Corrections

MEDICAL SCIENCES

The authors note that, in Fig. 3K, the labels “AdCA5” and “AdLacZ” in the legend of the bar graph are reversed. The corrected figure and its legend appear below.

ECOLOGY

The authors note that, in the second sentence of the legend for Fig. 2, “Dashed lines represent 95% confidence intervals; closed circles, MPAs; open circles, fished sites” should instead appear as “Dashed lines represent 95% confidence intervals; closed circles, fished sites; open circles, MPAs.” This error does not affect the conclusions of the article. The figure and its corrected legend appear below.

Fig. 3. Histological analysis of ischemic adductor muscles from diabetic mice after therapy. (A–D) Hematoxylin-eosin staining of tissue sections on day 7 after femoral artery ligation and treatment with AdLacZ (A) or AdCA5 (B) (original magnification, 40×). Black arrow indicates area infiltrated with inflammatory cells and red arrow indicates area with preservation of normal muscle tissue histology. Boxed areas are shown at higher power (C and D; original magnification, 200×). (E–J) Immunohistochemical staining of infiltrated areas for macrophages (E and F), lymphocytes (G and H), and neutrophils (I and J) using F4/80, CD3 and myeloperoxidase antibodies, respectively (original magnification, 200×). (K) Quantification of infiltrated and preserved areas as percentage of total tissue area with mean ± SEM (n = 4 mice each) shown. **, P < 0.01 (Mann–Whitney test).
Adenoviral transfer of HIF-1α enhances vascular responses to critical limb ischemia in diabetic mice

Kakali Sarkar, Karen Fox-Talbot, Charles Steenbergen, Marta Bosch-Marcé, and Gregg L. Semenza

Diabetes is a major risk factor for ischemic disease. Treatment options for diabetic patients with peripheral arterial disease when revascularization is not possible are limited, resulting in a high incidence of limb amputation. We evaluated the therapeutic potential of AdCA5, an adenovirus encoding a constitutively active form of HIF-1α, in a diabetic model of critical limb ischemia. Diabetic db/db and nondiabetic db/+ mice were subjected to unilateral femoral artery ligation. Limb perfusion, tissue viability, and motor function were more severely impaired in db/db mice. Intramuscular injection of AdCA5 into the ischemic limb of db/db mice increased the recovery of limb perfusion and function, reduced tissue necrosis, rescued the diabetes-associated impairment of circulating angiogenic cells, enhanced endothelial nitric oxide synthase activation, and increased vessel density and luminal area in the ischemic limb.

Vascular Responses to Ischemia Are Impaired in db/db Mice. Age- and sex-matched db/db and nondiabetic db/+ littermates were subjected to unilateral femoral artery ligation. Recovery of limb perfusion, as determined by serial laser Doppler perfusion imaging (LDPI) (Fig. 1A), was significantly blunted in db/db mice compared with db/+ mice (Fig. 1B). Impaired recovery of perfusion in db/db mice was associated with a marked increase in tissue necrosis (Fig. 1C). Similarly, ambulatory impairment was significantly increased in db/db as compared to db/+ mice (Fig. 1D).

Constitutively Active HIF-1α Improves Vascular Recovery in Ischemic db/db Mice. We previously demonstrated that administration of AdCA5, an adenovirus encoding a constitutively active form of HIF-1α, improves recovery of limb perfusion following unilateral femoral artery ligation in nondiabetic mice (9). To determine whether increased AdCA5 treatment could overcome the diabetes-associated impairment in vascular responses to ischemia, db/db mice received an intramuscular injection of AdCA5 or AdlacZ (a control adenovirus encoding β-galactosidase) along the former course of the excised femoral artery. Quantitative real-time reverse-transcription PCR analysis of HIF-1α mRNA levels in calf muscle on day 3 after femoral artery ligation...
and gene therapy, using primers that amplified both endogenous mouse HIF-1α and human HIF-1αCA5, revealed 3-fold increased HIF-1α mRNA in the ischemic relative to nonischemic limbs of mice treated with AdLacZ, whereas HIF-1α mRNA levels were 20-fold increased in the ischemic relative to nonischemic limbs of mice treated with AdCA5 (Fig. S2). Similar results were obtained on day 7 (Fig. S2B). Thus, AdCA5 treatment significantly increased HIF-1α mRNA levels in the ischemic limb for at least 1 week following femoral artery ligation.

By day 3, the recovery of limb perfusion as determined by LDPI (Fig. 2A) was also significantly increased in AdCA5-treated as compared to AdLacZ-treated db/db mice and this difference persisted throughout the observation period (Fig. 2B). By day 21, AdCA5-treated mice had recovered 85% of blood flow compared to only 24% recovery in AdLacZ-treated mice. AdCA5-treated db/db mice also manifested significantly less tissue damage and neurological deficits as compared to AdLacZ-treated littermates (Fig. 2C and D).

We next examined the histopathology of adductor muscles from the ischemic limb of AdLacZ- and AdCA5-treated mice on day 7. Tissue protection in AdCA5-treated diabetic mice was confirmed by microscopic inspection of hematoxylin/eosin-stained sections (Fig. 3A–D). AdCA5-treated mice showed a significantly increased area of tissue preservation and a significantly decreased area of inflammatory cell infiltration as compared to AdLacZ-treated mice (Fig. 3K). Infiltration of macrophages, which promote arteriogenesis, was observed in both treatment groups (Fig. 3E and F). In contrast, infiltration of lymphocytes (Fig. 3G and H), and neutrophils (Fig. 3I and J) into ischemic limb was markedly increased in AdLacZ-treated as compared to AdCA5-treated mice.

To assess vascularization, adductor muscle sections from

Fig. 1. Effect of diabetes on recovery after femoral artery ligation. (A) Representative laser Doppler perfusion imaging (LDPI) of diabetic (db/db) and nondiabetic (db/+) mice immediately pre- and postligation and then 3 and 21 days later. The red-to-blue spectrum represents the range of blood flow from highest to lowest, respectively. (B) LDPI was performed at the indicated times after femoral artery ligation and the ratio of perfusion in the ischemic/nonischemic limb was determined. (C) Tissue necrosis (C) and ambulatory impairment (D) were scored at each time point using criteria described in Materials and Methods. Data in (B–D) are mean ± SEM (n = 4–5 mice each). Differences between the two groups were assessed by two-way ANOVA with Bonferroni correction (brackets at right); *, P < 0.05, **, P < 0.01, and ***, P < 0.001 for comparison between groups at individual time points.

Fig. 2. Effect of AdCA5 therapy on the recovery of diabetic mice after ischemia. AdLacZ or AdCA5 was administrated immediately after femoral artery ligation. (A) Representative serial LDPI is shown. (B–D) The ratio of perfusion in nonischemic/ischemic limb was determined (B), and tissue necrosis (C) and ambulatory impairment (D) were scored at each time point. Mean ± SEM values are shown (n = 7). Differences between groups were assessed by two-way ANOVA with Bonferroni correction (brackets at right); ***, P < 0.001 at individual time point.
ischemic limbs on day 21 were stained for the presence of smooth muscle α-actin (SMA), which is expressed in both pericytes and smooth muscle cells of mature blood vessels (Fig. 4A). Sections from AdCA5-treated ischemic limbs had a significantly increased number of SMA+ vessels (4.75 ± 0.73 per 200× field) as compared to the non-ischemic contralateral limbs (0.60 ± 0.18 per field) or to AdLacZ-treated ischemic limbs (1.70 ± 0.21 per field). Ischemic limbs from both treatment groups showed an increase in vessel luminal area compared to the respective contralateral limbs (AdLacZ, 0.16 ± 0.02% vs. **P < 0.01 vs. contralateral NIS limb; #, P < 0.01 vs. AdLacZ-treated ISC limb (Student’s t-test). (C) Vessel luminal area was determined as a percentage of the total tissue area of the field. *, P < 0.05 vs. contralateral NIS limb; #, P < 0.01 vs. AdLacZ-treated ISC limb (Mann–Whitney test).

Fig. 4. Immunohistochemical analysis of tissue vascularization, using an anti-SMA antibody. (A) Representative sections of adductor muscles from nonischemic (NIS) and ischemic (ISC) limbs harvested on day 21 after ligation and treatment with AdLacZ or AdCA5 (original magnification, 200×). (B) Mean number of SMA+ vessels per 200× field in adductor muscle sections. Data are mean ± SEM (n = 4 mice each). **, P < 0.01 vs. contralateral NIS limb; #, P < 0.01 vs. AdLacZ-treated ISC limb (Student’s t-test). (C) Vessel luminal area was determined as a percentage of the total tissue area of the field. *, P < 0.05 vs. contralateral NIS limb; #, P < 0.01 vs. AdLacZ-treated ISC limb (Mann–Whitney test).
Fig. 5. Effect of AdCA5 treatment on the number of CACs in peripheral blood of diabetic mice following femoral artery ligation. AdCA5 or AdLacZ was injected into the ischemic limb immediately after surgery. After 3 or 7 days, peripheral blood was collected and analyzed by flow cytometry to detect the following populations of CACs: CD34+/VEGFR2+ (A), Sca-1+/VEGFR2+ (B), and CD34+/CXCR4+ (C). Mean ± SEM (n = 4–5 each) is shown. Statistical significance was assessed by two-way ANOVA with Bonferroni correction (brackets at top). *, P < 0.05 vs. AdLacZ.

0.07 ± 0.01% of total area; AdCA5, 1.05 ± 0.22% vs. 0.06 ± 0.01% of total area) (Fig. 4C). However, SMA+ vessel area was significantly increased in AdCA5-treated, as compared to AdLacZ-treated ischemic limbs. The increased number and luminal area of SMA+ vessels provides a histological basis for the increased blood flow and tissue viability in the ischemic limbs of AdCA5-treated db/db mice.

AdCA5 Gene Therapy Increases the Number of CACs in Ischemic db/db Mice. Analysis of peripheral blood on days 3 and 7 after femoral artery ligation revealed significantly increased numbers of CD34+/VEGFR2+ cells on days 3 and 7 (Fig. 5A) and Sca-1+/VEGFR2+ cells on day 3 (Fig. 5B) in AdCA5-treated as compared to AdLacZ-treated mice. Overall, CD34+/CXCR4+ cells were significantly increased in AdCA5-treated as compared to AdLacZ-treated mice, although the differences at individual time points were not significant (Fig. 5C).

AdCA5 Gene Therapy Rescues eNOS Signaling. Endothelial nitric oxide synthase (eNOS) activity is essential for EPC mobilization from bone marrow to peripheral blood and for effective ischemia-induced vascularization (23, 24). Moreover, activation of eNOS, as determined by its phosphorylation at serine residue 1,177, is impaired in diabetic bone marrow, resulting in depressed EPC mobilization (25). We determined the levels of S1177-phosphorylated eNOS (phospho-eNOS) and total eNOS protein in ischemic calf muscles on day 7 by immunoblot assays (Fig. 6A). Total eNOS protein levels were decreased in AdLacZ-treated ischemic limbs compared to the contralateral nonischemic limbs, whereas AdCA5 treatment restored total eNOS protein in ischemic limbs to levels similar to those in contralateral nonischemic limbs (Fig. 6B). Phospho-eNOS protein levels were significantly increased in AdCA5-treated ischemic muscle compared to contralateral nonischemic muscle or to AdLacZ-treated ischemic muscle (Fig. 6C).

Discussion
Diabetes is a major risk factor for limb ischemia, often resulting in neuropathy, tissue ulceration, and, ultimately, lower extremity amputation. Therapeutic angiogenesis holds promise as a treatment modality to prevent amputation in diabetic patients with CLI who are not candidates for currently available revascularization procedures. We have investigated the therapeutic efficacy of AdCA5 administration in a preclinical model of diabetic CLI. Two limitations of this model should be noted. First, CLI in diabetic patients is the result of a chronic and progressive process in contrast to the acute arterial occlusion that occurs in mice subjected to femoral artery ligation. Second, whereas db/db mice may model the role of genetic predisposition, mice maintained on a high fat diet may better model the role of nongenetic risk factors for human type 2 diabetes.
In this study we observed impaired tissue perfusion, severe tissue necrosis, and a marked degree of ambulatory impairment following femoral artery ligation in db/db mice. We demonstrated that AdCA5 treatment significantly improved limb tissue perfusion, viability, and function by inducing therapeutic angiogenesis, as manifested by increased numbers of CACs in peripheral blood, as well as increased eNOS activation and increased vessel density/luminal area in ischemic limb tissue. We have demonstrated that HIF-1α mRNA levels remain significantly elevated for at least 7 days after AdCA5 administration. It appears that this first week following arterial occlusion represents a critical window of time, during which sufficient blood flow must be restored to maintain tissue viability. Our data indicate that AdCA5 provides a therapeutic stimulus that dramatically increases the recovery of perfusion in db/db mice.

CACs are mobilized from the bone marrow and other tissues in response to ischemia and contribute to the vascular remodeling of ischemic tissue. CACs are reduced in diabetic patients, which is thought to contribute to impaired angiogenesis (26). In the present work, we have shown that the mobilization of CACs after femoral artery ligation is markedly impaired in db/db mice. CD117+/VEGFR2+ and CXCR4+ cell numbers are decreased in peripheral blood of type 2 diabetic patients and the number of CXCR4+ cells is further decreased in diabetic patients with vascular complications (27). Diabetic patients with ischemic foot lesions due to end-stage peripheral vascular disease have a greater reduction of CD34+ and CD34+/VEGFR2+ cells as compared with diabetic patients with peripheral vascular disease, but without foot lesions (17). These data highlight the importance of our finding that AdCA5 treatment significantly increased the number of CD34+/VEGFR2+ , Sca-1+/VEGFR2+ , and CD34+/CXCR4+ CACs in diabetic mice with CLI.

Compared to controls, patients with type 2 diabetes have decreased HIF-1β mRNA levels in pancreatic islet tissue, which suggests that changes in HIF-1 activity may contribute to the pathogenesis of diabetes (28). A human genetic polymorphism that results in the substitution of serine for proline at residue 582 of HIF-1α is associated with type 2 diabetes (29). The P582S polymorphism is also associated with absence of coronary collaterals in patients with ischemic heart disease (30). Taken together with our data, these studies provide a link between HIF-1, diabetes, and impaired vascularization in humans and mice.

Diabetes may also result in changes in HIF-1 activity, as hyperglycemia inhibits the induction of HIF-1α in hypoxic cells (31). Hyperglycemia reduces eNOS expression in hypoxic murine EPCs due to HIF-1α modification by methylglyoxal, a consequence of increased reactive oxygen species formed in hyperglycemia (32). Bone marrow-derived EPCs from db/db mice showed reduced expression of eNOS and phospho-eNOS (33). AdCA5 restored total eNOS levels and significantly increased phosphorylation of eNOS in the ischemic limb. Our data suggest that the restoration of CACs and eNOS signaling that results from AdCA5 treatment contributes to the improved vascular response to ischemia in the diabetic setting. These results provide preclinical data supporting a trial of AdCA5 gene therapy in no-option diabetic patients with CLI.

Materials and Methods

Mice. Male db/db and db/+ littermates (strain BKS.Cg-m+/+ Leprdb/J) were purchased from The Jackson Laboratory. Animal care and experimental procedures were conducted under a protocol approved by the Johns Hopkins University Animal Care and Use Committee. At the start of the experiments, mice were 8 weeks old.

Surgery and Gene Therapy. Femoral artery ligation was performed as described (9). AdCA5 is a constitutively active form of human HIF-1α that contains a deletion (residues 392–520) and two missense mutations (Pro567Thr and Pro658Gln). Large-scale adenovirus production was performed at the NHLBI Vector Core Facility (University of Pittsburgh). Immediately after femoral artery ligation, AdLacZ or AdCA5 was injected at three sites in the adductor muscle and one site in the gastrocnemius muscle of the left hindlimb of db/db mice. A total of 2 × 10⁸ plaque-forming units were injected in each mouse.

Blood Flow Analysis and Physical Examination. Blood flow was measured by Laser Doppler Perfusion Imaging system (Moor Instruments, Inc.) and expressed as signal in the ischemic/nonischemic limb (9). Ambulatory impairment was scored as follows: 0 – plantar/taill effusion to resist gentle tail traction, 1 – plantar but not toe flexion, 2 – no plantar or toe flexion, 3 – no use of foot. Tissue necrosis was scored as follows: 0 – no necrosis, 1 – cyanosis/discoloration, 2 – necrosis/loss of 1–2 toes, 3 – necrosis/loss of 3–5 toes, 4 – necrosis extending to dorsum pedis or higher.

Flow Cytometry. Blood was subjected to red cell lysis and Fc blockade (CD16/ CD32; BD Pharmingen). Mononuclear cells were analyzed by flow cytometry (LSRII; Becton Dickinson) using phycoerythrin-conjugated anti-VEGFR2 (Avax 12d1; BD Pharmingen) and FITC-conjugated anti-CD34 (RAM38; eBioscience), anti-CD105 (BD; eBioscience), anti-CD31 (BD; eBioscience), and anti-CD45 (BD; eBioscience) antibodies. Two hundred thousand events were acquired, the live cell population in the forward-scatter vs. side-scatter window was gated, and double-positive cells were expressed as a percentage of total cells.

Quantitative Real-Time Reverse Transcription PCR. Total RNA was extracted from muscle using TRIzol (Invitrogen), precipitated in isopropanol, and treated with DNase I (Ambion). A 1-μg aliquot of total RNA served as template for cDNA synthesis using the iScript kit (BioRad). Real-time PCR was performed using IQ SYBR Green Supermix and the iCycler Real-time PCR Detection System (BioRad). HIF-1α mRNA relative to RPL13A mRNA was calculated using the comparative ΔCt method (9).

Histology and Immunohistochemistry. Adductor muscles were harvested, fixed in 10% formalin, paraffin embedded, and 5-μm-thick sections were stained and immunostained with anti-CXCR4 and anti-eNOS antibodies. Areas of inflammatory cell infiltration and tissue preservation (normal histology) were quantified using Image J software (National Institutes of Health) and reported as a percentage of total area. For immunohistochemistry, heat-induced antigen retrieval was performed after sections were deparaffinized. Endogenous peroxidase activity was blocked by incubation in H₂O₂/methanol. Nonspecific binding was blocked with serum-free protein block (DAKO Corporation) or 5% rabbit serum. Sections were incubated with the following primary antibodies (at indicated dilution) for 1 h at room temperature or overnight at 4 °C: rat anti-mouse F4/80 (1:100, Invitrogen), rabbit anti-myeloperoxidase (1:50, Abcam), and rabbit anti-CD3 (1:500, Abcam). Sections were incubated with secondary biotinylated antibodies, washed in PBS, and incubated with Vectastain ABC Elite (Vector Labs). The avidin-biotin complex was visualized using a 3, 3′ diaminobenzidine peroxidase substrate (Vector Labs). SMA staining was performed using a monoclonal antibody against smooth muscle α-actin (1:50, Sigma-Aldrich), ABC-AP kit (Vector Labs) and AP substrate kit (Vector Labs). Sections were counterstained in hematoxylin (Richard-Allen). SMA’ vessel density and vessel area were quantified in 5 random fields per slide at 200× power using Image J software.

Immunoblot Assays. Protein lysates of ischemic calf muscles were prepared in RIPA buffer containing protease and phosphatase inhibitor cocktails (Complete Protease Inhibitor mixture and PhosSTOP, Roche Diagnostics) and fractionated by SDS/PAGE. Antibodies against eNOS and phospho-eNOS [Ser-1177] were from Novus Biologicals and Cell Signaling Technology, respectively.

Statistical Analysis. Results are presented as mean ± SEM. ANOVA followed by Bonferroni post hoc analysis, Student’s t-test, or Mann-Whitney U test was used to determine the significance of differences in means between groups.

ACKNOWLEDGMENTS. We thank Karen Padgett (Novus Biologicals) for providing anti-eNOS antibodies, Andrea Gambotto and Susan Schoonover (University of Pittsburgh) for large-scale adenovirus preparations, and Ryan Chang for technical assistance. This work was supported by the American Diabetes Association and the Johns Hopkins Institute for Cell Engineering. G.L.S. is the C. Michael Armstrong Professor at the Johns Hopkins University School of Medicine.

