Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise

aWoods Hole Oceanographic Institution, Woods Hole, MA 02543; bNational Aeronautics and Space Administration Astrobiology Institute and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; cDuke University Marine Laboratory, Beaufort, NC 28516; dMarine Biological Laboratory, Woods Hole, MA 02543; eAustralian Centre for Field Robotics, University of Sydney, Sydney, New South Wales 2006, Australia; fInstitut des Sciences de la Terre de Paris, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7193, Paris, France; gCentre National de la Recherche Scientifique—GéoAzur, Université de Nice-Sophia Antipolis, Valbonne, France; hNational Institute of Advanced Science and Technology, Tsukuba, Ibaraki 305-8567, Japan; and Laboratory for Computational Sensing and Robotics, The Johns Hopkins University, Baltimore, MD 21218-2681

Communicated by Stanley R. Hart, Woods Hole Oceanographic Institution, Woods Hole, MA, June 28, 2010 (received for review May 24, 2010)

Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to prebiotic chemistry and the origins of life. Here we report evidence for previously unknown, diverse, and very deep hydrothermal vents along the ~110 km long, ultraslow spreading Mid-Cayman Rise (MCR). Our data indicate that the MCR hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultramafic systems and, at ~5,000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent types identified here and their relative geographic isolation make the MCR unique in the oceans. These new sites offer prospects for an expanded range of vent-fluid compositions, varieties of abiotic organic chemical synthesis and extremophile microorganisms, and unparalleled faunal biodiversity—all in close proximity.

Here we report results from an investigation into the distribution and nature of sea floor venting along the Mid-Cayman Rise (MCR) and demonstrate the occurrence of diverse styles of hydrothermal activity spanning a broad range of depth, temperature and rock types. The MCR, a ~110 km long, deep (4,500–6,500 m) and ultraslow (<2 cm yr−1) spreading ridge, is tectonically and geographically isolated from all other components of the global ridge system (14; Fig. 1). It represents a particularly exciting environment to study species dispersion and the evolution of vent organisms due to its location at the deepwater gateway that used to exist between the eastern Pacific and equatorial Atlantic oceans prior to the closure of the Isthmus of Panama at ~3.1 Ma (15). For our work, an instrument package composed of an optical back-scatter sensor to detect suspended particles, an Eh electrode to detect reduced chemical species, and a conductivity, temperature, depth instrument (CTD), was deployed from the deep-diving Nereus vehicle (16) and a wire-line rosette equipped with 23 acid-cleaned 10 L Niskin bottles. By using in situ sensing, together with shipboard and laboratory analyses of water samples for chemical (Eh, CH4, 3He, Fe, Mn) and microbial indicators, we have identified, located, and deduced the nature of a series of hydrothermal sources along the MCR.

While hydrothermal vent sites only typically occupy small areas on the sea floor (~100 m across), the plumes formed when hot, acidic vent fluids mix turbulently with cold deep-ocean seawater can rise hundreds of meters through the water column before attaining neutral buoyancy. These plumes can then be detected for kilometers or more away from their source, as they disperse, due to their enrichment in dissolved chemicals, mineral particulates, and microbes when compared to the ambient water column (17). To date, three “end-member” vent types have been identified at midocean ridges. Type 1, the most commonly reported, is a mafic-hosted, high-temperature system that can occur under neovolcanic (e.g., East Pacific Rise, 9–10°N) (18) or tectonic [e.g., TAG, 26°N, Mid-Atlantic Ridge (MAR)] (19) control, with end-member fluid temperatures up to 407°C and relatively low

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

Data deposition: Microbiological sequences have been deposited in the VAMPS database, https://vamps.mbl.edu (Dataset BPC_CH_V6V4).

To whom correspondence should be addressed. E-mail: cgerman@whoi.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009205107/-/DCSupplemental.

1To whom correspondence should be addressed. E-mail: cgerman@whoi.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009205107/-/DCSupplemental.
dissolved CH₄ concentrations (20) that result in low CH₄∕Mn ratios in their overlying plumes (21). Type 2 is a distinct form of high-temperature venting associated with serpentinization of ultramafic rocks (e.g., Rainbow, 36°N MAR), characterized by high H₂, CH₄, and Fe concentrations in the vent fluids (8, 9) and resulting in much higher plume height CH₄∕Mn ratios (12). Type 3 is the most recently identified, from the Lost City site, 30°N MAR (10) and also involves serpentinization of ultramafic rock but yielding substantially lower fluid temperatures exiting the sea floor (∼40-90°C). The Lost City style of venting is associated with long-lived detachment surfaces that play an important role in extension along all slow spreading ridges (22). Although plume data for Lost City are not available, the vent fluids contain CH₄ and H₂ at levels comparable to Type 2 vents but with much lower dissolved metal concentrations (10, 23). Plumes that have previously been attributed to such a source—at the 15°20′N fracture zone, MAR—exhibit extremely high CH₄∕Mn ratios and an absence of particulates (24).

Because of the diversity in styles of venting that can occur along slow and ultraslow ridges, we chose to employ a diverse array of geochemical (Eh, CH₄, ³²He, Fe, Mn) techniques for our study of the MCR to ensure that we would be able to both recognize, and distinguish between, water column signals from any Type 1, 2, or 3 vents present. Remarkably, our results provide evidence that one example of all three of these distinct vent types are currently active on the MCR, all within less than 100 km along-axis.

Results & Discussion

Most of the stations that we occupied along and across the MCR (spaced ≤10 km apart, both along the neovolcanic ridge-axis and close to the rift-valley walls) (14) revealed no evidence for any form of hydrothermal discharge (black circles in Fig. 1). However, three distinct sites of activity were identified. The first of two extremely deep sites, which we have named Piccard and Walsh in honor of the deepest diving human exploration of the ocean 50 years ago, lies in the northern half of the MCR (Fig. 1). At the Piccard site, CTD hydrocasts and *Nereus* surveys detected strong Eh and particulate signals in a double plume, at 3,900 m and 4,250 m, that were coregistered with positive anomalies in four diagnostic hydrothermal tracers (Fig. 2A): total dissolved Fe (TDFe), dissolved ³²He anomaly (δ³²He = [³²He/³²He]_sample / [³²He/³²He]_air-1)100), dissolved CH₄ and total dissolved Mn (TDMn). Microbial cell counts were also enhanced in both plume layers (Fig. 2A) reaching concentrations 2–4 times higher (23,000 cells/ml at 4,150 m; 34,000 cells/ml at 3,950 m) than background values from above plume height (8,700 cells/ml).

Ratios of CH₄ to Mn at plume height provide a clear distinction between mafic-hosted (low CH₄∕Mn) and ultramafic-hosted (high CH₄∕Mn) hydrothermal systems (21, 24). At the Piccard site, plume CH₄∕Mn ratios are the lowest detected along the MCR (Fig. 3A), directly comparable to plume ratios reported from the Type 1, mafic-hosted TAG hydrothermal field (26°N MAR) (21), and consistent with images of basaltic pillow and sheet flows reported previously from the MCR rift-valley floor (14). The combination of pronounced optical back-scatter anomalies together with high concentrations of both dissolved gases (CH₄, ³²He) and metals (TDFe, TDMn) in the Piccard plume provide clear evidence for a source of high-temperature venting on the underlying sea floor. Further, interception of distinct buoyant plume signals at this site, at 4,400–4,500 m depth (Fig. 4), allows us to predict the location of the source of venting. Theory that has proven robust in the deep ocean predicts that the turbulent rise of a buoyant hydrothermal plume should approximate to an inverted cone, and back-scatter and dissolved CH₄ anomalies at 500 m off bottom must originate at a source of venting—the Piccard vent site—that lies within a range of ∼250 m from this location (18°32.687′N, 81°43.170′W) within the red circle projected onto the seabed in Fig. 4 and at a depth of ∼5,000 ± 50 m. Previously, the deepest known hydrothermal field worldwide was the Ashadze site (13°N MAR), at 4,200 m depth (http://www.interridge.org/files/interridge/vents_interridge_2009_all.kml). Therefore, this new Piccard site, at ∼18°33′N on the MCR, represents the world’s deepest high-temperature hydrothermal field by ∼800 m.

A second set of deep (∼3,800 m) hydrothermal plume signals were detected at the very southern end of the MCR (Fig. 1) where in situ data from three CTD stations exhibited optical back-scatter anomalies indicative of particle-rich plumes but no detectable Eh anomalies. For both optical back-scatter and CH₄ concentrations, strongest signals were detected at the central station compared to those observed to east and west. No samples for dissolved ³²He or microbial analysis were obtained from this Walsh site, but the depths of maximum TDFe and TDMn concentrations at the central CTD station coincided with maximum optical back-scatter and dissolved CH₄ anomalies at ∼3,800 m (Fig. 2B), providing strong evidence that this high-temperature hydrothermal source must also lie at a depth of ≥4,000 m, representing a second particularly deep seafloor vent site. When compared to Piccard, however, plume height CH₄∕Mn ratios at the Walsh site are much higher, consistent with more CH₄-rich source fluids (Fig. 3A). Indeed, CH₄∕Mn ratios for the Walsh plume are almost identical to those reported for the Type 2 Rainbow site (36°N MAR) (12), leading us to deduce that these plume signals, at
the southernmost end of the MCR, most likely derive from a Type 2 high-temperature hydrothermal field hosted in ultramafic rocks. While the absence of Eh anomalies from the plume signals detected (Fig. 2B) indicate that none of these southernmost CTD stations approached particularly close to the source of the Walsh plume, CTD stations occupied immediately to the north (Fig. 1) show no evidence of these same deep plume signals. Consequently, we infer that the Walsh high-temperature vent source must lie south of 18°00′S and, from comparison with the geologic setting of other Type 2 sites (Rainbow, Logatchev, Ashadze), most probably lies toward the base of the rift-valley wall toward the southeast or southwest corner of the MCR axis.

The third site that we have identified, Europa, was also first detected over the southern MCR, where water samples along the western axis, 18°00′–20°N (Fig. 1) exhibited dissolved CH₄ enrichments at ∼2,100 m depth that decreased from northwest (12 nmol L⁻¹) to southeast (2 nmol L⁻¹), unaccompanied by in situ optical back-scatter or Eh anomalies. By tracing this plume north, toward the only section of the MCR shallower than 2,500 m, highest concentrations of dissolved methane (>30 nmol L⁻¹) were detected near 18° 21.5′N (Fig. 2). Anomalies in δ³He, microbial cell counts, and Eh were also observed at this site, but no optical back-scatter or TDMn anomalies and only a slight enrichment in TDFe were observed (Fig. 2C). These

![Fig. 2. Vertical profiles of hydrothermal tracers at the (A) Piccard, (B) Walsh, and (C) Europa sites. (Left) In situ optical back-scatter (black), TDFe (red), and δ³He (blue). (Center) Microbial cell counts (black) and dissolved CH₄ (red). (Right) TDMn (blue) and in situ Eh sensor (black).]
water-column signals are quite different from the deeper-lying Piccard and Walsh plumes. Strongest anomalies were observed near the summit of Mt. Dent, a long-lived detachment surface (18°20′–18°25′N) where Alvin submersible transects had previously documented outcropping ultramafic rocks (14). The absence of in situ optical back-scatter anomalies or high TDFe and TDMn concentrations at this site (Fig. 2C) provides strong evidence that these water-column signals do not derive from a high-temperature hydrothermal source. Further, the CH4:Mn ratios at this Europa site are substantially elevated over what would be predicted from a Type 1 (e.g., TAG, Piccard) or Type 2 (e.g., Rainbow, Walsh) vent. Yet the presence of a marked anomaly in the in situ Eh data, together with positive anomalies in the dissolved CH4, δ3He and cell-count profiles, indicate that these signals most certainly are hydrothermal in origin. In a prior study at the Endeavour segment, Juan de Fuca Ridge (JdFR) (29) anomalously high hydrothermal CH4 concentrations were attributed to thermogenic decomposition of organic rich sediments, subsea floor. While similar processes could also be active on the MCR, the high CH4 emissions observed in the JdFR study were associated with “black smoker” high-temperature vents (29). By contrast our data are only consistent with a low-temperature form of hydrothermal circulation. Further, because the methane-rich Europa plume signals originate close to the summit of Mt. Dent—a long-lived detachment surface—a more likely explanation may be that they are associated with serpentinization of ultramafic rocks and, hence, more closely related to low-temperature Type 3 venting as reported previously from Lost City (10).

Bacterial community composition was examined in filtered plume water samples from the Piccard and Europa sites using a 454 tag pyrosequencing approach (30) (Table S1). While most of the taxa detected in those samples originate from deep seawater, there were also some Epsilonproteobacteria and Gamma-proteobacteria indicative of microaerobic, reducing environments in the water column. We did not sample water for DNA analysis that was “true” background seawater; all five of the samples we sequenced had elevated methane concentrations (Table S1). Clustering of sequences at the 3% OTU level (31) followed by hierarchical cluster analysis showed that the two samples from Piccard grouped together and two of the three Europa samples clustered together, with one outlier (Fig. S1). The outlying sample, CH0909-08, had a large number of sequences related to Pseudomonas and Burkholderia, and we suspect it may have been contaminated during shipboard sampling; this sample was not included in further analyses. At the Piccard site, there were no discernable differences between the two samples, and the most abundant sequence recovered belong to the Gamma-proteobacteria SUP05, comprising almost 5% of all sequences. This organism was also found as the most dominant bacteria detected in the hydrothermal plume from Suiyo Seamount (32) (Fig. 5). SUP05 was also found as the most dominant bacteria detected in the hydrothermal plume from Suiyo Seamount (32) (Fig. 5). SUP05 is related to sulfur-oxidizing gill symbionts of bivalves from deepsea vents and has also been found in oxygen minimum zones in several of the world’s oceans. Metagenomic analysis of the uncultivated SUP05 from water-column redox clines in Saanich Inlet, British Columbia, indicates that this organism is capable of chemolithoautotrophic growth through the oxidation of reduced sulfur compounds (33). SUP05 sequences were also the second-most abundant sequence at the Europa site, comprising almost 3% of all sequences. While these sequences have been detected in oxygenated water, they are often abundant in hydrothermal

water column.
organisms. In addition, we detected the genus *Sulfurimonas* of the *Epsilonproteobacteria* at both sites at relative high abundances (2% of sequences at Piccard, 4% at Europa). The genus *Sulfurimonas* is associated with environments in which a gradient exists between anaerobic and aerobic habitats. In these redox clines, they can utilize reduced sulfur compounds (sulfide, elemental sulfur, thiosulfate) as electron donors and oxygen as an electron acceptor for chemolithoautotrophic growth (35). *Sulfurimonas* have been detected at hydrothermal vents, in plume samples, and in marine sediments but not in surface seawater. The dominant *Sulfurimonas* sequence in our MCR samples was an exact match to an uncultured *Sulfurimonas* environmental clone from oceanic crustal fluids in the southern Mariana trough (36) (Fig. 5). Our search of the International Census of Marine Microbes datasets (available at vamps.mbl.edu) for *Sulfurimonas* showed that these sequences are only abundant in reducing environments such as deep and shallow marine hydrothermal vents, methane seeps, and the Black Sea. In deep waters from the Atlantic and Arctic, very few or no *Sulfurimonas* sequences were found, representing much less than 0.1% of total sequences recovered in these samples. The relatively high abundance of *Sulfurimonas* found in our samples (2–4%) suggests a local enrichment of these organisms in the hydrothermal plumes. While we cannot infer the nature of discrete vent sources from these microbial data, the enriched cell concentrations and relatively high abundance of organisms that favor redox-active environments in our plume samples are entirely consistent with our geochemical data that indicate the presence of hydrothermal sources releasing chemically reducing fluids from the sea floor.

The frequency of venting and diversity of vent styles detected along the ultraslow spreading MCR is remarkable. Previously, it has been argued that hydrothermal activity should be most abundant along the world’s fastest spreading ridges where axial magmatic fluxes are highest (2). While that work also acknowledged that there may be more venting on slower spreading ridges than can be accounted for from magmatic heat flux alone, an earlier study of the comparably deep and ultraslow spreading Gakkel Ridge (5) led us to anticipate discovery of one high-temperature vent along the entire MCR. Instead, we have found evidence for three hydrothermally active sites including two sites of high-temperature venting, hosted in mafic (Piccard) and ultramafic (Walsh) rocks, both at depths in excess of 4,000 m. One of these, the Piccard high-temperature field, has been located precisely on the MCR rift-valley floor at a depth of ~5,000 m, some 800 m deeper than all previously known vent sites. Perhaps our most significant result, however, is the evidence for a third style of venting at the much shallower Europa site. The water-column signals from this site are rich in CH$_4$ and CH$_4$ and microbes but show no evidence for high-temperature venting. This site, therefore, may represent a Type 3 (low-temperature ultramafic-hosted) hydrothermal site such as has only been reported once previously, at Lost City (10).

The great depth of the Piccard site will allow examination of hydrothermal fluids venting at pressures and possibly temperatures beyond the critical point of seawater at 407 °C and 298 bar (37). The two southern sites, Walsh and Europa, show evidence for being hosted in ultramafic rocks, at high and low temperatures, respectively. These may provide new opportunities to study processes of abiobitic organic synthesis relevant to prebiotic chemistry and the microbiology of hydrogen-rich systems that serve as analogues for some of the most primitive environments for life on Earth. Vent systems are also celebrated for the high endemicity of the microbial-invertebrate symbioses they support. Study of vent invertebrates and other organisms at all three newly discovered MCR hydrothermal fields will provide insight into the evolution, dispersion, and isolation of vent taxa with potential to fill in a critical piece of the global biogeography of chemosynthetic organisms.

Materials and Methods

All seawater samples were collected using acid-cleaned 10 L Niskin bottles mounted on a rosette equipped with a SeaBird 9/11 + CTD to measure conductivity, temperature and depth. A hierarchy of sampling was established for all bottles at all stations that followed the order: (i) He or CH$_4$; (ii) microbes; (iii) metals. To protect against atmospheric contamination and/or loss of dissolved gases, any fluid samples that were to be analyzed for both CH$_4$ and He isotopes were drawn from replicate Niskin bottles fired at the same depth. All CH$_4$ and He samples were conducted at sea; all other analyses were completed in shore-based laboratories.

Water samples for helium were collected from the Niskin bottles immediately after recovery in clamped copper tubes (~13 g of seawater). Dissolved gases were extracted in the WHOI Isotope Geochemistry Facility using standard techniques and transferred into glass break-seal tubes. Helium concentrations and isotopic compositions were determined using a magnetic sector mass spectrometer by comparison to air standards of the same size as the samples. Full procedural blanks for extraction are approximately 7 x 10$^{-10}$ cc STP He and are insignificant. Uncertainties in the analyses, presented in Table S1, were typically 0.8 %. Water samples for CH$_4$ analysis (20 ml) were drawn from the Niskin bottles in 60 ml plastic syringes. Dissolved CH$_4$ concentrations were determined by gas chromatography using a Hewlett Packard 5890 II gas chromatograph fitted with a 6-foot 5 Å molecular sieve column and a flame ionization detector following a headspace extraction in helium.

For TDMn and TDFe, 500 ml or 1 L samples were drawn directly from the Niskins, unfiltered, into acid-cleaned low-density polyethylene bottles (rinsed three times with sample prior to filling). In the laboratory, these samples were acidified with 1 ml ultra pure nitric acid for 4 weeks prior to analysis, to ensure complete dissolution and desorption from bottle walls of all the metals present. Mn and Fe concentrations were determined following a standard method of organic complexation, solvent extraction and analysis by atomic absorption spectroscopy (38) yielding analytical precision of better than 5% for both elements.

For cell counts, an 18 ml aliquot of fluid sample was taken from the Niskin bottles, preserved in formaldehyde (3.7% final concentration) in duplicate, stored at 2 °C, and counted using epifluorescence microscopy with DAPI. Additional aliquots (2–3 L) of seawater were filtered through sterile 47 mm-diameter, 0.22 µm-pore-size filters shipboard, flooded with RNA Later, and stored at ~80 °C (Table S1). DNA was extracted from these filters (30) and bacterial community structure characterized by deep sequencing of ribosomal RNA (rRNA) amplicon libraries (30) using primers that span the V4-V6 hypervariable regions of the rRNA using the Roche titanium amplicon protocol (39). Pyrosequencing reads were passed through quality filters to reduce the error rate (40). Any read containing one or more ambiguous nucleotides was discarded. The expected sample barcode and primer sequences were trimmed from the proximal and distal ends of the reads. Reads lacking a perfect match to the forward primer or a recognizable match to the reverse primer sequence (including rare variants) at either end and reads that could not be unambiguously assigned to a sample were discarded. Sequences were assigned taxonomy using the Global Alignment for Sequence Taxonomy (GAST) process (41), which incorporates the RDP II taxonomy. All sequences from each sample were pooled and OTUs calculated via SLIP PWAL (31). Cluster analysis was carried out using Primer-E software (42). Sequences were also submitted to the BLAST search program (available through the National Center for Biotechnology Information) to find closely related sequences to those deposited in the VAMPS database (https://vamps.mbl.edu).

Acknowledgments. We thank the Captain and crew of RV Cape Hatteras and the Mereus technical team for shipboard support and D.P. Connolly and C.M. Sands (National Oceanography Centre, Southampton, UK) for help with operations at sea and shore-based TDFe and TDMn analyses. This research was funded through the National Aeronautics and Space Administration (NASA) Astrobiology-Enabled and Technology for Exploring Planets program and the Woods Hole Oceanographic Institution Ocean Ridge Initiative. The contribution of M.L.C. was carried out as part of his work at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The perceptive insights of two anonymous reviewers greatly helped improve this manuscript.

Supporting Information

German et al. 10.1073/pnas.1009205107

Fig. S1. Cluster diagram at the 3% difference level of all bacteria with each sample labeled according to site.

Table S1. Characteristics of five samples used in DNA sequencing analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>Depth (m)</th>
<th>Cells (ml⁻¹)</th>
<th>CH₄ (nmol L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH0909-08</td>
<td>Europa</td>
<td>2125</td>
<td>1.56 x 10⁴</td>
<td>10.4</td>
</tr>
<tr>
<td>CH0909-11</td>
<td>Europa</td>
<td>2179</td>
<td>1.88 x 10⁴</td>
<td>2.4</td>
</tr>
<tr>
<td>CH0909-14</td>
<td>Europa</td>
<td>2023</td>
<td>2.08 x 10⁴</td>
<td>12.5</td>
</tr>
<tr>
<td>CH0909-23</td>
<td>Piccard</td>
<td>4650</td>
<td>1.70 x 10⁴</td>
<td>0.3</td>
</tr>
<tr>
<td>CH0909-28</td>
<td>Piccard</td>
<td>4150</td>
<td>2.33 x 10⁴</td>
<td>0.7</td>
</tr>
</tbody>
</table>