Corrections

BIOCHEMISTRY
Correction for “Regulation of the protein disulfide proteome by mitochondria in mammalian cells,” by Yi Yang, Yanli Song, and Joseph Loscalzo, which appeared in issue 26, June 26, 2007, of Proc Natl Acad Sci USA (104:10813–10817; first published June 20, 2007; 10.1073/pnas.0702027104).

The authors note that on page 10817 in the Acknowledgments section, the National Institutes of Health Grant labeled HL 55993 should instead appear as P01 HL 81587. This error does not affect the conclusions of the article.

www.pnas.org/cgi/doi/10.1073/pnas.0908506106

IMMUNOLOGY

The authors note that on page 4259, the “Received for Review” date appeared incorrectly. The date “August 6, 2007” should instead read “February 6, 2007.”

www.pnas.org/cgi/doi/10.1073/pnas.0908246106

MEDICAL SCIENCES

The authors note that on page 10292, right column, first full paragraph, the following sentence should be added after the third sentence: “These changes in mRNA expression may account for the previously reported observed increases in the nuclear staining of p16Ink4a and p27Kip1 in the D2.0R cells propagated under Matrigel-based, 3D culture conditions similar to those described here (15).” On page 10292, right column, third full paragraph, the following sentence should be added after the last sentence: “The absence of actin stress fibers in the non-metastatic D2.0R cells and the presence of these fibers in the D2A1 cells are consistent with the behavior of these cells previously reported by Green and colleagues (15).” On page 10294, left column, second full paragraph, the following sentence should be added after the first sentence: “In agreement with this observation, others have previously reported that treatment with an integrin β1-neutralizing antibody results in an inhibitory effect on the proliferation of the D2A1 cells propagated under Matrigel-based, 3D culture conditions (15).” These errors do not affect the conclusions of the article.

www.pnas.org/cgi/doi/10.1073/pnas.0908574106

www.pnas.org/cgi/doi/10.1073/pnas.0908582106

www.pnas.org/cgi/doi/10.1073/pnas.0908590106

www.pnas.org/cgi/doi/10.1073/pnas.0908574106

www.pnas.org/cgi/doi/10.1073/pnas.0908582106
Corrections

CELL BIOLOGY

The authors note that Figure 1 appeared incorrectly. The corrected figure and its legend appear below.

Fig. 1 Dual inhibition of MEK and PI3K induces phosphorylation of DDR substrates. (A) A2058 or 888MEL melanoma cells were treated for 6 h with DMSO or GDC-0973+GDC-0941 (MEKi/PI3Ki combo; 4 × EC50) and were subjected to KinomeView Profiling. A2058 and 888MEL cells were treated with 10 μM GDC-0973 + 10 μM GDC-0941 or 0.2 μM GDC-0973 + 10 μM GDC-0941, respectively. Blots were probed using an antibody mixture recognizing pRSK, pAKT, pERK, and pS6 or phosphomotif antibodies (e.g., DDR substrates with the [s/t]Q motif and AKT substrates with the RXX[s/t] and RXRXX[s/t] motifs). (B) A2058 lysates probed with the [s/t]Q and RXX[s/t] antibodies after treatment with DMSO, 10 μM GDC-0973 (MEKi), 10 μM GDC-0941 (PI3Ki), or the combination. (C) Dose response of A2058 cells to increasing concentrations of MEKi and PI3Ki alone or in combination. Blots were performed against DDR (p53 pSer15, histone 2AX pSer139), cell survival/cell death (AKT pThr308, cleaved PARP), and cell signaling (ERK1/2 pThr202/Tyr204) markers and controls. Actin and GAPDH served as loading controls.

www.pnas.org/cgi/doi/10.1073/pnas.1322630111
ENVIRONMENTAL SCIENCES

The authors note that the author name Peter W. Young should instead appear as J. Peter W. Young. The corrected author line appears below. The online version has been corrected.

GENETICS

The authors note that the following statement should be added to the Acknowledgments: “Y.S. is supported by the Israel Science Foundation (Grants 1604/13 and 877/13) and the European Research Council (Grant StG-335377).”

MEDICAL SCIENCES

The authors note that on page 10295, right column, 2nd full paragraph, line 8 “10 mg/kg xylene” should instead appear as “10 mg/kg xylazine.”

www.pnas.org/cgi/doi/10.1073/pnas.1323160111
Integrin β_1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs

Tsukasa Shibue* and Robert A. Weinberg*†

*Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142; and †Ludwig Center for Molecular Oncology, and
Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139

Contribution by Robert A. Weinberg, April 23, 2009 (sent for review March 3, 2009)

The development of metastases is an extended and inefficient process involving multiple steps. The last of these involves the growth of micrometastases into macroscopic tumors. We show here that intravenously injected, nonmetastatic cancer cells cease proliferating after extravasating into the parenchyma of the lungs; this response is attributable to the cells inability to trigger adhesion-related signaling events when they are scattered sparsely within the extracellular matrix (ECM) of the parenchyma. We recapitulate this situation by culturing these nonmetastatic cells at low seeding density in ECM-derived gels in vitro, in which they undergo cell-cycle arrest resulting, in part, from insufficient activation of focal adhesion kinase (FAK). Metastatic cancer cells, in contrast, show sufficient FAK activation to enable their proliferation within ECM gels in vitro and continue cell-cycle progression within the lung parenchyma in vivo. Activation of FAK in these metastatic cells depends on expression of the β_1 subunit of integrins, and proliferation of these cells after extravasation in the lungs is diminished by knocking down the expression of either FAK or integrin β_1. These results demonstrate the critical role of integrin β_1-FAK signaling axis in controlling the initial proliferation of micrometastatic cancer cells disseminated in the lungs.

cancer cells | metastasis | cell-matrix adhesion

cancer cells pass through a sequence of multiple steps to generate macroscopic metastases. These include invasion of host tissues adjacent to the primary tumor, entrance into the systemic vasculature, dissemination via the circulation, arrest in microvasculature, extravasation into the parenchyma of distant organs, and proliferation at these ectopic sites to form secondary colonies; the last of these steps, involving the growth of micrometastases into macroscopic tumors, is often termed “colonization” (1). This last step is likely to be the least efficient step in the invasion–metastasis cascade. For example, 30% of breast cancer patients are found to have hundreds, likely thousands of micrometastases in their bone marrow, but only half of these micrometastasis-positive patients will ever develop metastatic relapse (2). These relapses often become apparent 5–10, or even 20 years after removal of the primary tumor and testify to the presence of disseminated, latent cancer cells that require many years to succeed in developing into macroscopic growths (3). Indeed, similar delayed-onset metastatic relapses are seen in multiple types of cancers, including renal cell carcinoma, melanoma, and osteosarcoma (4). These phenomena highlight the need to elucidate the mechanisms that enable metastasized cancer cells to colonize sites of dissemination.

Most disseminated cancer cells are rapidly eliminated by apoptosis in response to stresses associated with their transport or their inability to adapt to foreign tissue microenvironments (5). The survival of cells that have begun to proliferate in distant organ sites is also threatened, possibly by limited angiogenesis or by immune surveillance (5). These responses contrast with the observed behavior of many disseminated micrometastatic cancer cells that survive for prolonged periods of time in a dormant state, exhibiting neither proliferation nor apoptosis. Such cells were initially described experimentally in a mouse model (6), and evidence is accumulating for the presence of cells with similar properties in patients lacking any overt signs of metastasis (2, 7). The factors preventing the proliferation of these cancer cells and the resulting growth of micrometastases remain poorly understood.

In the present study, we have used a series of mouse mammary carcinoma cell lines composed of cells with differing abilities to proliferate after dissemination to distant organs including lungs and liver. These experiments have revealed a critical role of cell-matrix adhesions in governing this process, involving, notably, the integrin β_1-focal adhesion kinase (FAK) signaling axis.

Results

Behavior of D2 Mouse Mammary Carcinoma Cell Lines in an Experimental Model of Lung Metastasis. We used a set of mouse mammary carcinoma cells that consists of 3 distinct lines, D2.0R, D2.1, and D2A1, hereafter collectively referred to as “D2 cells” (8). Previous studies had shown comparable primary tumor incidence after implantation of these 3 cell populations in mouse mammary fat pads and the differing abilities of these primary tumors to subsequently form metastases in the lungs and liver (9). Thus, the D2.0R- and D2.1-derived tumors generated only rare metastases, whereas the D2A1-derived tumors spawned metastases efficiently. Moreover, D2.0R cells injected into the mesenteric vein successfully extravasated into the liver parenchyma but could not initiate proliferation in this site. In contrast, a substantial proportion of D2A1 cells began proliferating soon after extravasation into the liver parenchyma and eventually formed large numbers of macroscopic metastases (6).

We initially tested the behavior of the various D2 cells in an experimental model of lung metastasis. To enable direct comparisons of nonmetastatic and metastatic D2 cells, we labeled D2A1 cells with tdTomato, a variant of red fluorescent protein (RFP) (10), and cojected these cells into the tail vein of BALB/c mice together with green fluorescent protein (GFP)-labeled D2.0R or D2.1 cells. As shown in Fig. 1A, multiple small clumps of cells were observed in the lungs at 2 days after injection, and the numbers and sizes of GFP-labeled D2.1 cell clumps and tdTomato-labeled D2A1 cell clumps were comparable at this time. However, as time went on, the clumps of D2A1 cells became larger, whereas those of D2.1 cells remained small, resulting in a substantial difference in the relative abundance of these cells in the lungs 24 days after injection (Fig. 1A). Similar differences in colony growth and relative abundance of cells in the lungs were observed when we cojected GFP-labeled D2.0R cells and tdTomato-labeled D2A1 cells (data not shown, Fig. 1A).

Author contributions: T.S. designed research; T.S. performed research; T.S. and R.A.W. analyzed data; and T.S. and R.A.W. wrote the paper.

The authors declare no conflict of interest.

1To whom correspondence should be addressed. E-mail: weinberg@wi.mit.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0904227106DCSupplemental.
Fig. 1. Behavior of D2 cells in an experimental model of lung metastasis. (A) Equal numbers of GFP-labeled D2.0R or D2.1 cells (D2.0R-GFP and D2.1-GFP, respectively) and tdTomato-labeled D2A1 cells (D2A1-tdTomato) were coinjected into the tail vein, and the lungs were harvested at the indicated time points. Shown are the representative high (high mag.) and low magnification (low mag.) images of the left upper lobe of the lungs harboring D2.1-GFP and D2A1-tdTomato cells (Top). (Scale bar, 1 mm [low mag.]; 0.1 mm [high mag.]). The relative abundance of GFP- and tdTomato-labeled cells in the lungs was analyzed by flow cytometry (FACS) (Bottom Left: D2.0R-GFP and D2A1-tdTomato; Bottom Right: D2.1-GFP and D2A1-tdTomato). (B) Lungs were harvested at the indicated time points after the coinjection of D2.1-GFP and D2A1-tdTomato cells, and frozen sections were prepared. Shown are the representative whole lobe (Top row) and section images (Middle row). An enlarged image of the boxed region within the rightmost section image is also presented (Bottom Right). In some of the mice, the lung vasculature was perfused by injecting PBS and FluoSpheres with europium luminescence (Eu-FluoSpheres) in the right ventricle just before harvesting the lungs. In the section images, fluorescent signals from Eu-FluoSpheres represent the lumina of microvessels (white), and the nuclei were stained with Hoechst 33422 (blue). (Scale bar, 1 mm [whole lobe]; 0.2 mm (section)). Frozen sections of the lungs after the coinjection of D2.0R-GFP and D2A1-tdTomato cells were also prepared. The relative abundance of perfusion-resistant D2.0R-GFP and D2A1-tdTomato cells, and that of D2.1-GFP and D2A1-tdTomato cells, in the lungs at 48 h after injection were determined by direct counting on the sections (Bottom). (C) At 7 days after the injection of tdTomato-labeled D2 cells, the lung vasculature was perfused and the lungs were harvested. BrdU was i.p. injected twice, at 6 h and 3 h before harvesting the lungs. The percentage of BrdU-positive cells within the tdTomato-expressing population was analyzed by BrdU staining and FACS. Values are means ± SEM (n = 4) (A–C).

We proceeded to measure the relative abilities of the various D2 cell populations to extravasate into the lung parenchyma. Accordingly, we injected the GFP- and tdTomato-labeled cells through the tail vein and, after various periods of time, perfused the lung microvasculature using fluorescence-labeled small polystyrene beads (FluoSpheres) that subsequently filled the capillary lumina (11). This procedure enabled us not only to trace the outlines of the microvasculature but also to flush out tumor cells that remained in the lumina of microvessels and thus had not yet extravasated. We found that the majority of fluorescence-labeled D2.1 and D2A1 cells that had remained in the lungs at 3 h after injection were cleared out by this perfusion procedure (Fig. 1B). At 48 h after injection, however, a substantial portion of these cell populations present in the lungs remained there after perfusion, and significantly, these perfusion-resistant populations contained comparable numbers of D2.1 and D2A1 cells (Fig. 1B). We also observed comparable numbers of perfusion-resistant D2.0R and D2A1 cells in the lungs after coinjecting these 2 different cell populations (Fig. 1B). Most of these perfusion-resistant cells were located at some distance from the FluoSphere-labeled vasculature (Fig. 1B), providing further indication that they had extravasated into the lung parenchyma.

These results suggested that the nonmetastatic D2.0R and D2.1 cells were as effective as the metastatic D2A1 cells in extravasating. We noted, however, that the extravasated D2.0R and D2.1 cells surviving in the lungs at 7 days after injection exhibited far less BrdU incorporation than corresponding D2A1 cells (Fig. 1C). Moreover, we observed comparable numbers of colonies of GFP-labeled D2.1 cells and those of tdTomato-labeled D2A1 cells in the lungs at 8 days after coinjecting equal numbers of these 2 different cell populations. This observation indicated that the persistence of D2.1-derived micrometastatic colonies in the lungs is comparable with that of D2A1-derived colonies, although the average size of D2A1-derived colonies was already far larger than that of D2.1-derived colonies at 8 days after injection (Fig. 1A). We also observed comparable numbers of GFP-labeled D2.0R cell colonies and tdTomato-labeled D2A1 cell colonies in the lungs at 8 days after coinjecting these 2 cell types (data not shown). These results collectively supported the notion that the inability of the D2.0R and D2.1 cells to eventually form macroscopic lung metastases was determined largely, if not entirely, by their inefficient proliferation after extravasation into the lung parenchyma.

Modeling the Differential Proliferation of D2 Cells in an In Vitro System. To uncover the cause(s) of the observed proliferation defect of the D2.0R and D2.1 cells, we attempted to recapitulate the postextravasation process with an in vitro experimental model. More specifically, we developed culture conditions that mimic certain aspects of the in vivo microenvironment surrounding recently extravasated cancer cells. It appears that most cancer cells, when introduced intravenously as single-cell suspensions, do not initially enjoy homotypic interactions with other cancer cells immediately after extravasation (12); instead, they are likely to be surrounded by stromal components of the parenchyma. Independent of this finding, others had shown that introducing cells into a 3-dimensional (3D) culture model, specifically in gels constructed of extracellular matrix (ECM) components, has profound effects on the behavior of such cells (13, 14). For these reasons, we embedded the 3 different D2 cell populations in several types of gels, each consisting of a distinct mixture of ECM components; these cells were prepared as single-cell suspensions and introduced into the gels at a low seeding density (500 cells/cm² bottom area) to ensure that they could not initially form extensive homotypic interactions with one another [supporting information (SI) Fig. S1A].

After 10 days of 3D culture, we observed 9.2- to 100-fold greater numbers of D2A1 cells compared with those of the other 2 lines, depending on the nature of the ECM gel used (Fig. S1). In contrast, when we plated these 3 cell populations under 2-dimensional (2D) conditions, i.e., on tissue culture plastic dishes without admixed ECM gels, the differences in the cell number after 10 days of culture were <3.5-fold (Fig. S1). This observation underscored the utility of the 3D culture model in studying the cause(s) underlying the differing rates of proliferation of the metastatic and nonmetastatic D2 cells after their extravasation into the lung parenchyma (Fig. 1C). Among the 5 different types of ECM gels tested, Matrigel yielded the greatest difference in the resulting cell number between the D2A1 cells and the other 2 lines (Fig. S1), which encouraged us to
As we continued to propagate the 3 different D2 cell populations under 3D culture conditions (Fig. S3A), eventually aggregated and formed large plaques within the ECM. We observed a sharp increase in the cell number, or Ki67 staining positivity, of the D2A1 cells under high seeding densities, which may suggest that the control mechanisms for proliferation in the various D2 cell populations were partially restored by shRNA-mediated, simultaneous knockdown of the expression of p16/INK4a and p19/ARF (Fig. S5B). Hence, the minimal Ki67 positivity of the D2.0R and D2.1 cells, resulting in a 2.4-fold difference in cell number after 10 days of culture, was attributable to inhibition of cell-cycle progression, which could be explained, at least in part, by the up-regulation of the p16/INK4a and p19/ARF mRNAs and the cell-cycle inhibitory function of the corresponding protein products.

To determine whether the 3D on-top culture condition also yields differing rates of proliferation in other sets of related cancer cell lines with distinct metastatic potentials, we studied the B16F1 and B16F10 mouse melanoma cell lines, which exhibit low and high efficiencies of generating lung metastases, respectively. When propagated under 3D on-top conditions, the highly metastatic B16F10 cells proliferated more rapidly than the weakly metastatic B16F1 cells, resulting in a 2.4-fold difference in cell number after 10 days of culture, whereas their proliferation rates under 2D culture conditions were comparable (Fig. S6). Taken together, these various results showed a strong correlation between the proliferative capacity of cells in 3D culture and their metastasis-forming ability.

Signals from Cell-Matrix Adhesions Regulate the Proliferation of Cancer Cells Scattered Within the ECM. The observations described above encouraged us to determine the biochemical mechanism(s) responsible for the differing abilities of the various D2 cell populations to proliferate in the 3D culture model. Microscopic observations of these cell populations revealed striking morphological differences between them under 3D on-top culture conditions. Three-dimensionally cultured D2.0R cells typically displayed a round morphology and formed small clumps (Fig. S4A and Fig. S4A). A large part of D2.1 cells exhibited a narrow, elongated morphology (Fig. 3A and Fig. S3A). The metastatic D2A1 cells were also elongated, but tended to have protrusive extensions and their cytoplasm was wider than that of D2.1 cells (Fig. 3A and Fig. S3A). These differences in morphology suggested underlying differences in the organization of the respective cytoskeletons. Indeed, we saw the abundant formation of actin stress fibers in all of the 3 cell types under 2D conditions of culture, whereas under 3D conditions, only the metastasis-competent D2A1 cells exhibited these fibers (Fig. S7A).

The formation of these stress fibers is known to be regulated by integrin-mediated adhesions to the ECM (16). Accordingly, we used immunofluorescence to survey the localization of adhesion plaque proteins, specifically paxillin, vinculin, and talin, whose patterns of localization reflect the degree of maturation of integrin-mediated adhesions (16). In fact, the localization of these proteins

Fig. 2. Two-dimensional and 3-dimensional culture of nonmetastatic and metastatic D2 cells. (A and B) D2 cells were seeded at an initial density of either 500 cells/cm² bottom area (A) or 5,000 cells/cm² bottom area (B) and propagated under 2D or 3D on-top conditions. Cell numbers were determined at the indicated time points (Top). Cells cultured under 3D on-top conditions for 5 days were also stained for proliferation marker (Ki67), and the positivity of Ki67 staining within each cell population is plotted (Bottom).
to plaques with an oval-like or elongated morphology, which is typical of the mature form of adhesion plaques, was clearly observed in all 3 cell populations cultured under 2D conditions (Fig. 3B and Fig. S7 B and C). Under 3D on-top culture conditions, however, only the D2A1 cells developed abundant adhesion plaques of elongated morphology (Fig. 3B and Fig. S7 B and C). To summarize, the D2A1 cells, which proliferated well under 3D conditions, exhibited extensive actin stress fibers and mature forms of integrin-associated adhesion plaques under both 2D and 3D conditions of culture, whereas the D2.0R and D2.1 cells, which failed to proliferate efficiently under 3D conditions, were only able to assemble dense actin stress fibers and mature adhesion plaques under 2D conditions of culture.

The correlation between the formations of mature adhesion plaques and proliferation suggested a causal relationship between these processes. In this regard, integrin-mediated adhesions have been shown to trigger the release of a variety of intracellular signals, which together represent the "outside-in" signaling by integrins (17). This evidence suggested that the differing abilities to form integrin-mediated adhesions among the various D2 cell populations under 3D conditions (Fig. 3B and Fig. S7 B and C) might lead, in turn, to differential activation of the downstream signaling events within these cells, and such signaling might ultimately determine the differing abilities to proliferate under these conditions (Fig. 2A-4).

Among the signals arising from the formation of cell-matrix adhesions, FAK is thought to play a central role (18). Thus, FAK has been shown to play an essential role in promoting cell-cycle progression in a variety of cell types (19). Recruitment of FAK by ECM-ligated integrins induces its autophosphorylation at tyrosine 397 (Y397). Y397-phosphorylated FAK in turn binds to another tyrosine kinase, Src, which phosphorylates FAK at tyrosine 861 (Y861). This Y861 phosphorylation then facilitates the recruitment of p130Cas to FAK, which leads ultimately to the activation of multiple signaling proteins, including the Ras and Rac small GTPases (18).

For these reasons, we analyzed FAK phosphorylation at Y397 and Y861 in 2D- and 3D-cultured D2 cells and discovered strong differences in the levels of phosphorylation among the different cell populations, particularly under 3D culture conditions (Fig. 3 C and Fig. S7D). Thus, 3D-cultured metastasis-competent D2A1 cells exhibited 3.5- to 5.2-fold and 6.3- to 9.6-fold higher levels of phosphorylation at FAK Y397 and Y861, respectively, compared with the other 2 cell lines cultured in parallel (Fig. 3C). This result revealed a strong correlation between proliferative ability and FAK Y397 and Y861 phosphorylation in 3D-cultured D2 cells.

Given this correlation, we speculated that the functional activation of FAK might represent a rate-limiting determinant of proliferative ability in 3D culture. Consequently, we modulated its activity through the ectopic expression of FAK-related nonkinase (FRNK), a naturally existing, dominant-negative variant of FAK. Indeed, ectopic FRNK expression in D2A1 cells inhibited their proliferation under 3D but not under 2D conditions of culture (Fig. 4A-4). Similarly, knocking down the expression of FAK using shRNA also resulted in impaired proliferation of 3D-cultured D2A1 cells (Fig. 4A). Conversely, ectopic expression in D2.0R and D2.1 cells of a CD2-FAK fusion protein, which exhibits constitutive kinase activity (20), partially rescued their proliferation defects under 3D culture conditions (Fig. 4A). These results confirmed the central role of integrin-activated FAK signaling in regulating the proliferation of the various D2 cell types under 3D conditions of culture.

We proceeded to determine the role of FAK signaling in the process of metastatic colony formation in vivo. Twelve hours after injecting equal numbers of tdTomato-labeled control D2A1 cells and GFP-labeled FAK-knockdown D2A1 cells through the tail vein, we found a 2.9- to 3.2-fold greater number of control cells remaining in the lungs after perfusion with Fluospheres than those of corresponding FAK-knockdown cells (Fig. S8). At 48 h after injection, however, we detected comparable numbers of perfusion-resistant control and FAK-knockdown D2A1 cells in the lungs (Fig.
staining of FAK and that of integrin integrin/H9251. Moreover, knocking down the expression of integrin proliferation of D2A1 cells cultured under these Matrigel-based 3D provided further evidence that the integrin groups:
in hematopoietic cells, these integrin pairs are categorized in 3 heterodimeric pairs of these proteins functioning in various mam-
Integrins govern the activity of FAK, and there are 24 different mechanism regulating FAK phosphorylation, which contributed
D2A1 cells compared with integrin/H9252/H9252. We examined whether the integrin integrin院院士-containing integrins plays an essential role in
Recruitment and activation of FAK by integrin integrin院士-containing integrins in 3D-cultured D2A1 cells. (A) The effects of integrin subunit knockdown on the proliferation of D2A1 cells under 2D and 3D conditions of culture were analyzed. Cells were cultured for 10 days. The capital letter at the end of each shRNA label is added for distinguishing different shRNA constructs for the same target, and multiple different constructs were tested for targeting each of integrin α5, α6, αv, and β1 integrin, whereas a single shRNA construct was tested for targeting the expression of integrin β3 (sh integrin β3 C) (Table S1 and Table S2). Cell numbers relative to that of D2A1 cells expressing an shRNA control (sh scrambled) are plotted. Values are means ± SD (n = 3). (B) Colocalization between FAK (red) and integrin β1, integrin α5, or integrin αv (green) in D2A1 cells under 2D or 3D culture conditions (Matrigel, on-top) was analyzed by immunofluorescence. Cell nuclei were stained with YOYO-1 (blue). (Scale bar, 20 μm.) (C) The effects of integrin integrin院士-containing integrins in 3D-cultured D2A1 cells were tested (sh integrin β1 A and C). Values are the band intensities relative to that of the corresponding bands of the sample from D2A1 cells expressing an shRNA control (sh scrambled). (D) The effect of integrin integrin院士 knockdown on the BrdU incorporation by D2A1 cells after extravasation in the lungs in vivo was analyzed as in Fig. 1C. Values are means ± SEM (n = 4).

Discussion

Only rare disseminated cancer cells are able to found metastatic colonies, usually only after a prolonged period. This inefficient colony formation has been ascribed to a number of factors, among them the complex adaptations that cancer cells must make to thrive in the foreign tissue microenvironments in which they find themselves after dissemination. In the present study, we have exploited an in vitro, 3D culture model to examine how disseminated cancer cells cope with their initially low density within the parenchyma of such tissues and with their need to associate productively with components of the ECM, which represent key functional elements of these microenvironments (Fig. S1A). Whereas this 3D culture model does not faithfully recapitulate all aspects of the in vivo microenvironment, it
suffered to reveal a strong difference in proliferative behavior between cancer cells that can or cannot colonize the lung tissues in vivo (Fig. 2.4, Fig. S1, Fig. S3, and Fig. 6).

As we found, under 3D on-top conditions of culture, the D2.0R and D2.1 cells, which are able to extravasate but fail to colonize in the lungs, showed patterns of adhesion to the ECM that were very different from that of the related, highly metastatic D2A1 cells (Fig. 3B and Fig. S7 B and C): only the D2A1 cells but not D2.0R and D2.1 cells developed abundant adhesion plaques of elongated morphology, these being typical of the mature form of adhesion plaques. Thus, earlier studies of 2D-cultured fibroblasts had demonstrated that matrix adhesion plaques initially appear as small dots at the periphery of cells, which subsequently mature both morphologically and functionally: This maturation involves conversion of dot-like plaques into oval-like or elongated forms and an increase in the overall levels of FAK phosphorylation (16).

Consistent with these previous observations, the D2A1 cells exhibited higher levels of FAK phosphorylation at both the Y397 and Y861 residues under 3D conditions than did the D2.0R and D2.1 cells cultured in parallel (Fig. 3C); this ultimately contributed to the rapid proliferation of D2A1 cells under these conditions (Fig. 2A). Because the proliferation of cells extravasated in the lungs in vivo was also highly dependent on FAK signaling (Fig. 4C), we conclude that the postextravasation proliferation of cancer cells disseminated throughout the lung tissue is governed by the ability of these cells to successfully develop mature adhesion plaques to the ECM and thereby to efficiently activate FAK signaling.

Previous reports have shown that inhibiting the kinase activity of FAK or knocking down the expression of FAK in various other lines of breast cancer cells also results in reduced formation of metastatic colonies in the lungs (21–23), because of either impairment of invasive migration or reduced efficiency of extravasation. Taken together with the present results, it now appears that FAK signaling exerts regulatory effects on multiple different steps of the invasion–metastasis cascade.

We have also found the essential roles of β1-containing integrins in enabling efficient proliferation of D2A1 cells both under 3D culture conditions in vitro and after disseminating into the lung parenchyma in vivo (Fig. 5 A and D). These results are indeed consistent with the reported function of β1-containing integrins (17); these integrins are involved in the adhesion to type I and type III collagen, main constituents of the lung parenchyma (24), and moreover, they also bind to laminin and type IV collagen, major components of Matrigel, which is used as substrate for the 3D culture described here.

Under in vitro 3D culture conditions in D2A1 cells, β1-containing integrins played essential roles in enabling efficient FAK phosphorylation (Fig. 5 B and C), which explains how these integrins contribute to the proliferation of D2A1 cells under these conditions. Shortly after introducing them into 3D culture, the nonmetastatic D2.0R and D2.1 cells exhibited levels of integrin β1, and FAK expression comparable to those found in the metastatic D2A1 cells (T.S. and R.A.W., unpublished observations). However, these nonmetastatic cells showed lower levels of FAK phosphorylation (Fig. 3C), which appears to be the result, in turn, of the mechanisms regulating the formation of cell-matrix adhesions via β1-containing integrins. Studying the details of such regulation will surely provide one important key to understanding how cancer cells adapt to the foreign tissue microenvironment that they initially encounter after metastatic dissemination and extravasation. This process, in turn, appears to strongly influence the efficiency of eventual colonization by these disseminated cancer cells.

Methods

Cell Culture. For the 3D on-top culture, 12-well culture plates were coated with 160 μL of Matrigel (BD Biosciences) and incubated at 37°C for 30 min, which allowed the Matrigel to solidify. Subsequently, cells (500 cells/cm² bottom area; 2,000 cells for 12-well plate, unless otherwise indicated) were resuspended as single cells in 1 mL of 2D/3D culture medium supplemented with 2% horse serum, 0.5 μg/mL hydrocortisone, 50 mg/mL cholestryl, 10 μg/mL insulin, 100 μg/mL penicillin and 100 μg/mL streptomycin) containing 2% FCS. To each culture plate, 2,000 cells were resuspended in 1 mL of 2D/3D culture medium and directly plated in the well. Medium was changed every 4 days.

Animal Procedures. Two- to four-month-old male BALB/c mice were used for tail-vein injections. One hundred microliters of cancer cells resuspended in PBS were injected through the tail vein. The number of cells injected per mouse in each experiment is the following: 5 × 10^5 for each of GFP-labeled and tdTomato-labeled cells in Fig. 1A, 1 × 10^6 for each of GFP-labeled and EGF-labeled cells in Fig. 18 and Figs. S8, 1 × 10^5 cells in Figs. 1C, 4D, and 5 and 5 × 10^5 cells in Fig. 4D. For the perfusion of lung microvasculature, mice were anesthetized by the i.p. injection of 100 mg/kg ketamine and 10 mg/kg xylene, and then the chest was opened and an incision was made on the wall of the left ventricle. Subsequently, 6 mL of PBS, followed by 2 mL of FluorSpheres (Bвлтɞөмє, 0.2 μm, europium luminescence), diluted 1:4 with PBS, was injected into the right ventricle.

Statistical Analyses. Statistical analyses were performed by Student’s t test.

ACKNOWLEDGMENTS. We thank R. J. Lee, F. Reinhard, T. Chavaria, E. Batchelder, and E. Vasile for technical assistance; S. Godar, S. S. McAllister, M. P. Saezler, K. J. Kehry for discussions; F. R. Miller, Y. Tien, D. D. Schlegel, J. Ben-Porath, D. Chong, F. Ryan, S. M. Frisch, and K. Vuori for reagents. T.S. is a recipient of a long-term fellowship from the Human Frontier Science Program and postdoctoral fellowship from the Japan Society for the Promotion of Science. R.A.W. is an American Cancer Society professor and a Daniel K. Ludwig Foundation cancer research professor. This work was funded by grants from the Ludwig Center for Molecular Oncology at MIT (R.A.W.), the Breast Cancer Research Foundation (R.A.W.); NIH U54 CA12515 (R.A.W.).