The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity

Noa Stanizkya, Hrvoje Simicb, Jurica Arapovicb, Amir Toporikc, Ofer Levy, Amit Novik, Zurit Levine, Meirav Beiman, Liat Dassaa, Hagit Achdouta, Noam Stern-Ginossara, Pinhas Tsukermana, Stipan Jonjic1,2, and Ofer Mandelboima,1,2

aThe Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, Hebrew University, Jerusalem 91120, Israel; bCenter for Proteomics, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, Rijeka, Croatia; and cCompugen Ltd., 72 Pinchas Rosen Street, Tel Aviv 69512, Israel

Edited by Wayne M. Yokoyama, Washington University School of Medicine, St. Louis, MO, and approved September 1, 2009 (received for review March 30, 2009)

NK cell cytotoxicity is controlled by numerous NK inhibitory and activating receptors. Most of the inhibitory receptors bind MHC class I proteins and are expressed in a variegated fashion. It was recently shown that TIGIT, a new protein expressed by T and NK cells binds to PVR and PVR-like receptors and inhibits T cell activity indirectly through the manipulation of DC activity. Here, we show that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM. Finally, we show that TIGIT counter inhibits the NK-mediated killing of tumor cells and protects normal cells from NK-mediated cytoxicity thus providing an “alternative self” mechanism for MHC class I inhibition.

Results

TIGIT Inhibits YTS Killing Through Its ITIM Motif. While searching for new CD28 family-like receptors, based on bioinformatics analysis, we observed that a protein named VSIG9 or VSTM3 in the databases expresses an ITIM motif. We continued to work on this protein and found that it interacts with PVR (CD155) but not with any other NK ligands tested (supporting information SI Figs. S1 and S2). At the same time, Yu et al. (18) identified the same protein and named it TIGIT. Because we observed that TIGIT is found on all NK cells and because it also contains an ITIM motif, we continued our analysis concentrating on the function of TIGIT in NK cells.

To investigate TIGIT role in controlling NK activity, we initially generated anti-TIGIT mAbs. For that purpose, we used the human YTS NK cell line and transduced it with a lentivirus containing TIGIT fused to an HA tag in its extracellular domain, to allow its detection on the cell surface (Fig. 1A). Mice were injected with the TIGIT-Ig fusion protein (described in Figs. S1 and S2) and hybridomas supernatants were tested for specific recognition of the YTS/TIGIT transfectants. Seven different mAbs were obtained that recognized YTS/TIGIT but not the parental YTS cells (Fig. 1A) in moderate (mAb 1–3) and high (mAb 4–7) modes of recognition.

To test whether TIGIT could directly inhibit NK cell cytotoxicity, we evaluated the killing of YTS and YTS/TIGIT-HA cells. Because YTS cells manifest a restricted killing toward 721.221 cells which is mediated mainly through the interaction between the 2B4 receptor on YTS cells and its ligand, CD48, on the target cells (19), it was important to demonstrate, as shown in Fig. S3, that 2B4 is expressed at equal levels on the parental YTS/eco and on YTS/TIGIT cells. In addition, to allow the examination of TIGIT activity on NK cells we expressed PVR in 721.221 cells and demonstrated that it is indeed recognized by the anti-PVR mAb and by the TIGIT-Ig (Fig. S3). Finally, we verified that CD48 is present in equal levels on all 721.221 cells (Fig. S3). All of these reagents were used in killing assays and as demonstrated in Fig. 1B a strong inhibition of YTS/TIGIT killing is observed when PVR is expressed on 721.221 cells and this inhibition could be blocked with mAb #4. The increased killing observed with mAb #4 was due to blockade of TIGIT and not due to ADCC, because 721.221 cells do not express Fc receptors.

It was shown that the ITIM of the inhibitory receptors is critical for their inhibitory activity (20, 21). To test whether the ITIM of TIGIT is responsible for its inhibitory activity, we generated a truncated form of the TIGIT receptor at position 231 in the ITIM motif (named Y231stop) and also a point mutation in the 231 tyrosine residue mutating it into alanine (named Y231stop). These TIGIT proteins were expressed in YTS cells, and in addition, we

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1S.J. and O.M. contributed equally to this work.
2To whom correspondence may be addressed. E-mail: oferm@ekmd.huji.ac.il or jstipan@medri.hr.

This article contains supporting information online at www.pnas.org/cgi/content/full/0903474106/DCSupplemental.
generated control-transfected YTS cells expressing GFP. Expression levels of all TIGIT proteins were similar. The various YTS transfectants were next assayed for killing of 721.221 and 721.221/PVR cells. Importantly, although a strong PVR-mediated inhibition was observed with YTS/TIGIT, no major difference in the killing of 721.221 and 721.221/PVR was noticed when the control YTS/GFP, YTS/TIGIT Y231stop and YTS/TIGIT Y231A were used (Fig. 2). Thus TIGIT is a direct inhibitory receptor for NK cells and its inhibitory activity is depending on its ITIM.

Biochemical Characterization of TIGIT. Next, we used our YTS transfectants for biochemical analysis of TIGIT and immunoprecipitated TIGIT from YTS/TIGIT-HA cells by using anti-HA-agarose beads, followed by immunoblotting with anti-HA antibodies. Two protein bands in sizes of ~30 and 34 kDa, probably representing different glycosylation forms of TIGIT, were noticed in the YTS/TIGIT and in the YTS/TIGIT Y231A cells, whereas, as expected, lower-weight protein bands were observed in the YTS/TIGIT Y231stop cells (Fig. 3A). To further strengthen our analysis, we used a specific mouse anti-TIGIT Ab for the immunoprecipitation and again detected these two main protein products only in YTS/TIGIT and not in YTS/eco cells. These products were approximately the same size as observed above (Fig. 3B).

TIGIT Function on Primary Immune Cells. We next analyzed TIGIT expression on various immune cells by using our anti-TIGIT mAbs and observed that TIGIT is expressed on NK, NKT, CD8\(^+\), Treg, and memory CD4\(^+\) T cells (Fig. 4A). Because it was previously shown that PVR is also a ligand for the receptors DNAM-1 and CD96 (16, 17), we determined the expression and function of all three PVR-binding receptors on NK cells. We initially evaluated their expression on freshly isolated and on IL-2 activated bulk NK cells, and the expression of all of the PVR-binding receptors did not significantly change after IL-2 activation, as can be seen in Fig. 4B.

Next, we performed a redirected killing assay to address the direct function of each of the three PVR-binding receptors on NK cells. As shown in Fig. 4C, both DNAM-1 and CD96 failed to independently redirect NK cytotoxicity, whereas, in contrast, direct cytotoxicity was induced by 2B4 and Nkp30 (Fig. 4C). Thus, in agreement with previous publications (22), DNAM-1 and CD96 are coactivating receptors. On the other hand, TIGIT was shown to be an inhibitory receptor on NK cells, as the redirected killing of the IL-2 activated bulk NK cultures induced by anti-2B4 or anti-Nkp30 mAbs was inhibited by cross-linking of TIGIT with anti-TIGIT mAb #4 (Fig. 4D).

Next, we studied the TIGIT activity as part of the complex killing machinery of NK cells when encountering tumor cells expressing PVR. IL-2-activated bulk NK cell cultures were incubated with 721.221 and 721.221/PVR, and, as demonstrated in Fig. 4E, the killing of 721.221/PVR was only slightly induced, indicating that the PVR-CD96/DNAM-1 interactions are too weak in the context of 721.221/PVR cells to strongly up-regulate NK cytotoxicity. Importantly, blocking TIGIT-PVR interaction by mAb #4 and #5, but not with #1 (which did not bind the NK cells, Fig. 5A), resulted in a significantly increased killing of the PVR expressing 721.221 cells, indicating that TIGIT inhibition is indeed dominant over the coactivation of CD96 and DNAM-1.

PVR and PVRL2 but Not PVRL3 Are Ligands for TIGIT. We next assayed whether other PVR-like proteins, PVRL2 (CD112) and PVRL3 (CD223), served as ligands for TIGIT. As shown in Fig. 4D, YTS expressing TIGIT-HA mostly killed 721.221 cells, or 721.221 cells expressing PVR (721.221/PVR), by YTS/TIGIT preincubated with mAb #4 directed against TIGIT (black column) or a control anti-CD99 mAb (white column). The effector-to-target (E:T) ratio was 4:1.

Fig. 1. TIGIT inhibits YTS killing. (A) Flow cytometry analysis of the human NK cell leukemia cell line, YTS, transfected with ecotropic receptor only (YTS/eco, Upper) or with TIGIT attached to HA tag (Lower) stained with anti-HA mAb (left histograms). The same cells TIGIT were stained with seven different antibodies directed against TIGIT. Gray filled histograms, background staining with the secondary fluorescein-conjugated antibody only. Numbers indicate median fluorescence intensity. (B) Killing of 721.221 cells or 721.221 cells expressing PVR (721.221/PVR), by YTS/TIGIT preincubated with mAb #4 directed against TIGIT (black column) or a control anti-CD99 mAb (white column). The effector-to-target (E:T) ratio was 4:1.
(CD113), would be recognized by TIGIT and whether such recognition will lead to inhibition of NK cell killing. PVRL2 or PVRL3 proteins were expressed in 721.221 cells (Fig. 5A Top) and the various transfectants were stained with TIGIT-Ig and with DNAM-1-Ig. As can be seen in Fig. 5A and in agreement with Yu et al. observations (18), TIGIT-Ig bound PVRL2 but with much lower affinity as compared to PVR. Surprisingly, in contrast to the results of Yu et al., TIGIT-Ig did not interact with PVRL3, despite the fact that several PVRL3 transfectants were used (Fig. 5A Middle). As was previously reported (19), DNAM1-Ig bound both PVR and PVRL2, and, surprisingly, we also detected a weak interaction that to the best of our knowledge was not observed before, of DNAM-1 to PVRL3 (Fig. 5A Bottom). Next, to confirm the staining results, we used a cell-based reporter assay which utilizes the TIGIT-ζ chimeric protein expressed in BW cells (BW/TIGIT-ζ, shown in Fig. S2). The BW parental cells and the BW/TIGIT-ζ cells were coincubated for 48 h with the different 721.221 transfectants and in agreement with the Ig-fusion protein binding results (Fig. 5A), a significant amount of mIL-2 was detected in the supernatant of BW/TIGIT-ζ cells coincubated with 721.221/PVR and to a lesser extent with 721.221/PVRL2 (Fig. 5B). In contrast, little or no mIL-2 secretion was observed with 721.221/PVRL3 cells.

Finally, we tested the functional relevance of the PVR-like proteins-TIGIT interactions by using the YTS/TIGIT and YTS/TIGIT Y231stop cells. As seen in Fig. 5C, whereas PVR showed the strongest inhibition, the inhibition mediated by PVRL2 was less efficient, and no inhibition was observed when PVRL3, was used (Fig. 5C). The inhibition was ITIM dependent because no inhibition was observed when YTS/TIGIT Y231stop (Fig. 5C) cells were used. Thus, these combined results indicate that PVRL2 is a low-affinity ligand for TIGIT as compared with PVR, whereas PVRL3 is not a ligand for TIGIT.

TIGIT Provides an “Alternative Self” Mechanism for MHC Class I Inhibition. The expression of PVR and PVRL2 is up-regulated on tumor cells (16, 23), and thus it was logical to assume that the interactions of PVR and PVRL2 with their coactivating receptors will lead to enhanced tumor killing. On the other hand, PVR and PVRL2 are widely expressed on healthy normal cell types of epithelial origin and on peripheral blood monocytes (24, 25) and it is of course undesirable for NK cells to kill these normal cells. We therefore hypothesized that the inhibitory interactions of TIGIT would be dominant over the coactivating ones of DNAM-1 and CD96 to prevent self killing. For that purpose, we used the primary human foreskin fibroblasts cells which endogenously express PVR, PVRL2 and TIGIT.
Fig. 4. TIGIT function on primary immune cells. (A) TIGIT is expressed by NK, NKT, Treg, CD8+ T cells and memory CD4+ T cells. FACS analysis of freshly isolated peripheral blood lymphocytes subsets (indicated in the histograms) stained for TIGIT expression. NK cells were characterized by CD3-CD56+, NKT cells by CD3-CD56+, T cells either by CD8-CD56+ or by CD4-CD56-, Treg cells are CD4+CD25-FOXp3+ and memory CD4+ T cells were characterized by CD45RO staining (right histogram). (B) Flow cytometry of freshly isolated or IL-2-activated NK cells stained for TIGIT, DNAM-1, and CD96 expression. Gray shaded histograms, background staining with the secondary fluororescin-conjugated antibody only. (C) DNAM-1 and CD96 are costimulatory receptors. P815 cells were incubated either with no mAb or with the combinations of anti-2B4 or anti-NKp30 mAbS (indicated in the x axis) and anti-DNAM1 or with anti-CD96 mAbS (indicated by the different column colors). Redirected NK cytotoxicity against P815 cells was determined at E:T ratio of 3:1. (D) P815 cells were incubated either with no mAb or with combinations of anti-2B4 or anti-NKp30 mAbS (indicated in the x axis) with and without anti-TIGIT, or with anti-CD99 (indicated by the different column colors) to redirect NK cytotoxicity. Effector IL-2-activated bulk NK cells were then added in E:T ratio of 5:1. The two redirected killing assays presented in C and D were done independently. (E) Killing of the target cells 721.221 and 721.221/PVR by primary NK cells at E:T ratio of 5:1. NK cells were preincubated with the various mAbS indicated in the x axis.

Discussion

The current manuscript, together with the findings of Yu et al. (18), place TIGIT as a vital immunomodulator protein, able to control the activities of both NK and T cells.

In NK cells, the inhibitory signal of TIGIT is mediated via its ITIM. In addition, as TIGIT binds PVR with the highest affinity compared with DNAM-1 and CD96 (18), TIGIT should also physically interfere with DNAM-1 and CD96 binding. We still do not know why, in T cells, TIGIT is not a direct inhibitory receptor (18). However, it seems as if the inhibitory activity of TIGIT might be different from other NK inhibitory receptors as we could not precipitate TIGIT under nonreducing conditions (suggesting that it might be found in complexes) and we could not precipitate SHP1 with TIGIT.

In agreement with Yu et al. data, we also observed that TIGIT interacts with PVR-L2 and that this interaction leads to the inhibition of NK cell cytotoxicity. Surprisingly, and in contrast to Yu et al. data, we demonstrate in our systems that TIGIT bind PVR-L3, even when using transfectants expressing high levels of PVR-L3. We currently have no explanation for this discrepancy but since we used several systems, including functional assays, we think that the PVR-L3-TIGIT interactions, if exist, are not functional.

Remarkably, two additional coactivating receptors expressed on NK and T cells, DNAM-1 and CD96, also bind PVR, and DNAM-1 shares another ligand with TIGIT, PVR-L2 (16, 17). This situation is a reminiscent of T cells, in which the coinhibitory receptor CTLA-4 binds the same ligands (B7-1 and B7-2) as the coactivating receptor CD28 (26-29). This apparent conflict is resolved in T cells due to the fact that expression of CTLA-4 is increased after T cell activation (30). In addition, CTLA-4 binds its ligands in a much higher affinity than CD28, resulting in the inhibition of T cell functions (27). Another example for pairwise receptors is the killer Ig-like receptor (KIR) family (31) that also includes activating counterparts named KARs (32). Currently, few KARs share the same MHC class I ligands as the KIR (33), but they interact with the appropriate MHC class I proteins with lower affinity (34, 35). Thus, in both CTLA-4/CD28 and KIR/KAR pairs, inhibition is dominant and as we and Yu et al. (18) show by functional and by binding assays, the TIGIT-PVR interaction is dominant over that of CD96/DNAM1-PVR.

Interestingly, staining 721.221 transfectants with TIGIT-Ig and with DNAM-1-Ig, unexpectedly demonstrated weak binding of DNAM-1-Ig to 721.221 cells expressing PVR-L3, suggesting that PVR-L3 might be an additional ligand for DNAM-1. Thus, the PVR-binding receptors might be balanced not only by the strength of their binding but also by the variegated expression of their ligands.

In the original paper describing DNAM-1-PVR interaction (19), PVR blockade resulted in a strong reduction of cytolysis by DNAM-1-expressing YT cells. Here, we used the YT derivative YTS and, surprisingly, observed no increase in the killing of...
721.221/PVRL2 cells by the parental YTS cells. To resolve this discrepancy, we stained YTS cells with an anti-DNAM-1 antibody and, surprisingly, observed that indeed YTS cells express DNAM-1 (Fig. S5). However, when we stained YTS cells with PVRL2-Ig, no binding was observed, whereas YTS/TIGIT cells were recognized by PVRL2-Ig (Fig. S5). Thus, it seems as if, although DNAM-1 is expressed on YTS cells, for an as yet unknown reason, it cannot interact with PVRL2.

As we show here, TIGIT is an inhibitory receptor expressed by all NK cells and PVR, PVRL2 and even PVRL3 are expressed on normal cells of an epithelial origin, such as endothelial cells. Endothelial cells are continuously encountered by NK cells when, for example, NK cells extravasate to the tissues. Thus, we suggest that under normal conditions, PVR and PVRL2 provide an alternative self mechanism preventing self destruction of normal cells by NK cells.

Interestingly, enhanced expression of PVR and PVRL2 is also observed in various tumors (16, 23, 36) and several recent reports demonstrated that PVR and PVRL2 expression on tumors might enhance NK cytotoxicity (37–40). Furthermore, it was recently demonstrated that knockout of DNAM-1 resulted in enhanced tumorigenicity (22, 41). In light of our observations, we think that these previous works should be reevaluated as it seems as if the function of PVR and PVRL2 on tumor cells is not to be better recognized by NK killer and inhibitory receptors, but maybe, as suggested previously to aid tumor invasion and migration (36).

Materials and Methods

Cells and Transfectants. The cell lines used in the present study were YTS cells, transfected with the ecotropic murine retrovirus receptor (YTS/eco), the human EBV-transformed B-cell line 721.221, 721.221 transfectants (33), the mastocytoma cell line P815 and P815 stably expressing PVR (a kind gift from M. Colonna, Washington University) and the murine thymoma BW cell line. Human fibroblasts were obtained from primary cultures of foreskins. NK cells were isolated from peripheral blood lymphocyte samples.

Antibodies. The mAbs used in this work were anti-CD155/PVR clone 300907 (R&D Systems), anti-PVRL2/CD112 clone TX31 (BioLegend), anti-PVRL3/CD113 clone N3.12.4 (Santa Cruz Biotechnology), 12E7 directed against CD99 (used as an isotype control, was a gift from A. Bernard, INSERM, France), 12CAS directed against HA, anti-284 clone C1.7 (Beckman–Coulter), anti-NKp30 clone 210845 (R&D Systems), and anti-DNAM-1 clone 102511 (R&D Systems).

BW Assay and Cytotoxicity Assay. For measurement of IL-2 production resulting from the interaction between TIGIT and the PVR-family proteins, we used the BW assay and cytotoxicity assay.
assay as described previously (42), and in **S**i **Text**. The cytotoxic activity of primary NK cells, YTS/eco and YTS transfectants against 721.221 parental cells and transfectants, PB15 and primary human foreskin fibroblasts target cells was assessed in 5-h 51Cr release assays as previously described (42).

Immunoprecipitation and Western Blot Analysis. YTS cells as well as YTS transfectants were lysed with 1% (vol/vol) Nonidet P-40 [140 mM NaCl, 10 mM NaPO4 (pH 7.2)] containing Complete Mini protease inhibitors (Roche). In some experiments, RIPA buffer was used. Lysates were cleared by centrifugation, precleared with 40 L of G-Sepharose, and then immunoprecipitated with either 50 L of anti-HA agarose (Sigma) or with 5 mg of TIGIT-specific antibodies, followed by 50 L of G-Sepharose. Immune complexes were separated by SDS-PAGE, transferred to nitrocellulose membranes, and probed with mouse mAbs directed against human receptors to coimmunoprecipitate proteins with TIGIT. After washing, membranes were incubated with a BM Chemiluminescence Western Blotting kit (Roche). Blots were developed by using SuperSignal West Pico Chemiluminescent Substrate (Pierce, Rockford, IL) according to the manufacturer's protocol. Signals were detected with the Chemidoc XRS system (Bio-Rad). Immunoblots were digitally scanned and quantitative analysis was performed using Quantity One software (Bio-Rad).

ACKNOWLEDGMENTS. This work was supported by grants from the U.S.—Israel Binational Science Foundation, the Israeli Cancer Research Foundation, The Israeli Science Foundation (ISF), European Consortium Grants MRTN-CT-2005 and LSCH-CT-2005-518178, the Association for International Cancer Research, the ISF (Moraš) and the Israel–Croatia Research Grant (all to O.M and S.J.), O.M is a Crown professor of Molecular Immunology.

Fig. 6. TIGIT protects normal cells expressing PVR and PVR-Like proteins from NK cell-mediated killing. (A) Primary fibroblasts characterization. Flow cytometry analysis of primary human foreskin fibroblast (HFF) cells stained with the indicated mAbs and fusion proteins (black lines). Gray filled histograms are the background staining with the secondary fluorescein- (for mAbs) or phycoerythrin- (for fusion proteins) conjugated antibody only. (B) Killing of the primary human foreskin fibroblasts by primary NK cells at an E/T ratio of 20:1. NK cells were either preincubated or not with anti-TIGIT mAb #5 or with no mAb. Fibroblasts were preincubated either with no fusion proteins or with the indicated fusion proteins.
Supporting Information

Stanietsky et al. 10.1073/pnas.0903474106

SI Text

Generation of Fusion Proteins. The coding sequence of TIGIT was cloned as a fusion to the Fc fragment of IgG1 to generate the recombinant Fc-fused protein. The C-terminal Glu of TIGIT at amino acid 139 position of the TIGIT was fused to the heavy chain hinge of a deglycosylated Fc (N297A), followed by the CH2 and CH3 regions. The ORF of the recombinant protein was codon optimized for high-level expression in mammalian cells. The optimized DNA sequence was synthetically synthesized by GenArt with the addition of flanking DNA sequences corresponding to EcoRI and NotI restriction sites at the 5′ and 3′ ends of the DNA fragment, respectively. The expression vector was constructed by double digestion of the optimized DNA fragment with EcoRI and NotI, followed by its ligation into pIRESpuro3 (Clontech Laboratories, Inc.). For the production of DNA-M1-Ig fusion protein, the sequence encoding the extracellular portion of DNA-M1 was amplified by PCR using the 5′ primer CGCATATGCCTGCCACATGGATATATTCCACATTCTTACTTTTG (including EcoRV restriction site) and the 3′ primer CGGATCCACAAAGAGGGTATATTGGTTAT (including BamHI restriction site). This PCR-generated fragment was cloned into the expression vector containing the mutated Fc portion of human IgG1 (Fc mut pIRESpuro3). The resulting constructs were transfected into HEK-293T cells by using the FuGENE 6 Transfection Reagent (Roche Diagnostics). After 48 h, transfected cells were subjected to antibiotic selection with 5 μg/mL puromycin (Sigma–Aldrich). Stable pools were analyzed for protein secretion by SDS/PAGE. Supernatants were collected and purified on a Poros 20 protein G column in the High Pressure Perfusion Chromatography Station, BioCAD (PerSeptive Biosystems).

Generation of Transfectants. For the generation of 721.221 cells expressing PVR, the PVR cDNA was amplified by PCR using the 5′ primer CGGATCCGCCGCCACCATGGCCCGGGA (including ApaI restriction site) and the 3′ primer GGTGTCTCCTCC (including HindIII restriction site) and the 3′ end of the gene by using an internal 5′ primer CCGATATGCCTGCCACCATGGCCCGGGA (including ApaI restriction site). The expression vector was constructed by double digestion of the optimized DNA fragment with EcoRI and NotI, followed by its ligation into pIRESpuro3 (Clontech Laboratories, Inc.). For the production of DNA-M1-Ig fusion protein, the sequence encoding the extracellular portion of DNA-M1 was amplified by PCR using the 5′ primer CGGATCCACAAAGAGGGTATATTGGTTAT (including BamHI restriction site) and the 3′ primer CGGATCCACAAAGAGGGTATATTGGTTAT (including BamHI restriction site). This PCR-generated fragment was cloned into the expression vector containing the mutated Fc portion of human IgG1 (Fc mut pIRESpuro3). The resulting constructs were transfected into HEK-293T cells by using the FuGENE 6 Transfection Reagent (Roche Diagnostics). After 48 h, transfected cells were subjected to antibiotic selection with 5 μg/mL puromycin (Sigma–Aldrich). Stable pools were analyzed for protein secretion by SDS/PAGE. Supernatants were collected and purified on a Poros 20 protein G column in the High Pressure Perfusion Chromatography Station, BioCAD (PerSeptive Biosystems).

ELISA. Ninety-six-well plates were coated with 25 ng of protein per well in 100 mM sodium carbonate buffer, washed and blocked with 5% milk in PBS. 50 L of hybridoma culture supernatant was applied for 1 h at room temperature. Plates were washed with sodium carbonate buffer and then incubated with alkaline phosphatase-conjugated goat anti-mouse IgG (Sigma). Plates were washed and incubated with 100 L of 1 mg/mL p-nitrophenyl phosphate disodium (PNPP) (Sigma). Positives clones were further confirmed by staining of BW/TIGIT-ζ and YTS/TIGIT-HA.

Flow Cytometry. Cells were stained with either mAbs or Ig fusion proteins as previously described (1).

Stanietsky et al. www.pnas.org/cgi/content/short/0903474106
Fig. S1. TIGIT-Ig binds to PVR (CD155). (A) The TIGIT-Ig fusion protein, composed of the extracellular domain of the TIGIT receptor fused to the Fc portion of human IgG1, was used for staining several transfectants expressing various ligands for different inhibitory and activating NK receptors or infected with influenza (black lines). TIGIT-Ig bound neither to the inhibitory ligands HLA-Cw4/Cw6/A3/B7/G, CD66a (CEACAM1) and CEA nor to the activating ligands MICA, ULBP1 and hemagglutinin (cell infected with influenza). A very strong binding of TIGIT-Ig was observed to P815 cells expressing PVR, also stained with anti-PVR mAb. Gray filled histograms are the background staining with the secondary phycoerythrin- or fluorescein-conjugated antibody only. (B) Flow cytometry analysis of the colon carcinoma cell line RKO (chosen for its strong binding to TIGIT-Ig, see Fig. S2) stained with TIGIT-Ig fusion protein either alone (black empty histogram), or after blocking with mAb against PVR (gray empty histogram), or with a control Ab against MHC I (dashed empty histogram). The filled gray histogram is the background staining with the secondary phycoerythrin-conjugated antibody only. Numbers indicate median fluorescence intensity (MFI).
Fig. S2. TIGIT activation by PVR-expressing cells. (A) A perfect correlation was observed between the expression of PVR and TIGIT-Ig binding. Flow cytometry analysis of PVR expression by using specific mAb (Upper) or TIGIT-Ig fusion protein binding (Lower) of the indicated cell lines (black lines). Gray filled histograms for anti-PVR staining is the background staining with the secondary fluorescein-conjugated antibody only. Gray filled histograms for TIGIT-Ig staining is the background staining with the secondary phycoerythrin-conjugated antibody only. (B) To test the functional relevance of TIGIT-PVR interaction, the extracellular portion of TIGIT was cloned in frame with the transmembrane and cytoplasmic portions of a mouse ζ-chain. The TIGIT-ζ construct was expressed in BW cells (BW/TIGIT-ζ). Engagement of the TIGIT receptor on those cells would elicit the secretion of murine IL-2 (mIL-2). The BW parental cells and the BW/TIGIT-ζ cells were coincubated for 48 h with P815, P815/PVR or the various cell lines. Mouse IL-2 secretion was measured by ELISA. Significant amounts of mIL-2 were detected in the supernatant of BW/TIGIT-ζ cells coincubated with P815/PVR and all other cell lines expressing PVR.
Fig. S3. Characterization of YTS and 721.221 transfectants. Because the killing of 721.221 cells by YTS cells is mediated mainly through the interaction between the activating 2B4 receptor on YTS cells and its ligand, CD48, on the target cells, it is important to demonstrate that 2B4 is present in equal levels on the parental YTS/eco (Upper Left) and on YTS/TIGIT cells (Lower Left). We also expressed PVR in 721.221 cells and demonstrated that it is indeed recognized by the anti-PVR mAb and by the TIGIT-Ig fusion protein (Right). We further showed that CD48 is present in equal levels on all 721.221 cells (Right). Gray filled histograms, background staining with the secondary fluorescein- or phycoerythrin-conjugated antibody only.
Fig. S4. Binding of the various anti-TIGIT mAbs to primary NK cells. FACS analysis of IL-2 activated bulk NK cell cultures stained with seven different antibodies directed against TIGIT. Gray shaded histograms, background staining with the secondary fluorescein-conjugated antibody only. Mouse antibodies #4-7, which recognized TIGIT in the highest affinity (Fig. 1A), also recognized TIGIT on IL-2-activated bulk NK cells.
Fig. S5. DNAM1 on YTS cells cannot interact with PVR. Flow cytometry analysis of YTS/eco (Upper) and YTS/TIGIT (Lower) stained with the indicated mAbs and PVR-Ig fusion protein (black lines). Gray filled histograms are background staining with the secondary fluorescein- or phycoerythrin-conjugated antibody only. Notably although YTS cells express DNAM-1 the PVR-Ig, a fusion protein that is composed from the extracellular domain of PVR and the Fc portion of a human IgG, demonstrated no binding, whereas YTS/TIGIT is recognized by PVR-Ig.