Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases

Phillip A. Swanson II,1,2, Amrita Kumara,1, Stanislav Samarin, Matam Vijay-Kumar, Kousik Kundu, Niren Murthy, Jason Hansen, Asma Nusrat, and Andrew S. Neisha

Departments of Pathology and Pediatrics, Emory University School of Medicine, Atlanta, GA 30322; and Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved April 15, 2011 (received for review July 14, 2010)

The mechanisms by which enteric commensal microbiota influence maturation and repair of the epithelial barrier are relatively unknown. Epithelial restitution requires active cell migration, a process dependent on dynamic turnover of focal cell-matrix adhesions (FAs). Here, we demonstrate that natural, commensal bacteria stimulate generation of reactive oxygen species (ROS) in intestinal epithelia. Bacteria-mediated ROS generation induces oxidation of target cysteines in the redox-sensitive tyrosine phosphatases, LMW-PTP and SHP-2, which in turn results in increased phosphorylation of focal adhesion kinase (FAK), a key protein regulating the turnover of FAs. Accordingly, phosphorylation of FAK substrate proteins, focal adhesion formation, and cell migration are all significantly enhanced by bacterial contact in both in vitro and in vivo models of wound closure. These results suggest that commensal bacteria regulate cell migration via induced generation of ROS in epithelial cells.

intestine | gastroenterology | phosphoprotein phosphatases | probiotics | lactobacillus

The mammalian gastrointestinal tract is home to an extraordinarily large group of commensal bacteria that mediate homeostatic effects on their host and influence a wide range of systemic metabolic, nutritional, and immune functions (1, 2). Additionally, the intestinal microbiota can directly affect the function of the epithelial cells that form a physical interface between the host and the luminal contents. For example, gut commensal bacteria have been implicated in regulation of epithelial proliferation, survival, barrier function, and resolution of epithelial wounds (3–6). In this report, we investigated the mechanisms by which the intestinal microbiota influence epithelial cell restitution.

Epithelial cell restitution is a process during which wounds or breaks in the epithelial lining are repaired by migration of the surrounding epithelial cells. Cells at the leading edge flatten and move into the wounded area by rapidly extending lamellipodia, which are stabilized to the underlying matrix at specialized points called focal adhesions (FAs). The rapid disassembly of FAs at the rear end and assembly of FAs at the leading edge of the cells provides the traction force necessary for the cells to move forward (7). Additionally, FAs serve as signaling nidus points where multiple intracellular and extracellular signals integrate to coordinate cell migration. FAs are composed of protein complexes including transmembrane integrins, cytoplasmic signaling adaptors, and components of the actin cytoskeleton (8). A key regulatory protein of FA dynamics is focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase that is phosphorylated in response to many extracellular signals. Models of cell migration demonstrate that phosphorylation of FAK and Src accompanies the formation of the FA complex, which subsequently mediates the turnover of adhesions and affects cell migration (7).

Recently, we reported that commensal bacteria induce the generation of reactive oxygen species (ROS) in intestinal epithelial cells (IECs) (9, 10). Whereas high levels of ROS are associated with molecular damage to cellular components and consequent tissue injury, nonradical ROS such as H2O2 are enzymatically generated in response to external stimuli and have an increasingly recognized role in modulating signal transduction pathways due to their ability to oxidize low pKα cysteines within catalytic sites of a subset of enzymes (11–14). In accordance, we demonstrated that bacteria-elicited ROS modulate the NF-κB signal transduction pathway (9). ROS induced in response to endogenous receptor-mediated signals (such as integrin ligation and growth factors) have been shown to mediate a regulatory role in FA assembly, directed cell migration, and wound healing (15, 16). A role for ROS in cell migration is further supported by the demonstration that ROS-generating enzymes of the NADPH oxidase (Nox) family colocalize and physically interact with FA proteins (16). Chiarugi et al. (17) demonstrated that physiological integrin ligation results in generation of ROS, which causes oxidative inactivation of low molecular weight protein tyrosine phosphatase (LMW-PTP), a phosphatase that acts on FAK. Consequently, this results in activation of FAK and subsequent events necessary for cell adhesion and spreading. In the present study, we propose that commensal bacteria-elicited ROS stimulate phosphorylation of FAK and thus augment restitution of injured intestinal epithelial monolayers. In doing so, we have identified a mechanism by which commensal bacteria can contribute to epithelial homeostasis.

Results

Commensal Bacteria Induce ROS in Model Wounded Intestinal Epithelial Cells. We first investigated the effects of commensal microbiota on ROS generation in wounded model IECs. IECs contacted with Lactobacillus rhamnosus strain GG (LGG), a natural commensal and commonly used probiotic, stimulated ROS generation as observed by the rapid increase in fluorescence of Hydro-Cy3, a newly developed dye sensitive to superoxide (Fig. 1A). ROS generation could be effectively abolished by pretreatment of the cells with a nonspecific ROS scavenger, N-acetyl cysteine (NAC) (Fig. S1). Generation of ROS was also observed in IECs treated with insulin, a growth factor known to induce ROS (Fig. L1) (18). To extend these findings in vivo, we orally gavaged mice with LGG for 1 h and used Hydro-Cy3 to look for ROS production by IECs. Whole mount preparations of murine proximal small intestinal

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010042108/-/DCSupplemental.

1P.S. and A.K. contributed equally to this work.

2To whom correspondence should be addressed. E-mail: aneish@emory.edu.
mucosa, a region of the gut with low absolute numbers of resident microflora, revealed a marked increase in ROS production in the intestinal villi (Fig. 1B). Together, these findings indicate that commensal bacteria stimulate rapid generation of ROS in migrating IECs.

Commensal Bacteria Mediate Inhibition of FAK Phosphatases. ROS elicited by endogenous stimuli have been shown to mediate oxidative inactivation of LMW-PTP, a FAK phosphatase (17). We confirmed that LMW-PTP is redox sensitive by labeling recombinant LMW-PTP with a thiol-reactive chemical, biotin-maleimide (BM), which efficiently reacts with reduced thiols (the constitutive physiological form present in low pKa cysteines); therefore, its incorporation reflects the amount of reduced proteins. Under physiological conditions, recombinant LMW-PTP was efficiently labeled by BM, whereas in the presence of H$_2$O$_2$ there was a dose-dependent decrease in labeling, indicating oxidation of reactive cysteines in this protein (Fig. S2A). Importantly, IECs contacted with LGG also paralleled the effects observed with exogenous H$_2$O$_2$ (Fig. 2A). Incubation of SHP-2, which also regulates FAK phosphorylation (19), with LGG also resulted in dose- and time-dependent reduction in BM labeling (Fig. S2B). Bacterial-mediated oxidative changes were not observed in the redox-sensitive PTEN tyrosine phosphatase, indicating FAK phosphatase specificity (Fig. S2D).

Next, we measured the enzymatic activity of LMW-PTPase in cells contacted with LGG. Incubation of the recombinant protein with exogenous H$_2$O$_2$ reduced the PTP activity of the recombinant protein by more than 90% (Fig. S2C). To examine the intracellular effects of LGG on the enzymatic activity of LMW-PTP, we transfected full-length Myc-tagged LMW-PTP into HeLa cells and assayed the Myc-precipitated protein for phosphatase activity. Significantly, treatment of transfected cells for 15 min with LGG caused a dose- and time-dependent decrease in LMW-PTP enzymatic activity, which was partially reversible after 60 min (Fig. 2B). Collectively, these results indicate that LGG-induced ROS can directly oxidize and inactivate FAK phosphatases (LMW-PTP and SHP-2).

Commensal Bacteria Mediate Phosphorylation of FAK in Model IECs. We next assessed whether oxidative inactivation of LMW-PTP and SHP-2, correlated with increase phosphorylation of FAK. Phosphorylation of FAK at multiple tyrosines is known to regulate migration in multiple cell types (20, 21). Coculture of wounded IEC monolayers with LGG dramatically increased phosphorylation of FAK at tyrosine residue 861 (pFAK-Y861) over baseline conditions in a dose- and time-dependent manner (Fig. 3A), an effect reproduced by several other strains of commensal bacteria (Fig. S3A). Interestingly, high concentrations of LGG led to rapid but short-lived FAK phosphorylation. This kinetic pattern of FAK activation is very similar to the dose–response of commensal bacterial-elicited ROS observed in unwounded intestinal epithelial cells (9) and is consistent with the transient oxidative inactivation of LMW-PTP (Fig. 2B). Finally, the specificity of LGG-mediated FAK activation was confirmed by the fact that LGG had much weaker effects on a separate tyrosine kinase, Pyk2 (Fig. S3B).

Also of note, LGG mediated a marked increase in the numbers of pFAK-Y861 containing FAs that was more pronounced at the leading edge of migrating cells (Fig. 4). Furthermore, coating the same monolayers with the actin-specific marker, phalloidin, revealed that contact with LGG induced the formation of dense parallel arrays of basal F-actin fibers terminating in FAs, consistent with new actin polymerization. These data implicate a role for commensal bacteria in accelerating FA formation and cytoskeletal rearrangement at the leading edge of migrating cells.

Because the ability of FAK to transduce downstream signals depends on its phosphorylation at multiple additional tyrosine residues, we examined the effects of LGG on phosphorylation of FAK at tyrosine position 397 and 566/567 (pFAK-Y397 and pFAK-Y566/567). Again, increased phosphorylation of FAK at these positions was observed after IEC contact with LGG (Fig. 3B). FAK cts-phosphorylation at multiple sites enables transphosphorylation of other component proteins of FAs, such as p130Cas and paxillin (PAX) (22). Consistently, LGG stimulation of IECs induced phosphorylation of p130Cas at tyrosine position 410 (pp130Cas-Y410) and PAX...
Diphenylene iodonium (DPI), an avoprotein inhibitor, did impair the phosphorylation of FAK, excluding the involvement of mitochondria in production of ROS (Fig. S3 C). No significant changes in the absolute levels of unphosphorylated FAK, p130Cas, and PAX were observed over a period of 60 min of contact with LGG (Fig. 3). An increase in pPAX-Y118 (Fig. S3 C). An increase in phosphorylation of FAK (Fig. 3 A) Western blots of FAK phosphorylation at tyrosine residue 861 (pFAK-Y861) in migrating Caco-2 cells after treatment with HBSS, LGGlow (1.5 × 10⁷ cfu/mL), LGGmed (5.0 × 10⁷ cfu/mL), or LGGhi (1.5 × 10⁸ cfu/mL) for the indicated times. (B) Western blots of FAK phosphorylation at tyrosine residues 397 (pFAK-Y397) and 566/567 (pFAK-Y566/567) in migrating Caco-2 cells after treatment with HBSS or 5.0 × 10⁷ cfu/mL LGG for the indicated times. Western blots for unphosphorylated FAK were used as controls. (C) Western blots of pFAK-Y861 in migrating Caco-2 cells treated first with media, NAC (20 mM) or DPI (40 μM) followed by HBSS or 5.0 × 10⁷ cfu/mL LGG. β-Actin was used as a loading control for all Western blots, except for B. All experiments were repeated three times.

Commensal bacteria stimulate phosphorylation of FA proteins via elicitation of ROS. (A) Western blots of FAK phosphorylation at tyrosine residue 861 (pFAK-Y861) in migrating Caco-2 cells after treatment with HBSS, LGGlow (1.5 × 10⁷ cfu/mL), LGGmed (5.0 × 10⁷ cfu/mL), or LGGhi (1.5 × 10⁸ cfu/mL) for 60 min. Western blots for unphosphorylated FAK, p130Cas, and PAX were observed over a period of 60 min of contact with LGG (Fig. 3 B and Fig. S3 C).

To understand the properties of LGG that mediated the activation of FAK, we compared live and physically disrupted bacterial preparations from equivalent numbers of organisms. Nonviable, sonicated bacterial preparations of LGG induced FAK phosphorylation (Fig. S3 D). No significant changes in the absolute levels of unphosphorylated FAK, p130Cas, and PAX were observed over a period of 60 min of contact with LGG (Fig. 3 B and Fig. S3 C).

Commensal Bacteria Stimulate Phosphorylation of FAK in Vivo. Having demonstrated commensal bacteria-mediated FAK activation using cultured IECs, we wanted to confirm these results using live tissue and in vivo-based systems. First, excised segments of murine colon were incubated ex vivo with PBS, commensal bacteria, or H₂O₂. Treatment of mouse colon with LGG or H₂O₂ caused a significant increase in pFAK-Y861 (Fig. 4 A and Fig. S5). In a second in vivo assay, LGG injected into surgically closed ileal loops within live mice led to an increase in pFAK-Y861 that was primarily confined to the epithelial cells at the luminal surface (Fig. 4 B). Finally, we tested whether bulk commensal bacteria populations from mice stimulated FAK phosphorylation in IECs. Bacterial suspensions prepared from the luminal contents of mice ceca and diluted to a density comparable to previously used LGG concentrations were equally effective in inducing pFAK-Y861 activation in vitro (Fig. 4 C). These results suggest that dynamic changes in FAK phosphorylation is also a feature of native small bowel IECs and murine commensal bacteria.

Commensal Bacteria Enhance Wound Closure. To correlate LGG-mediated changes in phosphorylation and localization of FA proteins with functional alterations, we used an established in vitro model of epithelial wound restitution (23). Using time lapse video microscopy of scratch-wounded epithelia, we observed that LGG accelerated wound closure in a dose-dependent fashion (Fig. 4 D and Fig. S6 A). To confirm the role of FAK in these processes, we used a newly characterized inhibitor of FAK, 1,2,4,5-benzenetetraamine tetrahydrochloride (FAK-14) (24). We first showed that this inhibitor effectively attenuated activation of FAK by Western blot (Fig. S6 B). Significantly, pretreatment of wounded monolayers with FAK-14 slowed cell migration even after cells were treated with LGG (Fig. 6 B). Because phosphorylation of FAK mediates adhesion of cells to the extracellular matrix, we also monitored the effects of LGG on cell adhesion. Treatment of IECs with LGG significantly increased cell adhesion to fibronectin (Fig. S6 C and E) and collagen 1 (Fig. S6 D and F). Additionally, the LGG-mediated effects on both wound closure and cell migration were mitigated by inhibiting ROS signaling (Fig. 6 B and Fig. S6 E and F). On the basis of these analyses, we conclude that colonization of intestinal epithelial cells with LGG significantly enhances motility of IECs via ROS- and FAK-mediated signaling pathways.

Finally, we monitored the effects of LGG on facilitating resolution of epithelial wounds in an in vivo model of restitution. To
induce epithelial injury, mice were given low dose (3.5%) dextran sodium sulfate (DSS) in drinking water. DSS was withdrawn after 9 d to permit healing. We focused our investigation on the small bowel because DSS induces less severe injury in the small intestine relative to the colon, and we sought to evaluate the effects of commensal bacteria-mediated recovery from epithelial barrier injury rather than mucosal ulceration, which would require epithelial cell proliferation (rather than migration) to heal. Post DSS treatment, mice were orally gavaged with PBS or LGG for 1 d, after which, barrier function was assessed by measuring systemic translocation of the orally administered permeability tracers FITC-dextran and HRP. Intestinal injury was also monitored by histology and serum markers of inflammation. As expected, all DSS-treated mice had a significant increase in the inflammatory indices (Fig. 7). To assess the role of FAK in these observations, DSS-treated mice received FAK-14 24 h before receiving LGG by oral gavage. As shown in Fig. 7 D-F and Fig. S7D, the beneficial effects of LGG post-DSS treatment were nullified by FAK-14. These data demonstrate that commensal bacteria augment mucosal repair following DSS-induced injury via the FAK signaling pathway.

Discussion

There is growing appreciation for the diverse influences of the mammalian gut microbiota on the biology of the mammalian host. Interestingly, recent data have indicated intriguing roles for the interactions between the microbiota and epithelial cells. Bacterial-epithelial contact has been shown to enhance epithelial proliferation during development and after injury (4). Studies have also linked probiotics and endogenous commensals to alterations of intercellular junctional protein expression and turnover that resulted in improved barrier properties both in vitro and in vivo (25). However, commensal bacteria have not been implicated in stimulation of epithelial cell motility or enhancement of wound restitution. Interestingly, stimulation of phagocyte actin dynamics and motility by bacterial products is a well-established process in innate immunity (26). Additionally, induced alterations in the epithelial cytoskeleton is a classic mechanism by which enteric pathogens such as Salmonella, Shigella, and other bacteria mediate intracellular invasion (27).

Here we describe biochemical events elucidating how commensal bacteria mediate epithelial movement and recovery from injury (summarized in Fig. S8). Our data demonstrate that damaged epithelial monolayers respond to commensal bacteria with ROS generation. This effect is most pronounced at the leading edge of the migrating epithelial sheet, where there is constant remodeling of the actin and turnover of FA. Furthermore, our data demonstrate that bacteria-induced ROS lead to oxidative inactivation of the PTPs, LMW-PTP and SHP-2, both of which are known regulators of FAK phosphorylation. Consequently, we show an increase in auto-phosphorylation of FAK, as well as other proteins of the FA and increased formation of FAs and F-actin bundling. Finally, commensal bacteria significantly increased the velocity of cell migration in vitro and enhanced recovery of barrier function postinjury in vivo.

Our laboratory demonstrated that intestinal epithelial cells generate ROS in response to contact with commensal bacteria (9, 10). This phenomenon is seen in all metazoans, as well as plants, and is a cardinal cellular response to bacteria by phagocytes (respiratory burst) (28–31). In mammalian cells, ROS have been
shown to serve as both microbiocidal agents and critical secondary messengers in multiple signal transduction pathways (31, 32). Neutrophil and macrophage ROS can be generated by the enzymatic activation of NADPH oxidases (Nox). The Nox enzymes are widely conserved across the animal and plant kingdoms and are often responsible for ROS generation in response to bacterial stimuli (32). In humans, paralogs of Nox2 are found in many tissues, two of which, Nox1 and Duox2, are predominately expressed in colonic tissue (28). In flies, the ortholog of Duox2, dDuox, plays a vital role in epithelial homeostasis in response to commensal bacteria (33). Our data showing suppression of bacterially induced FAK activation by the flavoprotein inhibitor DPI suggest that the observed ROS generation is, at least in part, mediated by Nox enzymes. These data are consistent with observations that ROS generating NADPH oxidases (Nox2) localize at sites of lamellipodial focal complexes in migrating endothelial cells (34–36).

The signaling properties of physiologically generated ROS are mediated by rapid and transient oxidative inactivation of a number of regulatory enzymes. The sensitivity of these enzymes to ROS is conferred by catalytic cysteine residues that exist at low pKₐ due to the effects of vicinal charged amino acids in the active site. These cysteines are thus maintained in a thiol anionic state at physiological pHs, a condition susceptible to oxidative inactivation (12, 13). The inactivation of these phosphatases establishes a feed-forward mechanism that activates downstream signaling events. Chiarugi et al. (17) initially described the physiologically mediated oxidative inactivation of LMW-PTP from integrin-induced ROS generation and showed consequent assembly of focal adhesions leading to cell spreading. Consistent with these studies, we show that LMW-PTP can be rapidly and transiently inactivated by ROS in cells cocultured with commensal bacteria resulting in activation of FAK. The transient nature of the inactivation shown in Fig. 2B (and the transient activation of FAK in Fig. 3A) is likely due to compensatory redox changes from up-regulation of endogenous redox sinks such as glutathione and thioredoxin, which are induced immediately after physiological ROS generation to reestablish a local reducing environment (11). Additionally, the dose dependency of ROS signaling results from the ratio of oxidized (inactive) to reduced (active) substrate enzyme (37). These properties ensure ROS signaling acts as a rheostat rather than a binary switch and could be a mechanism for the fine tuning of number of pathways controlled by redox signals. For example, signaling molecules involved in cell survival pathways such as Ubc12 (9), which controls the NF-κB and β-catenin pathways, as well as Dual specificity phosphatases (DUSPs), which modulate various MAPK activation pathways (38), could be regulated in this manner. Thus, bacteria-mediated ROS signaling may variably influence regulatory pathways in the gut. Plausibly, changes in the redox balance brought about by dynamic changes in bacterial numbers, such as during initial acquisition of the microbiota in the neonatal period, or during iatrogenic suppression of the flora that occurs with broad-spectrum antibiotic use, could have effects on cytoskeletal dynamics, epithelial restitution, and other processes. Bacterially stimulated ROS may represent a common mechanism by which the microbiota can influence the host. Potentially, some of the known beneficial effects of the normal microbiota and candidate probiotics on intestinal physiology may be mediated by the downstream effects of ROS generation.

Materials and Methods

Detection of Intracellular ROS. Synchronized migration of IEC monolayers were induced with scratch wounds inflicted immediately before coculture with HBSS, LGG, or insulin. ROS generation in IECs was detected by loading cells with the nontoxic ROS fluorescent dye Hydro-Cy3 (39).

Wound Healing Assays and Time Lapse Video Microscopy. Wounded cells were allowed to migrate in CO₂-independent medium (Invitrogen) alone or supplemented with LGG. Wound healing was recorded for up to 2 h using a CCD camera mounted on a Carl Zeiss inverted Meta 510 microscope equipped with a stage warmer maintained at 37 °C. Images were analyzed as described in SI Materials and Methods.
Induction and Evaluation of Experimental Ileitis. C57BL/6 mice (Jackson Laboratories) were given DSS (3.5%) for 9 d in drinking water. After the weights of the mice dropped ~10%, mice were orally gavaged with 100 μL 10^9 CFU/mL of LGG. Control mice were kept on water and gavaged with PBS. After 24 h of LGG administration, in vivo assays of barrier function, inflammation, and tissue injury were performed as described in refs. 40, 41. Experiments with FAK-14 were set up as above, except, on the eighth day mice were IP injected with 30 mg/kg of FAK-14.

Supporting Information

Swanson et al. 10.1073/pnas.1010042108

SI Materials and Methods

Reagents. H$_2$O$_2$, N-acetyl cysteine (NAC), diphenylene iodonium (DPI), rotenone, biotin maleimide, anti-myc immunoprecipitation kit, pyrogallol, phosphatase inhibitor mixture, protease inhibitor tablets, FAK-14, and insulin were purchased from Sigma Aldrich. Antibodies against SHP-2, pFAK-Y861, pFAK-Y397, pFAK-Y566/567, ppCas130-Y410, pPAX-Y118, p130Cas, pPyk2-Y402, and FAK were purchased from Cell Signaling. Antibodies to detect total paxillin levels were purchased from Zymed. Antibodies against β-actin were purchased from Sigma. Biotin iodoacetamide was purchased from Molecular Probes. Overexpression plasmid Myc-LMW-PTP (WT) was a kind gift from Dr. Yoshito Ihara (Nagasaki University, Nagasaki, Japan). Plasmid DNA was expressed in *Escherichia coli* and purified using Wizard Plus Midiprep DNA isolation kit (Promega). Hydro-Cy3 was synthesized and obtained from Niren Murthy, (Georgia Institute of Technology, Atlanta, GA) (1).

Cell Cultures and Transfections. Human cells (Caco-2, T-84, and HeLa) were obtained from the Digestive Diseases Research Development Center cell culture core (Emory University, Atlanta, GA). Caco-2 cells were used for the immunofluorescence and in vivo wound healing assays. T84 cells were used for immunoblot analyses and protein oxidation analyses. HeLa cells were used for overexpression of the LMW-PTP vector. Cells were passaged and seeded on collagen-coated 6-well flat bottom tissue culture plates (Becton Dickinson) or on 0.33 or 5-cm2 permeable filters (Corning) and used 9–14 days after they had been plated. Caco-2 and HeLa cells were cultured in Dulbecco’s modified Eagle media with 10% heat inactivated calf serum at 37 °C and 5% CO$_2$. Confluent monolayers of HeLa cells were grown in 6-well flat bottom tissue culture plates (Becton Dickinson) and transfected using lipofectamine (Invitrogen) as per manufacturer’s instructions. T84 cells were grown in 1:1 DMEM and Ham’s F-12 medium supplemented with 15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes), pH 7.5, 14 mM NaHCO$_3$, 2 mM l-glutamine, 40 μg of penicillin, 8 μg/mL ampicillin, 90 μg/mL streptomycin, and 6% FBS. Caco-2 cells were grown in high glucose (4.5 g/L) DMEM supplemented with 10% FBS, 100 units/mL penicillin, 8 μg/mL streptomycin, and 1% nonessential amino acids.

Bacterial Cultures. Bacterial stocks were obtained from the following sources: *Lactobacillus rhamnosus* GG (American Type Culture Collection, ATCC; 53103), *Lactobacillus caes* (ATCC; 393), *Lactobacillus acidophilus* (ATCC; 4536), *Bifidobacterium bifidum* (ATCC; 29521), and *Streptococcus thermophilus* (ATCC; 19258). *E. coli* human commensal was obtained from our laboratory stocks (2). All strains of *Lactobacillus* were grown in tycase yeast extract glucose medium for 24 h under stationary anaerobic conditions. *E. coli* human commensal strains were grown in LB under stationary anaerobic conditions. *B. bifidum* was grown in reinforced clostridial medium (Difco; Becton Dickinson). Culture tubes inoculated with *B. bifidum* were made anaerobic by plugging with a burning sterile cotton plug and adding 0.2 mL of 35% pyrogallol and saturated sodium bicarbonate directly on top of the cotton plug. All bacterial cultures were grown overnight under stationary anaerobic conditions. Bacterial suspensions for colonization experiments were prepared by centrifugation of 100 mL overnight culture and resuspension in 5 mL volume of HBSS. For heat-denatured bacterial preparations, bacterial suspensions were incubated at 95 °C for 30 min. The bacterial suspensions were allowed to equilibrate to room temperature before they were used in the experiment. Sonicated extracts were centrifuged at low speed (1,000 × g) for 10 min, after which the supernatant was centrifuged at high speed (13,000 rpm) for 30 min at 4 °C and the pellet fraction resuspended in HBSS to match the optical density of the starting bacterial preparation.

Detection of Intracellular Reactive Oxygen Species (ROS). Confluent monolayers of intestinal epithelial cells (IECs) grown on 12-well flat bottom plates were wounded by creating a single wound with a pipette tip and washed with warm HBSS. Cells were pretreated for 30 min with HBSS or 20 mM NAC. Immediately following, cells were overlaid with 250 μL LGG resuspended in DMEM at a concentration of 1.5 × 107 or 5.0 × 107 cfu/mL. After bacterial contact, the cells were washed and then incubated for 15 min at 37 °C in HBSS containing 100 μM Hydro-Cy3. Cells were washed and images immediately captured using an inverted confocal microscope (Zeiss Meta 510) with 10× objective.

Immunoblot Analysis. Confluent T84 and Caco-2 monolayers were grown on collagen-coated 6-well transwell plates and wounded by creating 10 sterile parallel wounds per well. The medium was changed after wounding and control monolayers were allowed to migrate in normal media. For treatment conditions, diluted bacteria were added to each well for the indicated time, at which point cells were harvested and lysed in RIPA buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 0.1% Nonidet P-40 or SDS, 1 mM EGTA, pH 8.0, Sigma phosphatase inhibitor mixture diluted 1:100, 10 mM NaF, 0.4 mM Na$_3$VO$_4$, and Roche protease inhibitor tablets). The cells were lysed using a dounce homogenizer, and cell debris was removed by centrifugation at 13,000 rpm for 15 min. The supernatant was normalized for protein concentration using the BCA protein assay reagent (Pierce) and subjected to Western blot analysis. Membranes were blocked with 3% BSA in TBS with Tween 20 and incubated with phospho-specific Ab at 4 °C overnight.

Immunofluorescence and Image Analysis. Immunofluorescence studies were done on biopsy samples of murine small bowel as well as cells that were grown on 0.33-cm2 polycarbonate collagen-coated permeable supports. Cells/tissues were washed, fixed for 20 min in 3.7% parafomaldehyde, permeabilized for 5 min with 0.1% Triton X-100 in PBS, washed, and incubated in blocking buffer for 1 h at room temperature. Primary antibody reactions were performed in PBS with 3% BSA overnight. Cell monolayers were labeled with secondary Ab and Alexa 488-conjugated phallolidin for 1 h. Cells/tissues were washed and mounted. Images were acquired through a 63× objective using a confocal scanning microscope (Zeiss 510).

Analysis of Protein Oxidation. Wounded cells grown on 6-well transwell plates were immediately washed with warm HBSS and contacted with LGG for the indicated times. After bacterial treatment, monolayers were washed with cold PBS and lysed in an oxygen-free BIAM lysis buffer (50 mM Bis-Tris-HCl (pH 6.5), 0.5% Triton X-100, 0.5% deoxycholate, 0.1% SDS, 150 mM NaCl, 1 mM EDTA and protease inhibitors) containing 20 μM biotinylated iodoacetamide (BIAM) or BM lysis buffer (50 mM Hepes-NaOH, pH 7.5, 1 mM EDTA, 2% SDS and 12 μM BM). Samples were incubated in the dark at 25 °C for 1 h. BIAM reaction was terminated by adding iodoacetamide to a final concentration of 5 mM. BM reaction was terminated by adding DTT at a final concentration of 100 nM. Finally, 1 mg of lysate from...
each treatment condition was incubated with 50 μL of streptavidin-agarose beads (Invitrogen) overnight at 4 °C. The beads were rinsed three times with buffer, and the BIAM or BM-labeled proteins were released by laemmli buffer at 55 °C for 5 min. Proteins were separated by SDS page and detected by immunoblotting with anti-LMW-PTP or anti-SHP-2 antibodies. Recombinant LMW-PTP was purchased from Cyclex and 50 μg of enzyme was incubated in a final volume of 50 μL in buffer at 37 °C for 15 min. H2O2 was added, and the mixture was incubated for an additional 10 min at 37 °C. After addition of 12 mM BM from a freshly prepared stock diluted in dimethylformamide, the mixture was incubated for an additional 15 min at 4 °C. The labeling reaction was stopped by addition of DTT and the sample was subjected to SDS/PAGE gel electrophoresis. Samples were run in duplicate and in parallel and detected by immunoblotting. The labeled proteins were detected by streptavidin blotting with HRP-conjugated streptavidin and enhanced chemiluminesence detection. Equal application of protein among gel lanes was confirmed by immunoblot analysis with antibodies to LMW-PTP.

PTP Activity Assay. The PTP activity assay was measured using a Cyclex LMW-PTP fluorometric assay kit (MBL International). HeLa cells were transfected with a vector carrying the WT LMW-PTP construct. Cells were treated with LGG or insulin for indicated times, harvested, and then lysed in RIPA buffer. Cell lysates were normalized for protein concentration, and LMW-PTP was immunoprecipitated using an anti-Myc precipitation kit as per manufacturer’s instructions (Sigma). The final pellet was washed with RIPA buffer and resuspended in PTP assay buffer, which was provided with the fluorometric assay kit (MBL International). Lysates were clarified by centrifugation and re-suspended in 1x assay buffer, provided with the kit. A total of 35 μL of the precipitated samples was used in the 50-μL final volume PTP activity assay with 5 μL of substrate (3-O-methylfluorescein phosphate). The mixture was incubated for 1 h at 37 °C, stopped with the stop buffer, and the fluorescence measured (λex/λem = 488/510 nm) in a microplate reader (Fluostar Galaxy; BMG).

Wound Healing Assays and Time Lapse Video Microscopy. Caco-2 cells were grown on collagen-I-coated, 24-well culture plates to confluence. Synchronized migration of the cell monolayer was induced with a scratch wound inflicted after incubation with HBSS, 20 mM NAC, or 100 μM FAK-14 and immediately before coculture with LGG (3). Wounded cells were washed with warm HBSS to remove cell debris and then allowed to migrate in CO2-independent medium (Invitrogen) alone or supplemented with LGG, LGG and 20 mM NAC, or LGG and 100 μM FAK-14. Plates were placed inside a temperature-controlled incubator maintained at 37 °C and mounted on the microscope. Wound healing was recorded for up to 2 h using a CCD camera mounted on a Carl Zeiss inverted Meta 510 microscope equipped with a stage warmer maintained at 37 °C. Images were analyzed using ImageJ software. The distance migrated was calculated over time.

Cell Adherence Assays. Equal numbers of trypsinized Caco-2 cells suspended in DMEM without serum were seeded in wells of a microtiter plate coated with fibronectin or collagen II and allowed to adhere for 2 h at 37 °C, with or without the presence of LGG. Subsequently, cells were gently washed to remove non-adherent cells and phase contrast images were taken using a Carl Zeiss inverted Meta 510 microscope (two images each for three wells per condition) and the number of adhered cells manually counted and plotted.

In Vivo Murine Experiments. All experiments with mice were performed on 6- to 10-wk-old male C57BL/6 mice (The Jackson Laboratory) using protocols approved by Emory University Animal Studies Committee. For preparations of natural murine flora, cecal contents were resuspended in PBS and subjected to a low-speed centrifugation (1,000 rpm) for 5 min. The supernant was recovered and centrifuged at high speed (13,000 rpm) for 15 min, and the pellet fraction was resuspended in PBS. For ex vivo organ culture, mice colon was opened along the mesenteric border, washed several times with warm PBS, incubated in PBS containing 75 mM DTT for 1 min, washed, and immediately submerged in PBS containing LGG for 30 min. The tissue was rinsed in PBS and the epithelial layer scrapped and lysed in RIPA buffer. The sample was briefly sonicated and the samples prepared for immunoblotting. Immunofluorescence staining for pFAK-Y861 was done in tissue samples obtained from the proximal small bowel. Seven-week-old C57BL/6 mice were anesthetized and two ligated intestinal loops were prepared in the distal small intestine. The proximal and distal ends of each loop were ligated with suture threads. In one loop, we instilled 107 cfu LGG and in the other we instilled PBS. The mice were maintained under anesthesia at 37 °C for up to 30 min and then killed, and tissues were removed for analysis. The loops were flushed with PBS and immediately frozen in OCT (Miles) for sectioning for fluorescent labeling. The sections were stained with pFAK-Y861 antibodies and DAPI. Samples were mounted in 70% glycerol with coverslips and observed with laser confocal microscopy (Olympus).

Fig. S1. Commensal bacteria stimulate the generation of epithelial ROS in vitro. Fluorescent images of ROS generation in scratch-wounded Caco-2 monolayers were pretreated with HBSS or 20 mM NAC, followed by HBSS or LGG (5 × 10^7 cfu/mL) for 5 min and then loaded with 100 μm Hydro-Cy3.

Fig. S2. Oxidative inactivation of PTPases. (A) Western blot of purified recombinant LMW-PTP probed with SA-HRP after incubation with H_2O_2 for 15 min in buffer containing BM. A duplicate gel immunoblotted with anti-LMW-PTP served as loading control. (B) Western blots of SHP-2 levels in migrating T84 cells cultured in buffer containing BM and treated with HBSS, LGG(lo) (1.5 × 10^7 cfu/mL), LGG(med) (5.0 × 10^7 cfu/mL), or LGG(hi) (1.5 × 10^8 cfu/mL) for the indicated times. Representative Western blots show SHP-2 levels before (input, Lower) and after precipitation (pulldown, Upper). (C) Specific phosphatase activity of recombinant LMW-PTP treated with HBSS or H_2O_2 at the indicated doses. Data are expressed as counts/mg of protein and are means ± SE of triplicate samples. Two independent experiments were performed. (D) Western blots of reduced (Red) and oxidized (Ox) forms of PTEN in Caco-2 cells treated with media, LGG (5 × 10^7 cfu) or H_2O_2 (1 mM) for the indicated times with (Upper) or without (Lower) the addition of DTT to terminate BM labeling.
A. HBSS
E. coli
S. thermophilus
B. bifidum

<table>
<thead>
<tr>
<th></th>
<th>L. acidophilus</th>
<th>E. coli</th>
<th>S. thermophilus</th>
<th>B. bifidum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5x10^7</td>
<td>5.0x10^7</td>
<td>1.5x10^7</td>
<td>5.0x10^7</td>
</tr>
<tr>
<td></td>
<td>5 15 30</td>
<td>5 15 30</td>
<td>5 15 30</td>
<td>5 15 30</td>
</tr>
<tr>
<td></td>
<td>1.5x10^7</td>
<td>5.0x10^7</td>
<td>1.5x10^7</td>
<td>5.0x10^7</td>
</tr>
<tr>
<td></td>
<td>5 15 30</td>
<td>5 15 30</td>
<td>5 15 30</td>
<td>5 15 30</td>
</tr>
<tr>
<td></td>
<td>(min)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. S3. Commensal bacteria specifically induce FAK phosphorylation in IECs. (A) Western blots of FAK phosphorylation at tyrosine residue 861 (pFAK-Y861) in migrating Caco-2 cells after treatment with HBSS, L. acidophilus, E. coli, S. thermophilus, or B. bifidum at the indicated doses and times. (B) Western blot of pyk2 phosphorylation at tyrosine residue 402 (pPyk2-Y402) in migrating Caco-2 cells after treatment with HBSS or LGG (1.5 x 10^7 cfu/mL). (C) Western blots of PAX phosphorylation at tyrosine residue 118 (pPAX-Y118) and phospho-130Cas phosphorylation at tyrosine residue 410 (pp130Cas) in migrating Caco-2 cells after treatment with HBSS or 5 x 10^7 cfu/mL LGG for the indicated times. Western blots for unphosphorylated proteins were used as controls. (D) Western blots of pFAK-Y861 in migrating Caco-2 cells pretreated with media or retinone (10 μm) for 30 min before incubation with HBSS or LGG (5 x 10^7 cfu/mL) for the indicated times. β-Actin was used as a loading control.

Fig. S4. Commensal bacteria mediate changes in subcellular localization of FAs. Immunohistochemical images of pPAX-Y118 (red) (Left) or pPAX-Y118 (red) and F-actin (green) (Right) expression in migrating T84 cells treated with HBSS, LGG_lo (1.5 x 10^7), or LGG_hi (5 x 10^7) for 5 min. Photomicrographs are representative of three independent wounds, obtained in three independent experiments.
Fig. S5. LGG or murine bacterial preparations mediate phosphorylation of FAK in IECs. Densitometric quantification of Western blots is shown in Fig. 5A.

Fig. S6. Commensal bacteria enhance migration and adhesion of model IECs. (A) Static images of wound closure in migrating Caco-2 monolayers over 2 h as captured with time lapse video microscopy. Quantitative analysis of these images are shown in Fig. 6A. (B) Western blot of pFAK-Y861 in Caco-2 cells pretreated with FAK-14 for 30 min and then incubated with HBSS or LGG (5.0 × 10^7 cfu/mL). (C and D) Static images of adherent Caco-2 cells. Caco-2 cells were seeded onto plates coated with fibronectin (C) or collagen (D), treated with HBSS, LGGlo (1.5 × 10^7 cfu/mL) or LGGhi (5.0 × 10^7 cfu/mL) and then assessed for adherence after 2 h at 37 °C. (E and F) Quantitative analysis of C and D, respectively. Data represent means ± SE of two independent experiments with n = 2. *P < 0.05, **P < 0.01.
Commensal bacteria attenuate ileitis in mice via FAK activation. Eight-week-old mice were weighed and given water supplemented with DSS for 9 d. On the ninth day, DSS was withdrawn and recovering mice were treated with PBS or LGG (10⁸ cfu/mL) for 24 h (A–D) or 30 mg/kg FAK-14 (day 8) + PBS or LGG (day 9) for 24 h (D). (A) Serum FITC-dextran levels. (B) Serum lipocalin levels. (C) MPO score. (D) Representative H&E stained sections from Fig. 7. (Upper) Mice that were pretreated with FAK-14. (Lower) Mice that received no pretreatment.

Commensal bacteria elicit ROS in IECs likely via activation of the NADPH oxidase enzymes. ROS mediates inactivation of FAK phosphatases (LMW-PTP and SHP-2) by transiently oxidizing the catalytic cysteine residue. This leads to sustained FAK phosphorylation, with resultant effects on turnover of FA, which are represented as red ovals. The net effect is enhancement of cell migration and thereby enhancement of wound closure. Bacterial-induced cell migration could be effectively blocked by using the FAK inhibitor-14. PTP, protein tyrosine phosphatase; ROS, reactive oxygen species; FAK, focal adhesion kinase.