3D structure of the C3bB complex provides insights into the activation and regulation of the complement alternative pathway convertase

Eva Torreira, Águstin Tortajada, Tamara Montes, Santiago Rodríguez de Córdoba, and Oscar Llorca

Generation of the alternative pathway C3-convertase, the central amplification enzyme of the complement cascade, initiates by the binding of factor B (fB) to C3b to form the proconvertase, C3bB. C3bB is subsequently cleaved by factor D (fD) at a single site in fB, producing Ba and Bb fragments. Ba dissociates from the complex, while Bb remains bound to C3b, forming the active alternative pathway convertase, C3bBb. Using single-particle electron microscopy, we have determined the 3-dimensional structures of the C3bB and the C3bBb complexes at ~27Å resolution. The C3bB structure shows that fB undergoes a dramatic conformational change upon binding to C3b. However, the C3b-bound fB structure was easily interpreted after independently fitting the atomic structures of the isolated Bb and Ba fragments. Interestingly, the divalent cation-binding site in the von Willebrand type A domain in Bb faces the C345C domain of C3b, whereas the serine-protease domain of Bb points outwards. The structure also shows that the Ba fragment interacts with C3b separately from Bb at the level of the αNT and CUB domains. Within this conformation, the long and flexible linker between Bb and Ba is likely exposed and accessible for cleavage by fD to form the active convertase, C3bBb. The architecture of the C3bB and C3bBb complexes reveals that C3b could promote cleavage and activation of fB by actively displacing the Ba domain from the von Willebrand type A domain in free fB. These structures provide a structural basis to understand fundamental aspects of the activation and regulation of the alternative pathway C3-convertase.

Complement is a major component of innate immunity, with crucial roles in microbial killing, apoptotic cell clearance, and immune complex handling. Complement activation can be initiated by three different pathways: the classical pathway (CP), the alternative pathway (AP), or the lectin pathway (LP). Common to each initiation pathway is the formation of unstable bimolecular complexes, named C3-convertases (AP, C3bBb; CP/LP, C4b2a), which cleave C3 to generate C3b. The AP C3-convertase, C3bB, is crucial within the complement cascade, as it provides exponential amplification to the initial activating trigger. C3b molecules generated by either the CP/LP or the AP C3-convertases bind factor B (fB), thus forming more AP C3-convertases and providing rapid amplification (1).

To generate the AP C3-convertase, fB first associates with C3b in a Mg2+-dependent manner, to form the proconvertase C3bB. In the presence of the serum protease factor D (fD), fB is cleaved and the N-terminal Ba fragment is released from the C3bB complex, creating the active AP C3-convertase (2).

Interaction sites in both C3b and fB have been delineated using different approaches. The αNT and C345C domains in C3b include putative binding sites for fB required for C3 convertase formation (3–5). Both the αNT and C345C domains are located in a part of the C3 molecule that undergoes large rearrangements upon activation of C3 into C3b, which explains why C3 does not interact with fB (6). Similarly, structural analyses have suggested that formation of the AP C3-convertase probably depends on the structure and orientation of the CUB domain of C3b and that the interaction between C3b and fB is independent of the TED domain (7).

Factor B is composed of 5 structural domains. Three short consensus repeats (SCRs) at the N terminus comprise the Bb fragment, whereas the large Bb fragment at the C terminus is comprised of a von Willebrand type A (vWA) domain followed by a serine-protease (SP) domain. Mutagenesis analyses of fB and functional characterization of rare mutations and common polymorphisms associated with diseases involving complement dysregulation have suggested regions in the fB molecule that are crucial for the interaction with C3b (8–11). Thus, a number of fB residues near the Mg2+-dependent metal ion-dependent adhesion site (MIDAS), including D279 (all amino acids are numbered to include the 25-aa long signal peptide), in the vWA domain have been shown to influence the initial recognition of C3b by fB and the stability of the AP C3-convertase C3bBb (8–11). Mutagenesis studies have shown that the fB vWA α5 helix also contributes to the C3b-binding region of the fB vWA domain, while the fB vWA α3/5 helix region is somewhat removed from the C3b-binding region and more likely is involved in the binding site recognized by the complement regulators decay accelerating factor (DAF) and complement receptor 1 (CR1) in C3bBb (12).

The crystal structure of human fB, recently resolved at 2.3Å resolution, demonstrated that the Ba domain was not extended but folded back onto the Bb domain. SCR2 and SCR3 of Ba were packed tightly into an antiparallel dimer capped by SCR1 (6). These structural data also indicate that SCR1 probably hinders access of the ligand C3b to the MIDAS of the vWA domain, and that the triad of SCR domains is probably only weakly associated.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The EM map of the C3bB(Ni2+) complex has been deposited in the 3D EM database, www.ebi.ac.uk/msd (accession code EMD-1583).

1E.T., A.T., and T.M. contributed equally to this work.

2S.R.d.C. and O.L. contributed equally to this work.

3To whom correspondence may be addressed. E-mail: ollorca@cib.csic.es or srerdcordoba@cib.csic.es.

This article contains supporting information online at www.pnas.org/cgi/content/full/0810860106/DCSupplemental.

© 2009 by The National Academy of Sciences of the USA.
Several views of the 3D structure of C3bB(Ni²⁺) derived from the EM data at a resolution of 28 Å (gray density). The atomic structure of C3b (PDB file 2i07) has been fitted within the EM map and displayed in purple with the C345C and CUB domains highlighted in orange. The atomic structure of C3bB(Ni²⁺) at 27 Å resolution (gray density). Fitting of the atomic structure of C3b (PDB file 2i07) allows the assignment of specific regions of the EM map to specific C3b domains. Some densities of the 3D reconstruction cannot be accounted by C3b and correspond to C3b-bound fB.

with the vWA and SP domains. Most interestingly, comparison of the fB proenzyme (18) and the Bb fragment (19) structures suggests that fB undergoes conformational changes upon binding to C3b, displacing the helix αL from its binding groove in the vWA domain and exposing the long linker domain between the SCR3 and the vWA domains of fB that contains the scissile bond cleaved by fD (7, 18, 19).

Here, we sought to elucidate the structure of AP proconvertase C3bB. To this end we have generated stable C3bB complexes in the presence of Ni²⁺, purified them, and determined their three-dimensional (3D) structure at ~27 Å resolution using electron microscopy (EM). We also report structural analysis of the AP convertase C3bBb using the fB mutant D279G. These studies have revealed the architecture of the C3bB and C3bBb complexes, providing key insights into the initial stages of the AP C3-convertase formation, its activation by fD, and fundamental aspects of its regulation.

Results and Discussion
Electron Microscopy of C3b and C3bB(Ni²⁺) Complexes Reveals that fB Binds Near the C345C Domain in C3b. The Ni²⁺ cation was used instead of Mg²⁺ to promote a stable C3bB(Ni²⁺) complex that is otherwise undistinguishable from the physiological C3bB(Mg²⁺) proconvertase (8, 20, 21). Briefly, purified C3b and fB were mixed at 1:2 molar excess of fB in the presence of 5-mM NiCl₂. Subsequently, the C3bB(Ni²⁺) complex was purified by gel-filtration chromatography [supporting information (SI) Fig. S1; SI Materials and Methods] and fresh fractions containing C3bB(Ni²⁺) were applied to carbon-coated EM grids and observed by EM after staining. Images from individual molecules were clearly detected in the EM fields (Fig. S2); these were extracted and reference-free two-dimensional (2D) averages were obtained using EMAN (22) and maximum likelihood analysis (23). Averages of C3b were clearly evocative of the typical structure of C3b (Fig. 1A), whereas those of the complex were clearly larger, indicating the presence of an additional component bound to C3b (Fig. 1B). C3bB(Ni²⁺) averages revealed views of the complex with an abundance of distinct shapes (see Fig. 1B), indicating that it has likely bound to the support film in many different orientations, allowing rotations along its longitudinal axis. This assumption was confirmed later when performing the 3D reconstruction of the complex (see below).

By contrast, single C3b molecule averages comprised with a predominant orientation, probably because of the flat nature of its structure (24, 25).

Images from single C3b molecules and the C3bB(Ni²⁺) complex were processed using angular refinement methods to reconstruct their 3D structures. For each sample, we performed 2 independent experiments, using as initial template for refinement either a very low-resolution (> 60 Å) density map obtained after filtering the atomic structure of C3b, or a featureless Gaussian blob after adding noise. In both refinements, identical 3D solutions were obtained, compatible with the reference-free averages, indicating the absence of a significant bias from the initial reference (Fig. S3). During refinement, we detected that the data set for the C3bB(Ni²⁺) complex covered views of the complex in many different orientations, whereas a more limited range of views was obtained for the free C3b molecule. Therefore, we collected additional data for C3b after tilting the specimen holder to complete the range of views (see Methods for details).

The 3D structure of C3b obtained by EM at a resolution of ~28 Å is, within the limits of this resolution, virtually identical to the published crystal structures (24, 25) (Fig. 1C). These atomic coordinates can be unambiguously fitted using unbiased computational methods into our EM density, allowing a straightforward assignment of the different domains of the EM structure to specific domains of C3b. On the other hand, the C3bB(Ni²⁺) complex at a similar resolution reveals significant additional mass located in the proximities of the C345C domain but contacting a broad area of C3b (Figs. 1D and 2A). The atomic structure of C3b was fitted within the EM structure of the C3bB(Ni²⁺) complex by an exhaustive six-dimensional search looking for all its possible orientations with the EM map. C3b was readily located within the complex, given its very characteristic shape (see Fig. 1D).

Overall, these findings indicate that the C3bB(Ni²⁺) complex presents a more globular shape than the single C3b molecule, which allows the complex to adopt different poses on the carbon-coated support film. Furthermore, the comparison between the 2D averages and the 3D structures of C3b and C3bB(Ni²⁺) revealed that the 2 data sets were clearly distinct (see Fig. 1A and B), confirming the homogeneity of both
preparations and pinpointing the location of fB in the C3bB(Ni2+) complex.

Open Conformation of fB Within the C3bB(Ni2+) Complex. We comprehensively analyzed the conformation of fB after binding to C3b. The density of the fitted C3b was subtracted from that of the C3bB(Ni2+) complex to determine the region of the map that accounts for fB (Fig. 2 A and B). Factor B in complex with C3b revealed a well-defined V-shape density divided into a large and a small domain, notably distinct from the compact globular shape that represents the crystallized isolated fB when observed at a similar resolution (see Fig. 2 B). Such differences indicate that fB undergoes substantial conformational changes when binding to C3b, as previously suggested (18).

To analyze further the conformation of fB within the C3bB(Ni2+) complex, we performed several fitting experiments within the density assigned to fB. Because the crystal structure of full-length fB, recently solved at 2.3Å resolution (PDB file 2OK5), could not account for the observed density, we divided the fB structure into two halves, one containing the three SCRs (amino acid 26–220) and the other including the vWA and the SP domains (amino acid 253–764). The linker between SCR3 and vWA, including the αL helix, was removed from the analysis, as its conformation in our structure should be considerably different to that in the lock conformation of fB and we cannot model these changes at the resolution of our EM maps. When the atomic structure of the vWA-SP half was fitted within the whole density of fB in the C3bB(Ni2+) complex using computational methods, vWA-SP was unambiguously located at the larger EM domain (cross-correlation coefficient 0.76) (Fig. 2 C). In fact, this is the only region of the EM map with sufficient size to accommodate Bb and, as a consequence, the remaining small domain of the fB EM density must comprise the Ba fragment containing the N-terminal SCR1–3 domains (see Fig. 2 C). Given the flat shape of the vWA-SP region in the C3bB(Ni2+) complex, these 2 domains were found to fit the EM structure in only two possible orientations, placing the SP and vWA domains at either end of the large EM domain, respectively (Fig. S4). One of these two solutions was discarded because it placed the SCR1–3 domains in a location where connection to the vWA domain could not be achieved with the length of the linker between them. The atomic structure corresponding to this region of fB (Ba fragment) could only be fitted manually, placing its C terminus in the proximity of the vWA N terminus, to best accommodate to the EM density (see Fig. 2 C). Therefore, the proposed orientation of the SCR1–3 triad represents an informed approximation.

Mechanistic Insights into the Assembly of the C3bB Proconvertase. The proposed arrangement for the C3bB(Ni2+) complex illustrates key events during formation of the C3bB proenzyme. First, consistent with early biochemical data (13), the arrangement shows that the Ba and Bb fragments both interact with C3b (Figs. 2 and 3). Moreover, it reveals that the vWA domain interacts with C345C with the MIDAS facing toward C3b (see Fig. 3 A, which is also in agreement with previous data, demonstrating that a number of fB residues near the MIDAS influence the initial recognition of C3b by fB and the stability of the AP C3-convertase (8–11). The putative C3b- and DAF-interacting sites in the vWA are also located within the C3bB structure as expected. Thus, the fB vWA α1 helix, shown by mutagenesis to contribute to the C3b-binding region of the fBvWA domain (12), faces the interface with C3b, whereas the vWA α4/5 helix, not implicated in the interaction and more likely involved in the binding site recognized by the complement regulators DAF and CR1, faces away from the complex (see Fig. 3 A).

Most important is the distortion in conformation of fB bound to C3b in the C3bB(Ni2+) complex, compared to that recently
Three-dimensional Structure of the Active C3bbB Complex. To support our model for the C3bbB(Ni2⁺) complex, we generated a stable, active C3bbB convertase. We used, in this case, the fB-D279G mutant because Ni2⁺ does not stabilize the active enzyme to the same extent as the proenzyme. The fB-D279G mutant promotes high-affinity C3b-binding and is correctly cleaved by fD in the C3bb proenzyme to generate a very stable, functionally-active, AP convertase C3bbB (8, 11, 12) (SI Materials and Methods). The C3bbB279G complex was purified by gel filtration (Fig. S5) and analyzed by EM in a similar way to the C3bB(Ni2⁺) complex. Intriguingly, some 2D averages of C3bbB revealed lobes of density projecting out from the C3b structure; we later ascribed these to the C345C, vWA, and SP domains (Fig. 4A). Some of these 2D averages are very similar to the EM images of a AP convertase generated with fB-WT reported earlier by Smith et al. (26), suggesting that the SP domain projects out from the convertase.

Three-dimensional reconstruction analyses showed that the active convertase lacked the small domain of fB in the C3bB complex that we had ascribed to the Ba fragment (Fig. 4B), fully supporting our structural model. Interestingly, during the 3D refinement we observed that the density accounting for the SP domain was spread out along a range of possible conformations, reducing its average density in the 3D reconstruction (see Fig. 4B). Reference-free 2D averages of the EM data revealed that, whereas some averages show a defined 3-dot pattern (Fig. 4C,i), most side views of C3bbB demonstrated a well-defined C3b molecule with an indistinct density for the projecting Bb region (see Fig. 4C,ii). Such blurring suggests that the conformation of the vWA-SP domains is flexible, likely because of the absence of additional interaction points provided by the Ba SCR triad. In addition, the C3bbB structure shows that the SP domain of fB projects from the structure without contacting C3b and makes the catalytic site accessible to its substrate. Whether this difference between C3bbB and C3bbB regarding the position of the SP...
domain is a consequence of conformational changes within the Bb fragment after the release of the Ba fragment cannot be solved at the resolution provide by our studies.

Functional Implications of the 3D Structures of C3bB(Ni2+) and C3bB Regarding Decay Acceleration Mediated by DAF, CR1, and fH. The AP C3 convertase plays a central role in the amplification of complement cascade, and for this reason its activity is strictly regulated. This regulation is achieved by modulating the stability of the AP C3 convertase, which localize complement amplification to the surface of the pathogens and prevents unspecific damage to self-tissues. Complement regulatory proteins either stabilize the C3bB complex (Properdin) or accelerate its decay (factor H or fH, DAF, or CR1). The C3bB and C3bBb EM structures described here shed new light on the mechanisms underlying the decay acceleration mediated by DAF, CR1 and fH.

In DAF, the functional activity is located within four SCR domains at the N terminus. Using surface plasmon resonance, it has been shown that DAF mediates decay of the C3bB convertase, but not of the proenzyme, C3bB, and the major site of interaction is within the Bb fragment (27). Using truncated recombinant DAF molecules, it has been demonstrated that DAF-SCR2 interacts with Bb, whereas DAF-SCR4 interacts with C3b. These data suggest that DAF interacts with C3bBb through major sites in SCR2 and SCR4. It has been suggested that the high affinity of binding to Bb via SCR2 (compared to little or no binding to fH), concentrates DAF on the active convertase, whereas the weaker interactions through SCR4 with C3b directly mediate decay acceleration (28).

We have already discussed that the Bb vWA α4/5 helix region is exposed in our structure (see Fig. 3), and that mutagenesis data highlight this helix region as a binding site recognized by DAF and CR1 (12). We recently described a unique Bb mutation, K323E, in a patient with atypical hemolytic uremic syndrome that makes the C3bBb convertase resistant to decay by DAF and fH (11). This mutation, located in close proximity to the α4/5 helix region of the vWA domain (see Fig. 3), is remarkable because it modifies neither the formation rate of the C3bB and C3bBb complexes nor their spontaneous decay, suggesting that the mutation specifically affects the binding site in the vWA domain for the complement regulators DAF and fH (11).

The C3bB and C3bBb EM structures described here support the concept of 2 binding sites for DAF in the C3bBb complex, one located on the surface of the vWA domain in Bb, away from the interaction surface with C3b (DAF-SCR2), and the other in C3b in the region that is occupied by the Ba fragment in the C3bB proconvertase (DAF-SCR4). This readily explains the requirement for Ba removal from the C3bB complex in order that DAF can bind and mediate efficient decay acceleration.

Concluding Remarks. The AP C3 convertase is an unstable bimolecular complex formed by C3b and fB that plays a crucial role within the complement cascade, as it provides the exponential amplification to the initial activating trigger. Assembly and regulation of the AP C3 convertase is exquisitely modulated to make possible the elimination of foreign agents by effector cells, while at the same time protecting self-tissues from complement-mediated destruction. In fact, alterations in its formation rate, its stability, or its regulation result in AP complement dysregulation, leading to infectious diseases or tissue damage (29). Understanding how the AP convertase is assembled and regulated is, therefore, essential. Here we present in 3D the conformational transitions of fB following binding to C3b and formation of the AP proenzyme. Importantly, we demonstrate that binding to C3b promotes an opening of the fB conformation by displacing the SCR1–3 region (Ba fragment) from the SP-vWA tandem (Bb fragment). This open conformation of fB exposes the linker connecting the Bb and Ba fragments, permitting its cleavage by fD. Interestingly, the conformation of Bb in the active convertase reveals some degree of flexibility, with the SP domain adopting various conformations with respect to C3b. Our model also reveals important aspects of the regulation of the AP C3 convertase by DAF and perhaps other complement regulators, such as fH and CR1. These data will aid to explore the potential of the AP C3 convertase as a therapeutic target in the development of inhibitors to prevent or reduce tissue damage caused by dysregulated complement activation. Most importantly, our model provides a structural framework onto which other proteins of considerable interest in the pathophysiology of the AP convertase, such as properdin or C3NeF, can be easily modeled. The methodology used in this work, single-particle EM in combination with crystallography, offers a powerful tool to dissect protein interactions underlying the activity and regulation of this remarkable protein complex, the AP C3 convertase.

Materials and Methods
EM and 3D Reconstruction. Purified C3b, C3bB(Ni2+) or C3bBb complexes in 25-mM TrisHCl pH 8.0, 50-mM NaCl were applied to carbon-coated grids and negatively stained with 1% uranyl formate. The molecular weight of these
complexes (~200 kDa) did not allow their detection without staining. Observations were performed in a JOEL 1230 electron microscope operated at 100 kV and micrographs were recorded at a nominal magnification of 50,000 under low-dose conditions. Micrographs were digitized and averaged to 4.2 Å pixel and the contrast transfer function estimated using CTFFIND3 (30) and corrected by flipping phases. Around 6,000 images of molecules for each specimen were extracted and refined using EMAN (22). Reference-free averages were obtained using EMAN and maximum likelihood (23). We used 2 different starting 3D templates for refinement in 2 independent experiments. Identical results were obtained with either initial reference (see Fig. 53), substantiating the final reconstruction and the absence of bias during the refinement. One reference was built by low-pass filtering the atomic structure of C3b (PDB file 2I07) to a very low resolution (>> 60 Å), whereas a second template was a featureless noisy Gaussian blob (see Fig. 53). Images collected for the C3bβββ (31) and C3bβββ complexes revealed adequate Euler angles coverage. On the other hand, images of C3b mostly corresponded to tilting angles around an abundant front view, consistent with the flat appearance of C3b. To increase this angular coverage, micrographs were also taken after tilting the specimen holder at 20 and 35°, and the images were added to the dataset collected without tilting. The resolution of the maps was estimated to be ~28 Å, ~27 Å, and ~28 Å for C3b, C3bβββ (31), and C3bβββ, respectively, by Fourier Shell Correlation, using the criteria of a correlation coefficient of 0.5. The absolute handedness of the reconstruction was defined by comparison with the atomic structure of C3b.

Fitting of the Atomic Structures into the EM Maps. We performed a rigid-body fit of C3b (PDB file 2I07) to the EM reconstruction of C3b and the C3bβββ (31) complex using ADP.EM (31). C3b was unambiguously located in the C3bβββ (31) complex, and a difference map between this fitted C3b and the full map was used to extract the density in the complex assigned to C3b. The VWA and SP domains of C3b (PDB file 2OKS) (18) were fitted as a rigid-body into this difference map using ADP.EM without any a priori assumption. Only one solution was compatible with the polypeptide backbone linking SCR3 to the VWA domain; this solution was then selected. The Ba fragment corresponding to the SCR1–3 trimer was manually fitted in the remaining density.

ACKNOWLEDGMENTS. We thank B. P. Morgan and C. Harris for their long-term collaborative support of our work and their comments on the manuscript. We also thank Elena Goicoechea de Jorge and Ernesto Arias-Palomos for their help. This work has been supported by projects SAF2005–00775 (to O.L.), SAF2008–00451 (to O.L.), SAF2005–0913 and SAF2008–00226 (to S.R.d.C.) from the Spanish Ministry of Science, CAM S-BIO-0214–2006 (to O.L.) from the Autonomous Region of Madrid, and RD06/0020/1001 (to O.L.) of the Red Temática Investigación Cooperativa en Cáncer from the Instituto Carlos Ill. O.L.’s group is additionally supported by the Human Frontiers Science Program (RGP39/2008). S.R.d.C.’s group is additionally supported by Centro de Investigación Biomédica en Red de Enfermedades Raras (INTRA/08/738.2) and the Fundación Renal Ilígo Alvarez de Toledo.
Production and Purification of Recombinant fB. The D279G amino acid substitution was introduced in the fB cDNA by using QuikChange site-directed mutagenesis kit (Stratagene) and appropriate primers. Both cDNAs encoding full length fB-WT and fB-D279G were introduced in the eukaryote expression vector pCI-Neo (Promega) and the resulting clones entirely responded to the C3bB(Ni2+) complex, samples for the EM analysis were collected exclusively from the initial elution fractions of the peak containing the single C3b molecules (see Fig. S1B and C). To avoid a potential contamination of single C3b molecules in the fractions corresponding to the C3bB(Ni2+) complex, samples for the EM analysis were collected exclusively from the initial elution fractions of the peak containing the C3bB(Ni2+) complex.

Generation and Purification of C3bB Complexes. We have used the fB-D279G mutant instead of the fB-WT protein to promote a relatively stable active C3bB convertase. For the generation of the C3bB complex, purified C3b and fB-D279G were mixed in a (1:2) molar excess of fB in 20-mM Tris, pH = 7.6 buffer containing 50-mM NaCl and 5-mM MgCl2 and were incubated for 15 min at room temperature. Subsequently, we added fD (Comptech, Inc.) at a 1:500 molar ratio to C3b, incubated for 1 min at 37 °C and size-fractionated the mix by gel-filtration chromatography on a calibrated SuperoseTM 6 10/300 column (GE Healthcare) (Fig. S4B). The C3bB complex eluted from the column in a single peak that significantly overlapped the peak containing the single C3b molecules (see Fig. S4A and B). To minimize the contamination of single C3b molecules in the fractions corresponding to the C3bB complex, samples for the EM analysis were collected exclusively from the initial elution fractions of the peak containing the C3bB complex.

Fig. S1. Purification of C3b, fB and the C3bB(Ni^{2+}) complex. (a) Purification of C3b and fB. Chromatograms from the final step of C3b and fB-WT purification on a Superose 6 10/300 gel-filtration column. The y axis (milliabsorbance units, mAU) plots absorbance at 280 nm, the x axis plots retention time in ml. Vertical lines indicate the fractions that were pooled for generating the C3bB(Ni^{2+}) complex and for the EM experiments. The Coomassie-stained gel illustrates purity of the final C3b and fB preparations. (b) Purification of the C3bB(Ni^{2+}) complexes. Elution profiles of the C3b-fB mix in the presence of 20-mM EDTA (no complex formed; dotted line) or 5-mM NiCl_{2} (complex formed; solid line) from the Superose 6 10/300 gel-filtration column. The y axis (mAU) plots absorbance at 280 nm, the x axis plots number of fraction collected. Elution position for fB, C3b and the C3bB(Ni^{2+}) complex are indicated. (c) Characterization of C3bB(Ni^{2+}) and complexes by SDS/PAGE. Fractions of the gel-filtration chromatography experiments shown in (b) were analyzed by SDS/PAGE silver-stained gels. The presence of the C3bB(Ni^{2+}) complex was clearly demonstrated in the presence of 5-mM NiCl_{2}, as illustrated by the advanced elution position of fB (fractions 40–43), compared to that of the single fB molecules (fractions 45–48). Note that for the EM analysis of the C3bB(Ni^{2+}) complex, only fractions 40 and 41 were used.
Fig. S2. Electron micrographs of C3b and C3bB(Ni^{2+}). Selected field of an electron micrograph of C3b (a) and C3bB(Ni^{2+}) complex (b). (Scale bar, 100 nm.) Some representative images of individual molecules are indicated using arrows.
Fig. S3. Image processing of C3b\((\text{N}^{2+})\) using angular refinement methods. Angular refinement was performed in 2 independent experiments from 2 different volumes, either a low-pass filtered version of the atomic structure of C3b (a) or a random noisy Gaussian blob (b). Three views of the initial template in each case and of several output volumes along the progression of the refinement are shown. It can be noted that two very distantly related initial references converge into a similar 3D structure, indicating the absence of bias of the initial template during the refinement and the accuracy of the final reconstruction.
Fig. S4. Output solutions after fitting the atomic structure of the vWA and the SP domains of fB (amino acids 253 to 764) into the EM density for fB extracted from the 3D structure of C3bB(Ni2+/H11001). (a) List of the top 11 solutions automatically obtained in the fitting experiment using computational methods with their corresponding cross-correlation values for the comparison between the EM density and the atomic structures. The table includes an indication of whether the vWA-SP orientation was interpreted as compatible with the continuity of the polypeptide chain (labeled “OK”) or incompatible with this continuity (labeled “flip”). The figure also shows the correlation values for the first 2 fitting outputs (20 and 21) that are significantly different from the top 11 outputs. (b) All of the output solutions considered to be correct in the above list are practically identical and represented just slight variations around a similar common output. These solutions are depicted as ribbons using a different color for each solution. (c) Likewise, all “flipped” solutions were very similar and are also represented as ribbons using different colors. (d) The two outputs with low cross-correlation values are also color-coded.
Fig. S5. Purification of the C3bBb complex. (a) Purification of the C3bBb complexes. Elution profiles of the C3b/fB-D279G mix in the presence of 5-mM MgCl₂ and fD (active convertase formed; solid line) and isolated C3b (dotted line) from the Superose 6 10/300 gel-filtration column. The y axis (mAU) plots absorbance at 280 nm, the x axis plots number of fraction collected. Elution position for the Bb fragment, C3b and the C3bBb complex are indicated. (b) Characterization of C3bBb complexes by SDS/PAGE. Fractions of the gel-filtration chromatography experiments shown in (a) were analyzed by SDS/PAGE silver-stained gels. The presence of the C3bBb complex was clearly demonstrated by the earlier elution of the Bb fragment (fractions 37–41), compared to that of the single Bb molecules (fractions 47–50). Only the initial fractions (38 and 39) of the C3bBb peak from gel-filtration chromatography were used in the EM experiments to minimize the presence of single C3b molecules in the C3bBb preparations.