and their null distributions, we calculate a \(P\) value for each test (15).

An algorithm or point estimate is then applied to the set of \(P\) values to determine a significance threshold that controls a specific error rate (FDR) at 10% (17, 18). Variations on this approach have been suggested, such as estimating a \(q\)-value for each test (19) or explicitly involves the model assumption and fit utilized in the significance analysis. When fitting model 1, we denote the estimate of \(B\) by \(\hat{B}\).

Proposed Framework

Definition of Multiple Testing Dependence. Multiple testing dependence has typically been defined in terms of \(P\) values or test statistics resulting from multiple tests (21, 24, 26, 28, 29). Here, we form population-level and estimation-level definitions that apply directly to the full dataset, \(X\). The estimation-level definition also explicitly involves the model assumption and fit utilized in the significance analysis. When fitting model 1, we denote the estimate of \(B\) by \(\hat{B}\).

Definition: We say that population-level multiple testing dependence exists when it is the case that:

\[\Pr(x_1, x_2, \ldots, x_m | Y) \neq \Pr(x_1 | Y) \times \Pr(x_2 | Y) \times \cdots \times \Pr(x_m | Y).\]

We say that estimation-level multiple testing dependence exists when it is the case that:

\[\Pr(x_1, x_2, \ldots, x_m | \hat{B}, S(Y)) \neq \Pr(x_1 | \hat{B}, S(Y)) \times \cdots \times \Pr(x_m | \hat{B}, S(Y)).\]

Multiple testing dependence at the population level is therefore any probabilistic dependence among the \(x_i\) after conditioning on \(Y\). In terms of model 1, this is equivalent to the existence of
dependence across the rows of \(E \); i.e., dependence among the \(e_1, e_2, \ldots, e_m \). Estimation-level dependence is equivalent to dependence among the rows of the residual matrix \(R = X - BS \). It will usually be the case that if population-level multiple testing dependence exists, then this will lead to estimation-level multiple testing dependence. The framework we introduce in this article is aimed at addressing both types of multiple testing dependence.

A General Decomposition of Dependence. Dependence among the rows of \(E \) and among the rows of \(R = X - BS \) are types of multivariate dependence among vectors. The standard approach for modeling multivariate dependence is to estimate a population-level parameterization of the dependence and then include estimates of these parameters when performing inference (30). For example, if the \(e_i \) are assumed to be Normally distributed with the columns of \(E \) being independently and identically distributed random \(m \)-vectors, then one would estimate the \(m \times m \) covariance matrix which parameterizes dependence across the rows of \(E \). One immediate problem is that because \(n \ll m \), it is computationally and statistically problematic to estimate the covariance matrix (31).

A key feature is that, in the multiple testing scenario, the dimension along which the sampling occurs is different than the dimension along which the multivariate inference occurs. In terms of our notation, the sampling occurs with respect to the columns of \(X \), whereas the multiple tests occur across the rows of \(X \). This sampling-to-inference structure requires one to develop a specialized approach to multivariate dependence that is different from the classical scenario. For example, the classical construction and interpretation of a \(P \) value threshold is such that a true null test is called significant with \(P \) value \(\leq \alpha \) at a rate of \(\alpha \) over many independent replications of the study. However, in the multiple testing scenario, the \(P \) values that we utilize are not \(P \) values corresponding to a single hypothesis test over \(m \) independent replications of the study. Rather, the \(P \) values result from \(m \) related variables that have all been observed in a single study from a single sample of size \(n \). The “sampling variation” that forms the backbone of most statistical thinking is different in our case: we observe one instance of sampling variation among the variables being tested. Therefore, even if each hypothesis test’s \(P \) value behaves as expected over repeated studies, the set of \(P \) values from multiple tests in a single study will not necessarily exhibit the same behavior. Whereas this phenomenon prevents us from invoking well-established statistical principles, such as the classical interpretation of a \(P \) value, the fact that we have measured thousands of related variables from this single instance of sampling variation allows us to capture and model the common sources of variation across all tests. Multiple testing dependence is variation that is common among hypothesis tests.

Thus, rather than proposing a population-level approach to this problem (which includes the population of all hypothetical studies that could take place in terms of sampling of the columns of \(X \)), we directly model the random manifestation of dependence in the observed data from a given study, by aggregating the common sampling variation across all tests’ data. Including this information in the model during subsequent significance analyses removes the dependence within the study. Therefore dependence is removed across all studies, providing study-specific and population-level solutions. To directly model the random manifestation of dependence in the observed data, we do the following: (i) additively partition \(E \) into dependent and independent components, (ii) take the singular value decomposition of the dependent component, and (iii) treat the right singular values as covariates in the model fitting and subsequent hypothesis testing. To this end, we provide the following result, which shows that any dependence can be additively decomposed into a dependent component and an independent component. It is important to note that this is both for an arbitrary distribution for \(E \) and an arbitrary (up to degeneracy) level of dependence across the rows of \(E \).

Proposition 1. Let the data corresponding to multiple hypothesis tests be modeled according to Eq. 1. Suppose that for each \(e_i \), there is no Borel measurable function \(g \) such that \(e_i = g(e_{i-1}, \ldots, e_1, e_{i+1}, \ldots, e_m) \) almost surely. Then, there exist matrices \(\Gamma_{m,n}, G_{n,n} (r \leq n) \) and \(U_{m,n} \) such that

\[
X = BS + \Gamma G + U, \tag{2}
\]

where the rows of \(U \) are jointly independent random vectors so that

\[
Pr(u_1, u_2, \ldots, u_m) = Pr(u_1) \times Pr(u_2) \times \cdots \times Pr(u_m).
\]

Also, for all \(i = 1, 2, \ldots, m \), \(u_i \neq 0 \) and \(u_i = h_i(e_i) \) for a non-random Borel measurable function \(h_i \).

A formal proof of Proposition 1 and all subsequent theoretical results can be found in the supporting information (SI) Appendix. Note that if we let \(r = n \) and then set \(U = 0 \) or set \(\Gamma = 0 \) equal to an arbitrary \(m \times m \) matrix of independently distributed random variables, then the dependence of the rows of \(U \) is trivially satisfied. However, our added assumption regarding \(\Gamma \) allows us to show that a nontrivial \(U \) exists where \(u_i \neq 0 \) and \(u_i = h_i(e_i) \) for a deterministic function \(h_i \). In other words, \(u_i \) is a function of \(e_i \) in a nondegenerate fashion, which means that \(U \) truly represents a row-independent component of \(E \). The intuition behind these properties is that our assumption guarantees that \(e_i \) does indeed contain some variation that is independent from the other tests. For hypothesis tests where there does exist a Borel measurable \(g \) such that \(e_i = g(e_{i-1}, \ldots, e_1, e_{i+1}, \ldots, e_m) \), then the variation of \(e_i \) is completely dependent with that of the other tests’ data. In this case, one can set \(u_i = 0 \) and the above decomposition is still meaningful.

The decomposition of Proposition 1 immediately indicates one direction to take in solving the multiple testing dependence problem, namely to account for the \(\Gamma G \) component, thereby removing dependence. To this end, we now define a “dependence kernel” for the data \(X \).

Definition: An \(r \times n \) matrix \(G \) forms a dependence kernel for the high-dimensional data \(X \), if the following equality holds:

\[
X = BS + E = BS + \Gamma G + U
\]

where the rows of \(U \) are jointly independent as in Proposition 1.

In practice, one would be interested in minimal dependence kernels, which are those satisfying the above definition and having the smallest number of rows. \(r \). Proposition 1 shows that at least one such \(G \) exists with \(r \leq n \) rows. As we discuss below in Scientific Applications, the manner in which one incorporates additional information beyond the original observations to estimate and utilize \(\Gamma \) and \(G \) is context specific. In the SI Appendix we provide explicit descriptions for two scientific applications, latent structure as encountered in genomics and spatial dependence as encountered brain imaging. We propose a new algorithm for estimating \(G \) in the genomics application and demonstrate that it has favorable operating characteristics.

Dependence Kernel Accounts for Dependence. An important question arises from Proposition 1. Is including \(G \), in addition to \(S(Y) \), in the model used to perform the hypothesis tests sufficient to remove the dependence from the tests? If this is the case, then only an \(r \times n \) matrix must be known to fully capture the dependence. This is in contrast to the \(m(m-1)/2 \) parameters that must be known for a covariance matrix among tests, for example. To put this into context, consider a microarray experiment with 1,000 genes and 20 arrays. In this case, the covariance has \(\sim 500,000 \) unknown parameters, whereas \(G \) has, at most, 400 unknown values. The following two results show that including \(G \) in addition to
S(Y) in the modeling is sufficient to remove all multiple hypothesis testing dependence.

Corollary 1. Under the assumptions of Proposition 1, all population-level multiple testing dependence is removed when conditioning on both Y and a dependence kernel G. That is,

\[\Pr(x_1, x_2, \ldots, x_n | Y, G) = \Pr(x_1 | Y, G) \times \Pr(x_2 | Y, G) \times \cdots \times \Pr(x_n | Y, G). \]

If instead of fitting model 1, suppose that we instead fit the decomposition from Proposition 1, where we assume that S and G are known:

\[X = BS + \Gamma G + U. \]

[3]

It follows that estimation-level multiple testing independence may then be achieved.

Proposition 2. Assume the data for multiple tests follow model 1, and let G be any valid dependence kernel. Suppose that model 3 is fit by least squares, resulting in residuals \(r_i = x_i - \hat{b}_i S - \hat{\gamma}_i G. \) When the row space jointly spanned by S and G has dimension less than n, the residuals \(r_1, r_2, \ldots, r_n \) are jointly independent given S and G, the \(\hat{b}_1, \hat{b}_2, \ldots, \hat{b}_n \) are jointly independent given S and G, and

\[\Pr(x_1, x_2, \ldots, x_n | \hat{B}, S, \hat{\Gamma}, G) = \Pr(x_1 | \hat{B}, S, \hat{\Gamma}, G) \times \cdots \times \Pr(x_n | \hat{B}, S, \hat{\Gamma}, G). \]

The analogous results hold for the residuals and parameter estimates when fitting the model under the constraints of the null hypothesis.

Since G will be unknown in practice, the practical implication of this proposition is that we have to estimate only the relatively small \(r \times n \) matrix G well in order to account for all of the dependence, while the simple least-squares solution to \(\Gamma \) suffices. When the row space jointly spanned by S and G has dimension equal to n, then the above proposition becomes trivially true. However, if we assume that S, G, and \(\Gamma \) are known, then the analogous estimation-level independence holds. In this case, we have to estimate \(\Gamma \) and G well in order to account for dependence. These \((m + r)n \) parameters are still far smaller than the unknown \(m(m - 1)/2 \) parameters of a covariance matrix, for example.

Strong Control of Multiple Testing Error Rates. Many methods exist for strongly controlling the family-wise error rate (FWER) or FDR (16, 18, 19, 21, 24, 32). These methods are applied to the P values calculated from multiple hypothesis tests. Most of these methods require the P values corresponding to true null hypotheses to be independent in order for the procedure to provide strong control. For example, finite-sample strong control of several FDR procedures (21, 24) and the conservative point estimation of the FDR (19) all require the true null P values to be independent. Several methods exist for controlling FWER or FDR when dependence is present. However, these either tend to be quite conservative or require special restrictions on the dependence structure (21, 24).

When utilizing model 3, the statistics formed for testing the hypothesis should be based on a function of the model fits and residuals. When this is the case, we achieve the desired independence of P values.

Corollary 2. Suppose that the assumptions of Proposition 2 hold, model 3 is utilized to perform multiple hypothesis tests, and G is a known dependence kernel. If P values are calculated from test statistics based on a function of the model fits and residuals, then the resulting P values and test statistics are independent across tests.

In other words, Corollary 2 extends all existing multiple testing procedures that have been shown to provide strong control when the null P values are independent to the general dependence case. Instead of deriving new multiple testing procedures for dependence at the level of P values, we can use the existing ones by including G into the model fitting and inference carried out to get the P values themselves.

Scientific Applications

Two causes for multiple testing dependence can be directly derived from scientific problems of interest. In each case, the dependence kernel G has a practical scientific interpretation.

Spatial Dependence. Spatial dependence usually arises as dependence in the noise because of a structural relationship among the tests. In this case, we will consider the \(e_i \) of model 1 to simply represent “noise,” an example being the spatial dependence for noise that is typically assumed for brain-imaging data (6–8). In this setting, the activity levels of thousands of points in the brain are simultaneously measured, where the goal is to identify regions of the brain that are active. A common model for the measured intensities is a Gaussian random field (6). It is assumed that the Gaussian noise among neighboring points in the brain are dependent, where the covariance between two points in the brain is usually a function of their distance.

In Fig. 2 A and B, we show two datasets generated from a simplified 2-dimensional version of this model. It can be seen that the manifestation of dependence changes notably between the two studies, even though they come from the same data generating distribution. Using model 3 for each dataset, we removed the \(\Gamma G \) term. In both cases, the noise among points in the 2-dimensional space becomes independent and the P value distributions of points corresponding to true null hypotheses follow the Uniform distribution. It has been shown that null P values following the Uniform(0, 1) distribution is the property that confirms that the assumed null distribution is correct (22). Additionally, it can be seen that the null P values from the unadjusted data fluctuate substantially between the two studies, and neither follows the Uniform(0, 1) null distribution. This is due to varying levels of correlation between S and G from model 3. In one case, S and G are correlated producing spurious signal among the true null hypotheses; this would lead to a major inflation of significance. In the other case, they are uncorrelated leading to a major loss of power. By accounting for the \(\Gamma G \) term, we have resolved these issues.

Latent Structure. A second source of multiple testing dependence is a latent structure due to relevant factors not being included in the model. It is possible for there to be unmodeled factors that are common among the multiple tests but that are not included in S. Suppose there exists unmodeled factors Z such that \(E(x_i | Y) \neq E(x_i | Y, Z) \) for more than one test. If we utilize model 1 when performing the significance analysis, there will be dependence among the rows of E induced by the common factor Z, causing population-level multiple testing dependence. Likewise, there will be dependence across the rows of R causing estimation-level multiple testing dependence. A similar case can arise when the model for \(x_i \) in terms of Y is incorrect. For example, it could be the case that \(E(x_i | Y) = b_i S^*(Y) \), where the differences between S and \(S^* \) are nontrivial among multiple tests. Here, there will be dependence across the rows of R induced by the variation common to multiple tests due to \(S^* \) but not captured by S, which would cause estimation-level multiple testing dependence. Failing to include all relevant factors is a common issue in genomics leading to latent structure (11, 12). The adverse effects of latent structure due to unmodeled factors on differential expression significance analyses has only recently been recognized (12).

Fig. 2 C and D shows independently simulated microarray studies in this scenario, where we have simulated a treatment effect...
plus effects from several unmodeled variables. The unmodeled factors were simulated as being independently distributed with respect to the treatment, which is equivalent to a study in which the treatment is randomized. As in Fig. 2 A and B, it can be seen that the \(P \) values corresponding to true null hypotheses (i.e., genes not differentially expressed with respect to the treatment) are not Uniformly distributed. When utilizing model 3 for these data and subtracting the term \(\Gamma G \), the residuals are now made independent and the null \(P \) values are \(\text{Uniform}(0,1) \) distributed.

Estimating \(G \) in Practice

There are a number of scenarios where estimating \(G \) is feasible in practice. One scenario is when nothing is known about the dependence structure, but it is also the case that \(d + r < n \), where \(d \) and \(r \) are the number of rows of the model \(S \) and dependence kernel \(G \), respectively. This is likely when the dependence is driven by latent variables, such as in gene expression heterogeneity (12). In the SI Appendix, we present an algorithm for estimating \(G \) in this scenario. It is shown that the proposed algorithm, called iteratively reweighted surrogate variable analysis (IRW-SVA), exhibits favorable operating characteristics. We provide evidence for this over a broad range of simulations. Another scenario is when the dependence structure is well characterized at the population level. Here, it may even be the case that \(d + r = n \). This scenario is common in brain imaging (6, 7) and other spatial dependence problems (9), as discussed above. The fact that \(\Gamma \) is largely determined by the known spatial structure allows us to overcome the fact that \(d + r = n \) (SI Appendix).

Discussion

We have described a general framework for multiple testing dependence in high-dimensional studies. Our framework defines multiple testing dependence as stochastic dependence among tests that remains when conditioning on the model is used in the significance analysis. We presented an approach for addressing the problem of multiple testing dependence based on estimating the dependence kernel, a low-dimensional set of vectors that completely defines the dependence in any high-throughput dataset. We have shown that if the dependence kernel is known and included in the model, then the hypothesis tests can be made stochastically independent. This work extends existing results regarding error rate control under independence to the case of general dependence. An additional advantage of our approach is that we can not only estimate dependence at the level of the data, which is intuitively more appealing than estimating dependence at the level of \(P \) values or test statistics, but we can also directly adjust for that dependence in each specific study. We presented an algorithm with favorable operating characteristics for estimating the dependence kernel for one of the main two scientific areas of interest that we discussed. We anticipate that well behaved estimates of the dependence kernel in other scientific areas are feasible.

One important implication of this work is that multiple testing dependence is tractable at the level of the original data. Downstream approaches to dealing with multiple testing dependence are not able to directly capture general dependence structure (Fig. 1). Another implication of this work is that, for a fixed complexity, the stronger the dependence is among tests, the more feasible it is to properly estimate and model it. It has also been shown that the weaker multiple testing dependence is, the more appropriate it is to utilize methods that are designed for the independence case (21). Therefore, there is promise that the full range of multiple testing dependence levels is tractable for a large class of relevant scientific problems.

ACKNOWLEDGMENTS. We thank the editor and several anonymous referees for helpful comments. This research was supported in part by National Institutes of Health Grant R01 HG002913.

A Proofs of Theoretical Results

Proof of Proposition 1. Theorem 3 from R"uschendorf and de Valk (1993) (1) shows that for a set of random variables Z_1, Z_2, \ldots, Z_m with arbitrary dependence, there exist non-random functions g_i such that $Z_i = g_i(Z_1, Z_2, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_m, V_i)$ a.s., $i = 1, \ldots, m$, where V_1, V_2, \ldots, V_m are jointly independent $Uniform(0, 1)$ random variables. We utilize this result to write each e_i as a function of all other $e_j, j \neq i$, and an independent random variable. We first apply this result to each column of E. That is, by Theorem 3 from R"uschendorf and de Valk (1993) (1) it follows that there exist non-random functions f_i such that

$$e_{ij} = f_{ij}(e_{1j}, e_{2j}, \ldots, e_{i-1j}, e_{i+1j}, \ldots, e_{mj}, u_{ij}^*)$$

a.s.

for $i = 1, \ldots, m$ where $u_{1j}^*, u_{2j}^*, \ldots, u_{mj}^*$ are jointly independent $Uniform(0, 1)$ randomly variables.

Combining these across the columns of E there exist non-random functions f_i such that

$$e_i = f_i(e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_m, u_i^*)$$

a.s.

for $i = 1, \ldots, m$ where $u_1^*, u_2^*, \ldots, u_m^*$ are jointly independent n-vectors Uniformly distributed on $[0, 1]^n$.

Let $\sigma_{(-i)} = \sigma(e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_m)$ be the sigma-algebra generated from all $e_j, j \neq i$, and let $F_{(-i)}$ be the probability distribution function on $\sigma_{(-i)}$ with respect to Borel measure. We construct u_i as follows:

$$u_i = \int e_i dF_{(-i)} = \int f_{i}(e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_m, u_i^*) dF_{(-i)}.$$

Since $u_1^*, u_2^*, \ldots, u_m^*$ are jointly independent and $u_i = t_i(u_i^*)$, where $t_i(u_i^*) = \int f_{i}(e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_m, u_i^*) dF_{(-i)}$, it follows that u_1, u_2, \ldots, u_m are jointly independent. Let U be the $m \times n$ matrix where row i is u_i, and let $M = E - U$. Then model (a) can be rewritten as $X = BS + M + U$.

Since M is a matrix of dimension $m \times n$ with $n < m$, there exist an $m \times r$ matrix Γ and an $r \times n$ matrix G (where r is the column rank of M), such that $M = \Gamma G$. Specifically, we take the singular value decomposition $M = ADV^T$, and let $\Gamma = AD$ and $G = V^T$. Thus, $X = BS + \Gamma G + U$, where the rows of U are independent from one another.
Since \(u_i = \int e_i dF_{(-i)} \), it follows that \(u_i = h_i(e_i) \), where \(h_i \) is a non-random function. This shows the existence of the decomposition where \(U \) is a function of \(E \) and only of \(E \). Finally, we will show that \(\Pr(u_i \neq 0) > 0 \). If \(u_i = 0 \) a.s., then \(u_i = t_i(u^*_i) = \int f_i(e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_m, u^*_i) dF_{(-i)} = 0 \) a.s. Since \(u^*_i \) is distributed Uniform on \([0,1]^n\), it follows that \(t_i(\cdot) = 0 \) a.s. This implies that \(e_i = f_i(e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_m) \) a.s., which is a contradiction of the assumption that there exists no Borel measurable function \(f_i \) such that \(e_i = f_i(e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_m) \) a.s. Thus, it holds that \(\Pr(u_i \neq 0) > 0 \). This shows that the decomposition holds where \(U \neq 0 \).

See the following section Remarks on Proposition 1 for some further remarks on this theorem and proof.

Proof of Corollary 1. Given \(Y \) and \(G \), \(B \) and \(\Gamma \) are fixed. Therefore,

\[
\Pr(x_1, \ldots, x_m | Y, G) = \Pr(u_1, \ldots, u_m | Y, G) = \Pr(u_1 | Y, G) \times \cdots \times \Pr(u_m | Y, G) = \Pr(x_1 | Y, G) \times \cdots \times \Pr(x_m | Y, G).
\]

Proof of Proposition 2. Let \(\mathbf{W} = \begin{pmatrix} \mathbf{S} \\ \mathbf{G} \end{pmatrix} \) and \(\mathbf{P}_w = \mathbf{I} - \mathbf{W}^T (\mathbf{WW}^T)^{-1} \mathbf{W} \). For the \(i \)th hypothesis test’s data we can write model (b) as:

\[
x_i = (b_i, \gamma_i) \mathbf{W} + u_i.
\]

The residuals are:

\[
\mathbf{r}_i = x_i \mathbf{P}_w = (b_i \mathbf{S} + \gamma_i \mathbf{G} + u_i) \mathbf{P}_w = u_i \mathbf{P}_w.
\]

Since the \(u_i \) are independent across rows, the \(\mathbf{r}_i \) are as well given \(\mathbf{S} \) and \(\mathbf{G} \). The estimates for \(b_i \) and \(\gamma_i \) are:

\[
(\hat{b}_i, \hat{\gamma}_i) = [(b_i, \gamma_i) \mathbf{W} + u_i] \mathbf{W}^T (\mathbf{WW}^T)^{-1} = (b_i, \gamma_i) + u_i \mathbf{W}^T (\mathbf{WW}^T)^{-1}
\]
Since each \hat{b}_i is a function of only b_i and u_i, it follows that the estimates \hat{b}_i are independent across tests. To show estimation-level multiple testing independence write:

$$x_i = [x_i - \hat{x}_i] + \hat{x}_i$$
$$= [(b_i \gamma_i)W + u_i - (b_i \gamma_i)W - u_iW^T(WW^T)^{-1}W] + (\hat{b}_i \hat{\gamma}_i)W$$
$$= u_i[I - W^T(WW^T)^{-1}W] + (\hat{b}_i \hat{\gamma}_i)W$$

Conditional on \hat{b}_i, S, $\hat{\gamma}_i$, and G, the only random component of $g(u_i)$ is u_i. It follows that

$$\Pr(x_1, x_2, \ldots, x_m | \hat{B}, S, \hat{G}) = \Pr(g(u_1), \ldots, g(u_m) | \hat{B}, S, \hat{G}) = \Pr(g(u_1) | \hat{B}, S, \hat{G}) \times \cdots \times \Pr(g(u_m) | \hat{B}, S, \hat{G}).$$

The results for the residuals and parameter estimates under the null hypothesis constrained model fits follow analogously. It should be noted that S can be modified based on Ω_0 so that it restricts $\hat{b}_i \in \Omega_0$. This restricted S is a deterministic adjustment to the original S, so the results follow as above.

Proof of Corollary 2. Let \hat{b}_i and \hat{b}_i^0 be the parameter estimates under the unconstrained and null hypothesis constrained model fits, respectively. Let r_i and r_i^0 be the residuals under the unconstrained and null hypothesis constrained model fits, respectively. By repeating the proof for Proposition 2, one can also show that $\hat{\gamma}_i$ and $\hat{\gamma}_i^0$ are independent across tests. For any fixed function, $f(\hat{b}_i, \hat{b}_i^0, r_i, r_i^0, \hat{\gamma}_i, \hat{\gamma}_i^0)$, it follows that these values are independent across tests. The test-statistics and p-values are special cases of such functions.

B Remarks on Proposition 1

Remark 1. If e_i is independent from all other rows of E, then setting $u_i = e_i$ is valid for Proposition 1 to hold.

Remark 2. If e_i has no independent variation, i.e., there exists a Borel measurable g such that $e_i = g(e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_m)$, then we can set $u_i = 0$. In this case, the random variation of the data for test i is completely confounded with the variation of the other tests, so test i is stochastically not a separate test, but a convolution of the other tests.
Remark 3. Suppose that the dependence in E is due to unmodeled factors H, where $E[x|H] = a_i T(H)$, $e_i = a_i T(H) + u_i^*$, and the u_i^* are jointly independent across tests. In this case, setting $u_i = u_i^*$ satisfies the properties required for Proposition 1.

Remark 4. If we assume that E is Normal, the result can be derived in a different fashion, which might provide more insight for some readers. First consider just two hypothesis tests, where e_1 and e_2 are dependent Normal vectors. That is, for a fixed sample j, e_{1j} and e_{2j} are Normally distributed with $\text{Cov}(e_{1j}, e_{2j}) \neq 0$. It is well known that we can write:

$$
e_{1j} = z_j + u_{1j}
$$

$$
e_{2j} = z_j + u_{2j}
$$

where z_j, u_{1j}, and u_{2j} are all independent Normal random variables. Also, $\text{Cov}(e_{1j}, e_{2j}) = \text{Var}(z_j)$, $\text{Var}(e_{1j}) = \text{Var}(z_j) + \text{Var}(u_{1j})$, $\text{Var}(e_{2j}) = \text{Var}(z_j) + \text{Var}(u_{2j})$, and $\text{Cov}(u_{1j}, u_{2j}) = 0$. In other words, two dependent Normal random variables can be partitioned into a dependent component, z_j, and independent components u_{1j} and u_{2j}. This can be extended by using standard results on multivariate Normal random variables for any set of m dependent Normal random variables. According to Proposition 3 below, if e_j is the jth column of E, then we can write

$$
e_j = A z_j + u^j,
$$

where A is an $m \times m^*$ matrix ($m^* \leq m$), z_j is Normally distributed m^* vector, and u^j is a Normally distributed m-vector. The components of u^j are independent. In the proof of Proposition 1, we showed that $E = M + U$ where U is independent across its rows. By setting the j column of U to be u^j and the jth column of M to be $A z_j$, the remainder of the proof follows the same.

Proposition 3. Let e be a random vector of length m, where $e \sim \text{MVN}(0, \Sigma)$, Σ is a positive definite matrix, and $C = \text{diag}\{\sigma_{11}, \ldots, \sigma_{mm}\}$. Then there exists a matrix A of constants, a constant λ_0, and independent random vectors $z \sim \text{MVN}(0, I)$ and $u \sim \text{MVN}(0, \lambda_0 C)$ such that:

$$
e^* = A z + u,
$$

where e^* and e have the same distribution.

Proof of Proposition 3. Since Σ is positive definite and symmetric, all of the diagonal elements of Σ must be positive, so C is positive definite and C^{-1} exists and is positive definite. Then $\Sigma = CC^{-1} \Sigma = CK$, where K is positive definite. Let $\lambda_0 > 0$ be the smallest eigenvalue of
Then $K = K - \lambda_0 \mathbf{I} + \lambda_0 \mathbf{I}$ and the matrix $K^* = K - \lambda_0 \mathbf{I}$ is non-negative definite. Applying the spectral theorem we can write $\Sigma = C(K^* + \lambda_0 \mathbf{I}) = L^T L + \lambda_0 C$. Setting $A = L^T$, we have $\Sigma = AA^T + \lambda_0 C$. Using properties of the Normal distribution $E[e^*] = 0$ and $\text{Var}[e^*] = \text{Var}[Az] + \text{Var}[u] = AA^T + \lambda_0 C$, so $e^* \sim \text{MVN}(\mathbf{0}, \Sigma)$ as required.

C Estimating G in Practice

We present two scenarios of estimating G in practice, and provide a specific algorithm to estimate G in one of them.

Dependence of an Unknown Structure. The first scenario is when nothing is known about the dependence structure and it is the case that $d + r \ll n$, where d is the row-dimension of $S(Y)$ and r is the row-dimension of G. This scenario is inspired by the setting where dependence is induced by common latent variables, such as in microarray data analysis (2). Failing to include all relevant factors is a common issue in genomics leading to latent structure (2, 3). Consider a study where n subjects are randomly assigned to one of two treatments, and microarrays are utilized to measure genome-wide RNA levels from a tissue of interest in each subject. The goal is to identify genes that show different levels of RNA expression between the two treatment groups. Also suppose that the subjects are of different ages and are composed of both males and females. It is highly likely that there will be a large number of genes that show differential expression with respect to age or sex. If these factors are not included among the primary variables Y, then there will be dependence among those genes differentially expressed with respect to age or sex. Because $\Gamma \hat{G}$ will be included into the model $X = BS + \Gamma \hat{G} + U$ used to perform the hypothesis tests, it follows that \hat{G} acts as a set of surrogate variables for the latent structure or dependence noise. Because of this, we call this approach “surrogate variable analysis” (SVA).

In this scenario, G can be interpreted as a set of variables that act as surrogates for these unmodeled factors. Let Z be the set of unmodeled factors whose signature in the data is captured by $E[x_i | Z] = h_i^T T(Z)$, where h_i is an n-vector and $T(Z)$ is an $r \times n$ matrix. For G to be a valid dependence kernel, the rows of G must span the same space as the rows of $T(Z)$. Therefore, for multiple testing dependence caused by latent structure due to unmodeled factors, G can be interpreted as a valid linear basis for the effect of the factors on the data. By utilizing techniques similar to factor analysis, G can be analyzed to scientifically interpret the latent structure and potentially identify the relevant Z.

Below we present an algorithm for estimating G in this first scenario, called iteratively re-weighted surrogate variable analysis (IRW-SVA). The basic idea when estimating G in this scenario is to identify a subset of tests that show a strong association with G (i.e., $\gamma_i \neq 0$), but no association
with \(S \) (i.e., \(b_i = 0 \)). The estimate of \(G \) can then be formed based on the right singular vectors of the data corresponding to this subset of tests. This approach accomplishes two things. First, it does not require the dependence kernel estimate \(\hat{G} \) to be orthogonal to \(S \). Since it will rarely be the case that \(S \) and \(G \) are orthogonal, even under well-designed randomized studies, forcing \(S \) and \(\hat{G} \) to be orthogonal will lead to persistent anti-conservative bias. Second, by taking a subset of the data, bias from \(S \) in the estimate \(\hat{G} \) is reduced. The approach we take is to simultaneously up-weight the tests that show strong association to \(G \) and down-weight tests that show strong association with \(S \). Once the estimate \(\hat{G} \) is formed, the model \(X = BS + \Gamma \hat{G} + U \) is fit and the tests are performed on the \(b_i \) in the usual manner.

Highly Structured Dependence. A second scenario where estimating \(G \) is feasible in practice is when there is strong dependence among tests, but enough is known about the dependence structure so that \(\Gamma \) can be characterized \textit{a priori} to a large extent. This is likely in the case of strong spatial dependence where the covariance structure is often specified in the model, for example, in brain imaging problems (4, 5). Here it may be the case that \(d + r \approx n \), which would be problematic for our IRW-SVA algorithm below. However, in this second scenario, \(\Gamma \) is largely already characterized because of the covariance constrains, providing the degrees of freedom needed to estimate \(G \) when \(d + r \approx n \). Whereas the IRW-SVA algorithm below requires one to fit \(\Gamma \) in addition to \(B \) once \(\hat{G} \) is formed, this will not be necessary when \(\Gamma \) is highly structured. Indeed, once \(\hat{G} \) is formed, it can be shown that identifying \(\Gamma \) is straightforward. Thus, we anticipate an effective algorithm in this setting will (i) characterize the structure of \(\Gamma \) based on the well characterized dependence structure, (ii) estimate \(\hat{G} \) from a properly formed subset of \(X \), (iii) rotate \(\Gamma \) according to \(\hat{G} \), and (iv) subtract \(\Gamma \hat{G} \) from \(X \) before performing any inference. This allows one to utilize what is known about the dependence structure to overcome the fact that \(d + r \approx n \) in this case.

In brain imaging, a body of sophisticated theory and methods have been developed that calculate the tail distribution of maximal statistics under this spatial dependence model. Under our framework, instead of the goal being to account for the complex dependence structure among the statistics when calculating their tail probabilities over the population of all studies, the goal would instead be to estimate \(G \) in each specific study. If \(G \) is well estimated, calculating the distribution of maximal statistics now becomes straightforward because they are independent, once we have also conditioned on \(G \) (as detailed in Proposition 2 of the main text). The decomposition \(\Gamma G + U \) also has a direct scientific interpretation. The matrix \(G \) represents a set of axes in \(\mathbb{R}^n \) that fully capture the random realization of the spatial dependence. The vector \(\gamma_i \) denotes the position of the \(i \)th voxel among these axes.

Iteratively Re-weighted SVA. The basic idea when estimating \(G \) in this scenario is to identify a subset of tests whose data show a strong association with \(G \), but not a strong association with
We use the empirical posterior probability estimates, \(\hat{\Pr}(b_i = 0, \gamma_i \neq 0 | X, S, \hat{G}) \) obtained from the approach of Storey et al. 2005 (6) to weight the tests. This technique is related to other approaches (7,8), but Storey et al. specifically demonstrate how to deal with composite hypotheses such as \(b_i = 0, \gamma_i \neq 0 \). Briefly, given a our current estimate of \(\hat{G}_{(b)} \) we break down the probability estimation into two components:

\[
\hat{\Pr}(b_i = 0, \gamma_i \neq 0 | X, S, \hat{G}_{(b)}) = \hat{\Pr}(b_i = 0 | \gamma_i \neq 0, X, S, \hat{G}_{(b)}) \hat{\Pr}(\gamma_i \neq 0 | X, S, \hat{G}_{(b)}).
\]

Here we sketch the Storey et al. (6) approach for estimating \(\hat{\Pr}(b_i = 0 | \gamma_i \neq 0, X, S, \hat{G}_{(b)}) \); the estimation of \(\hat{\Pr}(\gamma_i \neq 0 | X, S, \hat{G}_{(b)}) \) is analogous. We first form F-statistics \(F_1, \ldots, F_m \) using standard linear models for testing the hypotheses:

\[
H_{0i} : b_i = 0 \quad \text{vs.} \quad H_{1i} : b_i \neq 0.
\]

Note that when fitting this model, \(\gamma_i \) is a free parameter and \(\hat{G}_{(b)} \) is also utilized. We then calculate bootstrap null statistics \(F_{ik} \) for \(k = 1, \ldots, K \) by using the standard method (9). Again, by including model fits involving \(\hat{\gamma}_i \) and \(\hat{G}_{(b)} \) when forming the bootstrap samples, we are able to bootstrap from the proper conditional null distribution (6). Suppose that the null and alternative statistics have probability density functions \(g_0 \) and \(g_1 \). Then if \(\pi_0 \) of the null hypotheses are true, the probability density function of \(F_i \) is \(g = \pi_0 g_0 + \pi_1 g_1 \). From Bayes theorem,

\[
\Pr(b_i = 0 | F_i) = \frac{\pi_0 g_0(F_i)}{\pi_0 g_0(F_i) + (1 - \pi_0)g_1(F_i)},
\]

where we have replaced \(\hat{\Pr}(b_i = 0 | \gamma_i \neq 0, X, S, \hat{G}_{(b)}) \) with \(\Pr(b_i = 0 | F_i) \) at a quantifiable loss of information (8). Since the \(F_i \) are a sample from \(g = \pi_0 g_0 + (1 - \pi_0)g_1 \) and the \(F_{ik} \) are a sample from \(g_0 \), we can form an estimate of the likelihood ratio \(g_0/g \) using a non-parametric logistic regression where we consider the \(F_i \) to be “successes” and the \(F_{0i} \) to be “failures” (7). Since we only seek an estimate that is proportional to the true probability (because these are being
used as relative weights in the singular value decomposition), we set \(\pi_0 = 1 \) and calculate the corresponding posterior probability estimate directly from the estimated likelihood ratio. Once
\[
\hat{\Pr} \left(\mathbf{b}_i = 0 | \gamma_i \neq 0, \mathbf{X}, \mathbf{S}, \mathbf{G}_{(b)} \right)
\]
and
\[
\hat{\Pr} \left(\gamma_i \neq 0 | \mathbf{X}, \mathbf{S}, \mathbf{G}_{(b)} \right)
\]
are formed, they are simply multiplied to obtain
\[
\hat{\Pr} \left(\mathbf{b}_i = 0, \gamma_i \neq 0 | \mathbf{X}, \mathbf{S}, \mathbf{G}_{(b)} \right).
\]

Iteratively Re-weighted Surrogate Variable Analysis Algorithm

1: Fit the model \(\mathbf{X} = \mathbf{BS} + \mathbf{E} \) by least squares, and calculate the residual matrix \(\mathbf{R} = \mathbf{X} - \hat{\mathbf{BS}} \).
2: Perform a singular value decomposition of \(\mathbf{R} \), and let \(\mathbf{v}_k \) be the \(k \)th right eigenvector, \(k = 1, \ldots, n \).
3: Let \(\hat{r} \) be the number of statistically significant \(\mathbf{v}_k \) according to the algorithm by Buja and Eyuboglu (1992) (10), which is reproduced below.
4: Set \(\mathbf{G}_{(0)} \) equal to the \(\hat{r} \times n \) matrix where row \(k \) is \(\mathbf{v}_k \).

FOR \(b = 1, 2, \ldots, B \) ITERATIONS:
5: Form the empirical Bayes estimates
\[
\hat{\Pr} \left(\mathbf{b}_i = 0, \gamma_i \neq 0 | \mathbf{X}, \mathbf{S}, \mathbf{G}_{(b)} \right)
\]
6: Perform a weighted singular value decomposition of \(\mathbf{X} \) where row \(i \) is weighted by
\[
\hat{\Pr} \left(\mathbf{b}_i = 0, \gamma_i \neq 0 | \mathbf{X}, \mathbf{S}, \mathbf{G}_{(b)} \right).
\]
7: Set \(\mathbf{G}_{(b+1)} \) to be the \(\hat{r} \times n \) matrix of the first \(\hat{r} \) right eigenvectors from STEP 6.
8: Perform a weighted singular value decomposition of \(\mathbf{X} \) where row \(i \) is weighted by the final weights:
\[
\hat{\Pr} \left(\mathbf{b}_i = 0, \gamma_i \neq 0 | \mathbf{X}, \mathbf{S}, \mathbf{G}_{(B)} \right).
\]
9: Set \(\mathbf{g}_k \) to be the right eigenvector from STEP 8 that is most correlated with \(\mathbf{v}_k \), \(k = 1, \ldots, n \).
Set \(\mathbf{G} \) to be the \(\hat{r} \times n \) matrix where row \(k \) is \(\mathbf{g}_k \), \(k = 1, \ldots, \hat{r} \).
10: Perform the significance analysis on the \(\mathbf{b}_i \) using the model \(\mathbf{X} = \mathbf{BS} + \mathbf{G} \hat{\mathbf{G}} + \mathbf{U} \), where \(\mathbf{G} \) is treated as a set of fixed covariates and appropriate adjustments to the degrees of freedom for standard error estimates and hypothesis testing are made.

Remark 1. When the range of test-specific variances is large, it may improve the surrogate variable estimates to initially scale each test specific variance to one, which could be straightforwardly accomplished at Step 1. This scaling would ensure that each test’s data contributes equally in the estimation of \(\mathbf{G} \), so estimates are less heavily influenced by those tests with extremely large
variance. However, for the typical range of variances seen in genomic data, we have not observed any improvement in the algorithm when applying such as adjustment.

Remark 2. Across studies G can be viewed as a random matrix so that partitioning $E = \Gamma G + U$ has connections to the familiar partitioning of errors in a mixed model. However, our goal is to perform inference for the variable B conditional on the observed values of S and G. When mixed effects model are applied in the usual setting, the dimension along which the sampling occurs is the same as the inference dimension. There is usually a single random sample and a single observation of G, for example, if we were to observe the expression values for a single gene rather than thousands of genes. However, in our scenario, the manifestation of G can be observed in the data sets corresponding to the multiple tests. This is again due to the fact that the sampling occurs along a different dimension (columns of X) than the inference (rows of X). As compared to traditional studies, the information we have is equivalent to being able to observing the exact same random effect in many studies. This difference has two important implications. First, even when G and S are assumed to be independent, such as in a randomized study, by chance G and S may be correlated in any study, resulting in confounding for many tests; this would not be the case in the traditional setting where the random effect is modeled over many repeated studies and independent samplings. Second, since the same set of vectors G are in the data’s true model for multiple tests simultaneously, it is possible in our scenario to directly estimate G by averaging appropriately over the data for all tests. To summarize, over repeated studies G is a random variable; in any fixed study, G is a fixed set of vectors that parameterizes the data for the set of multiple hypothesis tests. Because of this, standard random effects estimators, such as the best linear unbiased predictors (BLUPs), are problematic for two reasons. First, they assume G and S are independent, which means that at a technical level, the estimates of G and S are orthogonal. Standard BLUPs will result in biased estimates of G and hence B. Second, to estimate BLUPs, the distributions of G and U must be specified in advance, which is either difficult or requires substantial assumptions on the part of the analyst.

Buja and Eyuboglu Algorithm. For completeness we reproduce the Buja and Eyuboglu (10) algorithm for estimating the dimension of the dependence kernel, G. The algorithm is applied to R calculated in Step 1 of the iteratively re-weighted SVA algorithm. (It could also be recalculated at each re-weighted iteration, if one chooses to do so.) The algorithm compares the singular values in the observed residual matrix to the corresponding singular values in randomized residual matrices, where each row is permuted individually to break down any structure across rows.
Buja and Eyuboglu Algorithm

1: Calculate the singular value decomposition of the residual matrix \(R = UDV^T \). Since \(R \) is a residual matrix resulting from a \(d \) degrees of freedom model fit, the last \(d \) eigen-values are zero.

2: Let \(\lambda_\ell \) be the \(\ell \)-th singular value, which is the \(\ell \)-th diagonal element of \(D \), for \(\ell = 1, \ldots, n \). For right singular value \(k = 1, \ldots, n - d \) set the observed statistic to be:

\[
T_k = \frac{\lambda_k^2}{\sum_{\ell=1}^{n-d} \lambda_\ell^2}
\]

which is the variance in the residual matrix explained by the \(k \)-th right singular vector.

3: Form a matrix \(R_p \) by permuting each row of \(R \) independently and calculating the residuals \(R_0 = R_p - \hat{\beta}_p S \) from fitting the model \(R_p = B_p S + E_p \) to remove any structure across rows of the matrix, and calculate its singular value decomposition \(R_0 = U_0 D_0 V_0^T \).

4: For right singular value \(k \) form a null statistic:

\[
T_0^k = \frac{\lambda_{0k}^2}{\sum_{\ell=1}^{n-d} \lambda^2_{0\ell}}
\]

as above, where \(\lambda_{0\ell} \) is the \(\ell \)-th diagonal element of \(D_0 \).

5: Repeat steps 4-7 a total of \(B \) times to obtain null statistics \(T_0^b_k \) for \(b = 1, \ldots, B \) and \(k = 1, \ldots, n - d \).

6: Compute the p-value for right singular vector \(k \) as:

\[
p_k = \frac{\# \{ T_{0b}^k \geq T_k; b = 1, \ldots, B \}}{B}
\]

7: Estimate the number of significant surrogate variables by \(\hat{r}(\alpha) = \sum_{k=1}^{n-d} 1(p_k \leq \alpha) \), for a pre-specified threshold \(\alpha \).

D Evaluation of the IRW-SVA Algorithm

Simulation Results. Our approach to estimating \(G \) is based on identifying a subset of tests whose true model includes \(G \) but does not include \(S \) (i.e., the subset of tests \(i \) such that \(\gamma_i \neq 0 \) and \(b_i = 0 \)). If we could perfectly identify this subset, then it would be possible to form an unbiased estimate of \(G \) regardless of the correlation with \(S \), as long as the subset was large enough to span
Table S1. A summary of the parameters for the simulated microarray studies. The simulation scenarios encompass discrete and continuous G of varying dimension and varying magnitude of the signal associated with G. For each of these different parameterizations, both high and low regression correlation between S and G and high and low association overlap in the number of tests with non-zero effects from S and G are considered. Full simulation details appear in Table S2.

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of G</th>
<th>Dimension of G</th>
<th>Magnitude of b_i</th>
<th>Regression Correlation</th>
<th>Association Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>Discrete</td>
<td>r = 1</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Two</td>
<td>Discrete</td>
<td>r = 1</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Three</td>
<td>Discrete</td>
<td>r = 1</td>
<td>Moderate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Four</td>
<td>Discrete</td>
<td>r = 1</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Five</td>
<td>Continuous</td>
<td>r = 1</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Six</td>
<td>Continuous</td>
<td>r = 1</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Seven</td>
<td>Continuous</td>
<td>r = 1</td>
<td>Moderate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Eight</td>
<td>Continuous</td>
<td>r = 1</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Nine</td>
<td>Discrete</td>
<td>r = 1</td>
<td>Large</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Ten</td>
<td>Discrete</td>
<td>r = 1</td>
<td>Large</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Eleven</td>
<td>Discrete</td>
<td>r = 1</td>
<td>Large</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Twelve</td>
<td>Discrete</td>
<td>r = 1</td>
<td>Large</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Thirteen</td>
<td>Discrete</td>
<td>r = 2</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Fourteen</td>
<td>Discrete</td>
<td>r = 2</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Fifteen</td>
<td>Discrete</td>
<td>r = 2</td>
<td>Moderate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Sixteen</td>
<td>Discrete</td>
<td>r = 2</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

the row space of G. The two parameters that most influence our ability to estimate the relevant subset of tests are (i) the “regression correlation” between S and G, or the percentage of the column space of S explained by G and (ii) the “association overlap”, or the percentage of tests whose true model includes G and S (via \(\gamma_i \neq 0 \) and \(b_i \neq 0 \), respectively).

We simulated 100 studies with a variety of different forms for G and the \(\gamma_i \). Each simulated study consisted of 1,000 tests and 20 samples divided into two equal treatment groups, parameterized by S. In our notation, S is a \(2 \times 20 \) matrix, the first row parameterizing the intercept, the second row the group membership, and we are interested in testing whether \(b_{i2} = 0 \) for each hypothesis test. For each simulated study, tests 1-300 have non-zero \(b_{i2} \) drawn from a common distribution, so that the alternative hypothesis is true for each one. We varied the regression correlation by either randomizing G with respect to S, or allowing for consistent correlation between G and S. The first case mimics a randomized study, where we would expect unmodeled latent factors to be orthogonal to S on average. The second case more closely resembles an observational study, where unmodeled factors are more likely to be correlated with S. We also varied the association overlap by varying the percentage of tests with both nonzero \(b_i \) and \(\gamma_i \). The simulation parameters are summarized in Table S1.

For each simulated study we performed an unadjusted significance analysis (i.e., not modeling G at all), an analysis applying the above Iteratively Re-weighted Surrogate Variable Analysis (IRW SVA) algorithm, and an “ideal scenario” analysis on independent data where we simulate the data
Fig. S1. Boxplots of the root mean square error between the true ranking (based on the non-centrality parameter) and the estimated ranking. For each case, the boxplots show the variability in rankings for the ideal scenario with independent tests (green), IRW SVA with dependence (blue), and unadjusted analysis with dependence (red). For each parameterization of G the four clusters of boxplots correspond to low regression correlation/low association overlap, low regression correlation/high association overlap, high regression correlation/low association overlap, high regression correlation/high association overlap. G was simulated as (A) discrete with $r = 1$, (B) continuous with $r = 1$, (C) discrete with large non-zero γ_i, $r = 1$ and (D) discrete with $r = 2$.
exactly as above but set $G = 0$. We compared the operating characteristics of these three cases across all simulated scenarios on the basis of two important metrics: stability of test rankings and correct null distributions. One of the most important aspects of any multiple testing significance analysis is behavior of the relative significance ranking of tests (i.e., ordering the tests from most to least significant). One way to rank the tests is based on the magnitude of the F-statistics for testing if $b_{v2} \neq 0$. In our two-sample scenario, the ideal ranking is that based on the non-centrality parameter of each true alternative test. In Fig. S1 we show boxplots of the root mean squared error (RMSE) in the rankings for all tests with $b \neq 0$ with respect to this ideal ranking. The better the ranking, the smaller the mean and standard deviation of the RMSE will be. From Fig. S1 it can be seen that the rankings are variable in the unadjusted analysis with dependence. Applying the IRW SVA algorithm reduces the variability in the rankings nearly to the level of the corresponding study without independence.

A second important component in any significance analysis is that the null statistics should follow the correct null distribution (i.e., the one utilized in forming significance measures). At the level of the p-values, it is well known that most method for estimating multiple testing error rates are accurate only when the distribution of the null p-values is stochastically greater than or equal to the Uniform$(0, 1)$ distribution (11–13). For the simulated studies under each set of parameters, we calculated a Kolmogorov-Smirnov (KS) test comparing the distribution of p-values for the null tests (tests 301-1000) to the Uniform$(0, 1)$ distribution. If the null p-values are Uniform$(0, 1)$ distributed for each study, then across all 100 simulated studies the KS-test p-values should also be Uniform$(0, 1)$ distributed. This “double KS-test” is a robust approach for determining if the null p-values have the appropriate distribution across repeated samples from the same population (2). Fig. S2 plots the quantiles of the KS-test p-values across one hundred simulated studies versus the Uniform$(0, 1)$ quantiles. If the null distribution is accurate for a particular analysis, the quantiles should lie along the diagonal identity line.

As with the test rankings, the unadjusted analysis under dependence behaves poorly, yielding p-values not following the Uniform$(0, 1)$ distribution for the true null hypothesis tests. Again, adjusting for surrogate variables gives nearly identical results to the ideal scenario where the tests are independent. The double KS-test gives strong evidence that this pattern is consistent across hundreds of simulated studies, and we did not just get lucky under a single simulated scenario.

Adjusting for surrogate variables results in a correct null distribution, and this translates into improved FDR estimates. Fig. S3 shows that correcting the null distribution in Experiment 5 reduces error in both q-value estimates and global measures of significance, such as estimates of π_0, the proportion of true null hypotheses (13). We are able to directly correct dependence at the level of the originally observed data using surrogate variable analysis to obtain corrected error
Fig. S2. KS-test quantile-quantile plots comparing the distribution of the null p-values for each simulated study to the Uniform distribution. For each case, the plots show the ideal scenario with independent tests (green), IRW SVA with dependence (blue), and unadjusted analysis with dependence (red). For each parameterization of G, the four KS-test plots correspond to low regression correlation/low association overlap, low regression correlation/high association overlap, high regression correlation/low association overlap, high regression correlation/high association overlap. G was simulated as as (A) discrete with $r = 1$, (B) continuous with $r = 1$, (C) discrete with large non-zero γ_i, $r = 1$ and (D) discrete with $r = 2$. It can be seen from these plots that p-values in the case of independent data follow the $Uniform(0, 1)$ distribution as expected, but dependence causes deviation from this distribution. Application of IRW-SVA restores the appropriate null distribution and results in correct inference.
Fig. S3. Behavior of FDR estimates for the case of Experiment 5 (see Table S2 for details). For each case, the plots show the ideal scenario with independent tests (green), IRW SVA with dependence (blue), and unadjusted analysis with dependence (red). (A) Plots of q-value curves for 100 simulated studies versus the true FDR. Ideally these curves will on average lie slightly above the line of equality, indicating a conservative estimate, and have relatively little variability. This is true for both the independent data and surrogate variable adjusted analyses, but not for the unadjusted analysis with dependence. (B) Histograms of the \(\pi_0 \) estimates (\(\pi_0 = \text{proportion of true null tests} \)) across 100 simulated studies, these estimates should have a slight conservative bias, in other words they should on average be slightly larger than the true value of 0.7, again with small variability. The unadjusted analysis with dependence shows large variation in the \(\pi_0 \) estimates. This error is eliminated through application of the proposed IRW-SVA algorithm.
rate estimates. By using surrogate variables we eliminate the need for post-hoc adjustments to
the null distribution of one-dimensional test-statistics (14) when calculating multiple testing error
rates. Our results indicate that valid inference critically depends on a correct distribution of null p-
values within any specific study. We have shown that directly estimating and incorporating G
into
significance analyses empirically corrects the null distribution across a variety of simulated cases.
These results indicate that estimating G is possible even in difficult scenarios such as observational
studies with highly interrelated variables.

Simulation Details. For each experiment described in Table S1 we simulated 100 independent
studies with $m = 1000$, $n = 20$, and $u_{ij} \overset{i.i.d.}{\sim} N(0, \sigma_i)$ where $\sigma_i \overset{i.i.d.}{\sim} \text{InvGamma}(10, 9)$. For each
study S was a vector of indicator variables equal to one for the first 10 samples and zero for the
last 10. B was simulated as an m vector where the first three hundred elements were distributed
as independent $N(0, 2.5)$ random variables in the case of moderate signal and $N(3.5, 1)$ random
variables for the large signal. In each case the last 700 elements of B were set equal to zero,
making these the null tests. In all simulated studies $\gamma_{ij} \overset{i.i.d.}{\sim} N(0, 2.5)$ or was set equal to zero.
When there was low association overlap γ_{i1} was non-zero for tests 201-700 and when there was
high association overlap γ_{i1} was non-zero for tests 101-600. When $r = 2$, γ_{i2} was non-zero for
tests 401-900. For experiments 1-4 and 9-16, g_{jk} was a discrete random variable. In cases where
regression correlation was low $g_{jk} \overset{i.i.d.}{\sim} \text{Bernoulli}(0.5)$ and in cases where regression correlation was
high $g_{jk} \overset{i.i.d.}{\sim} \text{Bernoulli}(0.7)$ for $j = 1, \ldots, 10$ and $g_{jk} \overset{i.i.d.}{\sim} \text{Bernoulli}(0.2)$ for $j = 11, \ldots, 20$. For
experiments 5-8, g_{ij} was a continuous random variable. In cases where regression correlation was
low $g_{jk} \overset{i.i.d.}{\sim} N(0, 1)$ for all j and in cases where the regression correlation was high $g_{jk} \overset{i.i.d.}{\sim} N(0, 1)$
for $j = 1, \ldots 10$ and $g_{jk} \overset{i.i.d.}{\sim} N(1, 1)$ for $j = 11, \ldots 20$. An important point is that the case of low
regression correlation mimics a randomized study where on average G and S occupy orthogonal
linear spaces, but in any fixed study G and S may be regression correlated by chance. All p-values
were calculated based on a parametric F-test based on comparing the full model including S
to the model without S. In the IRW SVA analysis the null and alternative models also included the
surrogate variable estimates. All computations were performed in the R programming language.
Further details on the simulations can be seen in Table S2.

Remark. A potentially interesting avenue for future research is to characterize the finite sample
and asymptotic properties of estimators of the dependence kernel. In terms of asymptotic results,
we expect that the most useful results will be concerned with the scenario where the sample sizes,
n, stay fixed and the number of tests, m, grows large. When asymptotically consistent estimators
exist as $m \to \infty$, then in the limit we can extend the result of Proposition 1, replacing the true
kernel with the estimate. As a weaker result but potentially equally useful in practice, it may also
prove interesting to investigate whether estimates of the dependence kernel are sufficient to induce
so-called weak dependence (15).

Application to a Population Genomics Study. Idaghdour *et al.* (16) recently published a study measuring leukocyte gene expression in 46 desert nomadic, mountain agrarian, and coastal urban Moroccan Amazigh individuals. The goal of the study was to identify genes that show differential expression across the three geographically defined populations, which each involve notably different lifestyles and experience very little migration among them. In addition to the population indicator variable, the sex of the patients and batch variable (a technical variable), were also recorded. Our model for the expression of gene i for individual j can then be written as follows:

$$x_{ij} = b_{0i} + b_{1i}1\{\text{desert}_j\} + b_{2i}1\{\text{mountain}_j\} + b_{3i}1\{\text{batch}_j\} + b_{4i}1\{\text{sex}_j\} + e_{ij}. \quad (d)$$

The goal of the study is to test the hypotheses:

$$H_{0i}: b_{1i} = 0 \& b_{2i} = 0 \quad \text{vs.} \quad H_{1i}: b_{1i} \neq 0 \text{ or } b_{2i} \neq 0.$$

We performed an unadjusted analysis (i.e., an analysis ignoring any dependence) using standard F-tests of the above hypotheses. At FDR = 1%, 5%, and 10% there are respectively 2,701, 5,111,
and 6,718 genes called significantly differentially expressed with respect to geographical region.

We next applied IRW-SVA algorithm, where the model \(S \) includes both the “batch” and “sex” variables in addition to the geographical population variable. This is an important point for utilizing the proposed algorithm: if measured variables such as batch and sex are known to be possibly in the true model, then they should be included explicitly in the model, even if they are not the focus of the significance analysis. The surrogate variable estimation algorithm can easily incorporate these variables, and conditioning on variables that are known to play a key role in expression can improve the estimates of the remaining surrogate variables. Applying the IRW-SVA algorithm, we can recalculate significance for each gene. The number of genes significant at FDR = 1%, 5% and 10% are respectively 1,940, 4,261, and 5,900. This illustrates another key point: taking into account dependence may actually reduce the observed empirical power in any given study. The reduction in observed power occurs when row spaces spanned by \(G \) and \(S \) overlap. This is seen extensively in the simulated examples above and in the main text. In the expression study, some of the apparent “signal” is in fact due to confounding between the dependence kernel and geographical population variable. Thus, while we have a reduction in the number of genes called significant, the genes that are called significant are more likely to be truly differentially expressed with respect to the geographical population variable. In our analysis, the top surrogate variable (i.e., first row of \(\hat{G} \)) has correlation 0.23 with the “desert” indicator variable. When regressing the geographical population variable on the rows of \(\hat{G} \), we obtain an \(R \)-squared value of 0.68. It is likely that some latent factor, partially confounded with being geographically located in the desert, is driving part of the differential expression signal in the unadjusted analysis. This is not surprising given that this study has some observational (as opposed to randomized) sampling characteristics (16).

We can use the estimated posterior weights to determine on a qualitative level the distribution of signal due to geographic location and due to unmodeled factors. Fig. S4 shows the distribution of the scaled weights derived from the \(\hat{Pr}(b_{1i} \neq 0 \text{ or } b_{2i} \neq 0) \) and \(\hat{Pr}(\gamma_i \neq 0) \) estimates. It is clear that a large percentage of genes are affected by one or more unmodeled factors, much more so than the number of genes that have a high probability of being associated with the geographical population. These relative weights can be used as both a model diagnostic and to identify the most robustly differentially expressed genes between populations.

Finally, as a proof of concept meant for illustrative purposes only, we applied the IRW-SVA algorithm to this study, where we left out the “batch” variable from equation (d). The batch variable is easily verified to be a major source of expression variation. By repeating the analysis without “batch”, we are able to see if the \(\hat{G} \) estimate captures the batch variable. The most significant of the six surrogate variables estimated has correlation 0.71 with the batch variable, so the top surrogate variable is a good estimate of this technical factor. Also, the \(R \)-squared value of
Fig. S4. Distribution of relative weights used in the IRW-SVA algorithm. Step 8 of the IRW-SVA algorithm weights the tests’ data based on the product of the posterior probability estimates $\hat{\text{Pr}}(b_{1i} \neq 0 \text{ or } b_{2i} \neq 0)$ and $\hat{\text{Pr}}(\gamma_i \neq 0)$. The distribution of the relative contribution of (A) $\hat{\text{Pr}}(b_{1i} \neq 0 \text{ or } b_{2i} \neq 0)$ and (B) $\hat{\text{Pr}}(\gamma_i \neq 0)$ to these weights in the Idaghdour et al. study is shown.
batch regressed on the rows of \hat{G} is 0.54. Therefore, IRW-SVA was able to provide an estimate of this unmodeled technical factor directly from the gene expression data, without using the measured batch information. In practice however, we would include measured variables likely to have a large influence on gene expression such as the batch variable.
References

