Multiple new site-specific recombinases for use in manipulating animal genomes

Aljoscha Nern1, Barret D. Pfeiffer1, Karel Svoboda, and Gerald M. Rubin2

Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147-2408

Contributioned by Gerald M. Rubin, July 18, 2011 (sent for review June 22, 2011)

Site-specific recombinases have been used for two decades to manipulate the structure of animal genomes in highly predictable ways and have become major research tools. However, the small number of recombinases demonstrated to have distinct specificities, low toxicity, and sufficient activity to drive reactions to completion in animals has been a limitation. In this report we show that four recombinases derived from yeast —KD, B2, B3, and R—are highly active and nontoxic in Drosophila and that KD, B2, B3, and the widely used FLP recombinase have distinct target specificities. We also show that the KD and B3 recombinases are active in mice.

gene expression | genetic engineering

Site-specific DNA recombinases are widely used in multicellular organisms to manipulate the structure of genomes and, in turn, to control gene expression (for reviews see refs. 1–4). These enzymes, derived from bacteria and fungi, catalyze directionally sensitive DNA exchange reactions between short (30–40 nucleotides) target site sequences that are specific to each recombinase (5). These reactions enable four basic functional modules—excision/insertion, inversion, translocation and cassette exchange—that have been used individually or combined in a wide range of configurations to control gene expression (Fig. 1A).

The use of site-specific recombination to manipulate genomes has been limited by the availability of recombinases with high activity, distinct site specificity, and low toxicity. In Drosophila, the most widely used recombinase is FLP, encoded by the Saccharomyces cerevisiae 2-μm plasmid (6). FLP was first shown to work in a heterologous, multicellular organism by Golic and Lindquist in 1989 (7) who demonstrated the excision reaction on chromosomally inserted target sites (FRTs). Since that time FLP/FRT recombination has been widely used in Drosophila in applications based on excision (8) and translocation (9–11).

Complex manipulations of genome structure can require the use of more than one of the modules diagrammed in Fig. 1A, or parallel independent implementations of the same module, in a single individual. To accomplish such manipulations, the modules must be implemented with different recombinases that do not recognize each other’s target sites. Similarly, a number of powerful methods have been developed for using the excision and inversion reactions to control expression of a transgene specifically in cells where two independent gene expression patterns overlap (2, 3, 12, 13). Such intersectional methods rely on pairs of orthogonal recombinases; see, for example, Fig. 1B. For these reasons, we sought to discover additional recombinases with distinct site-specificity.

FLP recombinase has been mutated to recognize altered FRT sites, but some cross-reaction still remains (14, 15). Cre, encoded by the bacteriophage P1, is the most widely used recombinase in mammalian cells (16–18). Cre functions in Drosophila (19), but exhibits obvious toxicity (20), a problem also observed in mammalian cells (21, 22; reviewed in ref. 23) and plants (24).

Other site-specific recombinases have been used in metazoans, but less extensively. Dre recombinase, a close relative of Cre, has been demonstrated to work in mammalian cells (25, 26). PhiC31 integrase, which catalyzes unidirectional recombination between attP and attB sequences, has been used extensively for integration (27, 28) and cassette exchange (29, 30), applications that take advantage of its nonreversibility. The R recombinase, a relative of FLP from the yeast Zygosaccharomyces rouxii (31, 32), has been shown to function in plants (33).

In this report we describe the characterization of R and three other recombinases encoded by 2-μm circle-like plasmids of other yeasts. Although such plasmids are rare among yeasts, those characterized so far are very similar in structure to the 2-μm plasmid of S. cerevisiae (reviewed in ref. 34). In particular, they appear to encode site-specific recombinases related to FLP and undergo high-frequency intramolecular recombination between inverted repeat domains both in their native species and in S. cerevisiae (32, 34–39). However, only the R recombinase has previously been shown to work in a multicellular organism (33), and none has been used in an animal genome. We compare the properties of these four yeast recombinases to FLP, Cre, and Dre in Drosophila. We demonstrate four non–cross-reacting pairs of recombinases and target sites that have low toxicity and high activity. We also show that two of the new recombinases function in mammalian cells.

Results and Discussion

KD, R, B2, and B3 Yeast Recombinases Are Active in Drosophila. The ORFs predicted to encode the recombinases KD (from Kluyveromyces drosophilarum; ref. 35), R (from Z. rouxii; ref. 31), B2 (from Zygosaccharomyces bailii; ref. 37) and B3 (from Zygosaccharomyces hisporus; ref. 40) were synthesized with Drosophila codon usage. We wanted to decrease the half-lives of the recombinases to achieve tighter temporal control of activity and reduce potential toxicity. Therefore, a PEST sequence corresponding to residues 422–461 of the mouse ornithine decarboxylase gene (41) was appended at their C termini. The synthesized genes were cloned downstream of upstream activation sites (UAS) that bind the GAL4 transcription factor, thereby placing recombination expression under the control of GAL4 (Methods; ref. 42).

Recombinase activity was assayed by using the excision reaction (Fig. 1A). We constructed a set of “stop cassettes” consisting of tandem hsp70 and SV40 transcriptional terminators flanked by target sites specific for one of the recombinases. To create recombinase-specific reporter constructs, the stop cassettes were placed between 20 UAS sites and the coding sequence for a membrane-targeted, codon-optimized myristoylated

Author contributions: A.N., B.D.P., K.S., and G.M.R. designed research; A.N., B.D.P., and K.S. performed research; G.M.R. wrote the paper; A.N. tested the activity of the constructs in mice.

1A.N. and B.D.P. contributed equally to this work.

2To whom correspondence should be addressed. E-mail: rubing@janelia.hhmi.org.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1111704108/-/DCSupplemental.
Three additional yeast recombinases have been described; we did not try TD1 (46), and our initial attempts to use SM (34) and KW (34) were unsuccessful. In addition to the yeast recombinases, we also tested the ability of Dre, a recombinase closely related to Cre, to work in Drosophila. Dre showed only moderate efficiency in Drosophila; we were only able to get the excision reaction to go to ≈70% completion. However, we found that Dre did not demonstrate the toxicity associated with Cre (see below). Thus, Dre would be a useful recombinase for applications where low efficiency is desired, such as stochastic cell labeling. We did not evaluate other members of the Cre family of recombinases, such as those recently described in Vibrio and Shewanella species (47).

During the course of this work, we used two different versions of FLP that differ in the amino acid residue at position 5, having either a glycine (G; ref. 6) or an aspartic acid (D; ref. 48). Although these two versions have not been distinguished in published reports describing the use of FLP in Drosophila, we found that the version containing an aspartic acid was >10 times more active based on the ability of hsFLP constructs encoding each version to induce excision of an FRT-flanked stop cassette under parallel conditions in the T1 medulla neuron. We observed an average of 6.5 excisions per optic lobe with the G5 FLP and 289 with the D5 FLP.

Unlike Cre, FLP and the Other Yeast Recombinases Do Not Show Toxicity. Flies that expressed Cre-recombinase at high levels (20XUAS, pJFRC7; ref. 43) under the control of the pan-neuronal elav-GAL4 driver resulted in FLP expression from these constructs would be expected only if the KD, R, B2, or B3 recombinases were able to “kick-out,” “rip-out,” “bail-out,” or “blow-out” their respective stop cassettes by excisional recombination.

Coexpression of each recombinase, under the control of 20XUAS sites (pJFRC7; ref. 43), and its cognate stop-cassette reporter using the pan-neuronal elav-GAL4 driver resulted in broad FLP expression in neurons; no FLP was observed in the absence of the construct encoding the recombinase. These results demonstrated that all four recombinases were active in Drosophila. We next asked if recombination went to completion, that is, whether the stop cassette excised in all recombination-expressing cells. For this purpose, we used a more specific GAL4 driver line, R31F10 (constructed as described in ref. 45), which expresses in a single cell, the T1 neuron, in each of the 800 columns that comprise the medulla of the adult optic lobe. In a tangential section through the M2 layer of the medulla, a grid of T1 terminals is observed. The processes of different T1 neurons in this array do not overlap with each other, allowing us to score individual cells and determine the percentage in which an excision event had occurred (Fig. 2). High levels of recombination expression resulted in the excision reaction going to completion for each of the four recombinases (Table 1). We also found that 3XUAS recombinase constructs, which we estimate express less than one-fifth the recombinase of the 20XUAS constructs used above (43), still result in complete, or nearly complete, excision for the three recombinases tested (B2, B3, KD).

Together with FLP, the Recombinases We Analyzed Comprise Four Non-Cross-Reacting Recombinase-Target Site Pairs. We next assayed the activity of the recombinases to recognize each other’s target sites and those of the FLP recombinase. We constructed Drosophila lines that paired all combinations of the FLP, KD, R, B2, and B3 recombinases and target sites. B2 and R showed partial cross-reaction, but all other noncognate pairs of recombinases and target sites were inactive (Fig. 2 and Table 1), even when the recombinases were expressed at several times the level needed to go to completion on their cognate sites.

Red Fluorescent Protein (pJFRC72; refs. 43 and 44). RFP expression from these constructs would be expected only if the KD, R, B2, or B3 recombinases were able to “kick-out,” “rip-out,” “bail-out,” or “blow-out” their respective stop cassettes by excisional recombination.

Unlike Cre, FLP and the Other Yeast Recombinases Do Not Show Toxicity. Flies that expressed Cre-recombinase at high levels (20XUAS, pJFRC7; ref. 43) under the control of the pan-neuronal driver elav-GAL4 (11) and a balancer chromosome (TM6B), we recovered tubulin-GAL4/20XUAS recombinase and balancer/20XUAS recombinase flies in roughly the expected 1:1 ratio for Dre (66:46), Flp (55:73), R (66:46), B2 (96:87), B3 (54:38), and KD (65:35). However, for CRE, no tubulin-GAL4/20XUAS recombinase progeny were recovered (0:79). Consistent with these results, high-level expression of Cre—but not the other recombinases—in the developing and adult eye using pGMR-GAL4 (49) resulted in strong defects in both external eye morphology and the arrangement of cells seen in sections cut through the retina. The lack of detectable toxicity resulting from expression of the yeast recombinases is more striking when we consider that the 20XUAS recombinase constructs used in these experiments are estimated to produce approximately fivefold more recombinase than needed to drive an excision reaction to apparent completion.

Unlike Cre, FLP and the Other Yeast Recombinases Do Not Show Toxicity. Flies that expressed Cre-recombinase at high levels (20XUAS, pJFRC7; ref. 43) under the control of the pan-neuronal driver elav-GAL4 (11) and a balancer chromosome (TM6B), we recovered tubulin-GAL4/20XUAS recombinase and balancer/20XUAS recombinase flies in roughly the expected 1:1 ratio for Dre (66:46), Flp (55:73), R (66:46), B2 (96:87), B3 (54:38), and KD (65:35). However, for CRE, no tubulin-GAL4/20XUAS recombinase progeny were recovered (0:79). Consistent with these results, high-level expression of Cre—but not the other recombinases—in the developing and adult eye using pGMR-GAL4 (49) resulted in strong defects in both external eye morphology and the arrangement of cells seen in sections cut through the retina. The lack of detectable toxicity resulting from expression of the yeast recombinases is more striking when we consider that the 20XUAS recombinase constructs used in these experiments are estimated to produce approximately fivefold more recombinase than needed to drive an excision reaction to apparent completion.

B3 and KD Recombinases Show Activity in Mammalian Cells. We prescreened the KD, R, B2, and B3 recombinases for activity in cultured Chinese hamster ovary (CHO) cells at 37 °C by cotransfecting CMV-GAL4::p65 with a UAS recombinase co-

Fig. 1. Modifying genome structure and gene expression with site-specific recombinases. (A) Four types of reaction are diagramed. The target sites recognized by the recombinases are indicated by the colored triangles, and the thick black lines represent genomic DNA. In the excision/insertion reaction, a segment of DNA between two tandemly arranged target sites can be excised as a circular molecule. The reverse reaction, insertion, occurs with much lower efficiency. In the inversion reaction, a segment of DNA between two oppositely oriented target sites can undergo one or more cycles of inversion. In the translocation reaction, a segment of a chromosome arm distal to the oppositely oriented target sites can undergo one or more cycles of inversion. In the translocation reaction, a segment of a chromosome arm distal to the opposite-
struct and its cognate stop-cassette reporter construct. These preliminary experiments suggested that B3 and KD were considerably more active under these conditions than R and B2. To further confirm B3 and KD activity, CHO cells were transfected with four plasmids: CMV-GAL4::p65 to drive transcription of the genes encoded by the other plasmids; 10XUAS-myr::GFP (pJFRC12; ref. 43) to provide a measure of transfection efficiency; 20XUAS B3 or 20XUAS KD recombinase; and a reporter construct with the appropriate stop cassette between the UAS sites and the RFP gene (Fig. 3). Recombinase activity was estimated as the fraction of GFP-expressing cells that also express RFP after correction for the recombination-independent background expression of RFP observed in some cells (Fig. 3B).

Further, the need to subtract this background (<10% of transfected cells for both KD and B3) limited the precision with which we could estimate recombinase efficiency, these data demonstrate that both B3 (65% of transfected cells showing excision of the stop cassette) and KD (32%) were functional in mammalian cells at 37 °C, with B3 appearing more active than KD.

Table 1. Specificity of target site recognition by recombinases measured as percent of cells showing an excision event

<table>
<thead>
<tr>
<th>Target</th>
<th>B2</th>
<th>B3</th>
<th>KD</th>
<th>R</th>
<th>FLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2RT</td>
<td>99.9</td>
<td><0.1</td>
<td><0.1</td>
<td>36</td>
<td><0.1</td>
</tr>
<tr>
<td>B3RT</td>
<td><0.1</td>
<td>99.9</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>KDRT</td>
<td><0.1</td>
<td><0.1</td>
<td>99</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>RSRT</td>
<td>0.9</td>
<td><0.1</td>
<td><0.1</td>
<td>96</td>
<td><0.1</td>
</tr>
<tr>
<td>FRT</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>

Excision events were measured by using the assay shown in Fig. 2 (Methods). The values presented are based on scoring >1,000 cells for each combination of recombinase and target site. The stronger D5 version of FLP was used in these experiments.
with two separate plasmids. One plasmid drove expression of B3 or KD under control of the synapsin promoter (refs. 52 and 53; syn-B3 and syn-KD, respectively). The other plasmid contained the tdTomato gene (44) driven by the CAG promoter (54–56), but separated from the promoter by either the B3 or KD-specific stop cassette (CAG_BlownOUT_tdTomato and CAG_KickedOUT_tdTomato, respectively).

Brains were harvested from mature mice (28–35 d postnatal) and inspected for tdTomato expression. Mouse brains that expressed matching recombinases and reporter constructs typically harbored numerous red fluorescent neurons in layer 2/3 (syn-B3 plus CAG_BlownOUT_tdTomato, 9/10 mice; syn-KD plus CAG_KickedOUT_tdTomato, 5/7 mice). Neurons were strongly labeled with tdTomato without obvious signs of toxicity. The fluorescent neurons appeared to have normal dendritic morphology, and local and long-range axonal projections (Fig. 4).

The absence of fluorescence in some brains is likely explained by the failure rate, ≈20%, of the in utero electroporation technique. These experiments show that KD and B3 are active in the mouse brain. Fluorescent neurons were never detected in brains transfected with unmatched recombinases and reporter constructs (syn-B3 plus CAG_KickedOUT_tdTomato, 0/5 mice; syn-KD plus CAG_BlownOUT_tdTomato, 0/3 mice), suggesting that, as in flies, B3 and KD are not cross-reactive.

Further experiments will be required to compare the activity and toxicity of these recombinases with that of FLP and Cre. In the case of FLP, engineering the protein to be more thermostable significantly increased activity (57, 58) and similar efforts could be applied here if necessary. However, based on the cell culture assays, it appears that B3 is already highly active at 37 °C.

Concluding Remarks
A variety of methods that are based on site-specific recombination have been used in Drosophila (3, 7–11), but the ability to apply multiple methods, or methods that require multiple recombinases, in the same animal has been severely limited by the lack of a set of non–cross-reacting, nontoxic recombinases. The results we present here remove this limitation and establish a robust toolkit of four distinct recombinases—KD, B2, B3, and FLP—for use in Drosophila. Each has sufficient activity to drive an excision reaction to completion without displaying detectable cross-reactivity or obvious toxicity. We also show that at least two of the recombinases, KD and B3, are active in mammalian tissues.

Methods
Molecular Biology and Drosophila Genetics. Constructs for use in Drosophila and transgenic fly lines were generated by standard methods as described in refs. 43 and 45; see SI Methods for details. Drosophila codon-optimized...
recombinases and their cognate recognition sites were synthesized by DNA2.0, Inc.; complete DNA sequences are given in Fig. S1, Fig. S2, and Fig. S3. Plasmid constructs are available from Addgene.

Imaging of Optic Lobes. Optic lobes from 5- to 10-d adult flies, mounted in an appropriate orientation, were imaged on a Zeiss LSM 710 confocal microscope by using a 20× 0.8 NA objective. For further details, see SI Methods.

CHO assays. CHO-K1 cells (ATCC CCL-61) were plated at a density of 4 × 10^5 in 35 mm MatTek culture plates (Mattek). The next day, a total of 4 μg plasmid DNA in 250 μL of Opti-MEM I Reduced Serum Medium (Invitrogen) were combined with Lipofectamine 2000 (Invitrogen) and used to transfect CHO-K1 cells according to manufacturer recommendations. GFP and RFP fluorescence were visualized ≈24 h after transfection by using a Zeiss LSM 510 confocal microscope.

In Vivo Mouse Assays. Approximately 1 μL of DNA solution consisting of a mixture of plasmids in a 1:1 ratio at a final DNA concentration of 2 μg/μL was injected into the right lateral ventricle of each embryo (embryonic day 16 C57BL/6J mice) and then electroporated as described in SI Methods. The plasmids used for mouse in utero electroporation were based on an Adeno-associated virus (AAV) backbone (56); see SI Methods for details.

ACKNOWLEDGMENTS. We thank Tanya Wolff for sectioning and morphological analysis of adult Drosophila eyes; Todd Laverty and the Janelia Farm Drosophila shared resource for stock maintenance; Helen White and Sarah Winfrey for assistance with the CHO cell transfection experiments; Torrey Gallagher for construction of AAV vectors; Amy Hu for preparing mouse brain sections, Kevin McGowan and the Janelia Farm Molecular Biology shared resource for DNA sequencing; Genetic Services Inc. for generation of the transgenic flies; and Tzumin Lee, Jim Truman, David Anderson, Charles Zuker, and Larry Zipursky for comments on the manuscript. This work was supported by the Howard Hughes Medical Institute.

Supporting Information

Nern et al. 10.1073/pnas.1111704108

SI Methods

Molecular Biology. *Drosophila* codon-optimized recombinases and their cognate recognition sites were synthesized by DNA2.0, Inc. The coding sequences for the recombinases are shown in Fig. S1 for B3, KD, and B2 and Fig. S2 for R and FLP. The sequences of the stop cassettes used in this work for the B3, KD, B2, RS, and FLP stop cassettes are shown in Fig. S3.

To construct pBPhsFlp1 and pBPhsFlp2 sequences encoding yeast FLP were amplified from the pUAS-Flp vector (ref. 1; obtained from the Drosophila Genome Resource Center) to contain an optimal translation sequence and cloned as a 5′-KpnI–3′ AAvr2 fragment into a modified pBDP (2) vector that contains the Hsp70Bb Heat Shock Promoter (–194 to +237) and 337–bp terminator (ref. 3; CGG31359). Two variants of the FLP coding sequence were recovered; pBPhsFlp1 contains a D5 residue and pBPhsFlp2 a G5 residue. Sequences have been reported for the yeast Flp gene that encode either G5 or D5 (4, 5).

All recombinases used in the UAS vectors were synthesized to include a C-terminal PEST sequence; nuclear localization sequences were not added. The same recombinase genes (*Drosophila*-codon optimized and including the PEST sequence) and stop cassettes were used in flies, CHO cells, and mice. RFP was used as a reporter in the stop cassettes for B2, B3, KD, and R; GFP in the cassettes for Cre, Dre, and FLP.

The plasmids used for mouse in utero electroporation were based on an AAV virus backbone (6). The modular cassettes BlownOUT and KickedOUT were cloned into the BamHI site of the AAV-CAG tdTomato vector (gift of Jim Kim, Janelia Farm Research Campus) to generate CAG-BlownOUT tdTomato and CAG_KickedOUT tdTomato. AAV-syn-B3:PEST and AAV-syn-KD:PEST were constructed by substituting the *Drosophila*-codon optimized B3 and KD genes, respectively, for the GCaMP gene in the AAV-syn-GCaMP3 construct (7).

Drosophila Transgenics and Genetics. Transgenic fly lines were generated as described (2, 8). For assaying recombinase activity, flies with appropriate stop-cassette reporter constructs inserted in attP40 and R31F10-GAL4 (in attP2) or elav-GAL4 (C155; ref. 9) were crossed to UAS recombinase flies (in attP2). To visualize the entire R10F10 pattern, a 10XUAS-mCD8::GFP reporter (pJFRC2 in attP40) was included in some cases. For testing 3XUAS recombinase constructs (in attP40), stop-cassette reporter in VK00005 and attP2 were used. For comparing the D5 and G5 FLP variants, levels of FLP were expressed under hsp promoter control (using pBPhsFlp1 or pBPhsFlp2 in attP2) by raising flies at 25 °C without additional heat shock. To test for toxicity of recombinase expression, UAS recombinase drivers in attP2 (20XUAS) were crossed to elav-GAL4 (C155; ref. 9), tubP-GAL4 (10), or GMR-GAL4 (11).

Imaging of Optic Lobes. Optic lobes from 5- to 10-d-old adult flies, processed in an appropriate orientation, were imaged on a Zeiss LSM 710 confocal microscope by using a 20× 0.8 NA objective. To aid quantification of medulla columns with stop-cassette excision, two methods were used to visualize all medulla columns: To assay KD, B2, B3, and R activity and potential cross-reactivity of these recombinases, the entire medulla pattern of R31F10 was revealed by using mCD8 GFP (pJFRC2-10XUAS-IVS-mCD8:: GFP). In this case, samples were mounted in PBS and native GFP and RFP fluorescence were imaged directly after dissection. For all other experiments, mAb24B10 (12) staining of R7 and R8 photoreceptor neurons was used as an indirect marker for the positions of T1 neurons, which, like R7 and R8, are present once per medulla column. For these experiments, brains were dissected in PBS, fixed with 2% formaldehyde in PBS for 1 h, washed several times with PBT (PBS + 0.5% TX-100), blocked with PBT with 5% goat serum and incubated with rabbit anti-GFP (Invitrogen; 1:1,000 dilution) or rabbit anti-ds-Red (Clontech; 1:1,000 dilution) plus mAb24B10 (ref. 12; Developmental Studies Hybridoma Bank; 1:20 dilution) overnight at 4 °C. Secondary antibodies were donkey anti-mouse DyLight 649 (1:500; Jackson Immunoresearch) and donkey anti-rabbit DyLight 488 (1:500; Jackson Immunoresearch). Samples were mounted in Slowfade Gold (Invitrogen). Eye sections to assess recombinase toxicity were prepared as described (13).

In Vivo Mouse Assays. Embryonic day 16 timed-pregnant C57BL/6J mice (Charles River) were deeply anesthetized by using an isoflurane-oxygen mixture [2% (vol/vol) isoflurane in O2]. The uterine horns were exposed and ≈1 μL of DNA solution was pressure-injected through a pulled glass capillary tube into the right lateral ventricle of each embryo. The DNA solution contained a mixture of plasmids in a 1:1 ratio at a final concentration of 2 μg/μL. The head of each embryo was placed between custom-made tweezer electrodes, with the positive plate contacting the right side of the head. Electroporation (14, 15) was achieved with five square pulses (duration 50 ms, frequency 1 Hz, 40 V). Electroporated mice were perfused with cold saline and 4% paraformaldehyde and fixed overnight. Analysis of tdTomato expression was performed in 50-μm-thick brain sections.

The DNA sequences encoding recombinases B3, KD, and B2 are shown. The sequences have been codon optimized for Drosophila. The coding sequence of the recombinases is shown in black (the initiating ATG codon is underlined); a 7-bp translation initiation sequence (16), shown in blue, was included immediately upstream of the ORF. A C-terminal PEST sequence comprised of residues 422–461 from the mouse ornithine decarboxylase gene (see main text) was inserted as a C-terminal fusion (shown in red). Restriction enzyme recognition sequences used as linkers are shown in green.

B3 Recombinase

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTCGAATTCATGGAATTTAATGTTGAGTTGGTACGTATCTTGCCTTTGGATCAGGTTGCGGAGATCAAACGTATTC</td>
<td>KD Recombinase</td>
</tr>
<tr>
<td>TCTAGA</td>
<td>B2 Recombinase</td>
</tr>
</tbody>
</table>

KD Recombinase

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTCGAATTCATGGAATTTAATGTTGAGTTGGTACGTATCTTGCCTTTGGATCAGGTTGCGGAGATCAAACGTATTC</td>
<td>KD Recombinase</td>
</tr>
<tr>
<td>TCTAGA</td>
<td>B2 Recombinase</td>
</tr>
</tbody>
</table>

B2 Recombinase

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTCGAATTCATGGAATTTAATGTTGAGTTGGTACGTATCTTGCCTTTGGATCAGGTTGCGGAGATCAAACGTATTC</td>
<td>KD Recombinase</td>
</tr>
<tr>
<td>TCTAGA</td>
<td>B2 Recombinase</td>
</tr>
</tbody>
</table>

Fig. S2. The DNA sequences encoding recombinases R and FLP are shown. The FLP sequence encodes an aspartic acid residue at position 5 (D5). The sequences have been codon optimized for *Drosophila*. Color coding is as in Fig. S1.
A: Blown-OUT stop cassette

AGATCT AGGTTGCTTAAGAATAAGTAATTCTTAAGCAACC

AGATCT AGGTTGCTTAAGAATAAGTAATTCTTAAGCAACC

B: KD recombination site used in the Kicked-OUT stop cassette

AAACGATATCAGACATTTGTCTGATAATGCTTCATTATCAGACAAATGTCTGATATCGTTT

C: B2 recombination site used in the Baild-OUT stop cassette

GAGTTTCATTAAGGAATAACTAATTCCCTAATGAAACTC

D: RS recombination site used in the Rpd-OUT stop cassette

TTTGATGAAAGAATAACGTATTCTTTCATCAA

E: FRT recombination site used in the Flpd-OUT stop cassette

GAAGTTCCTATACTTTCTAGAGAATAGGAACTTC

Fig. S3. Stop cassettes. (A) The sequence of the Blown-OUT stop cassette is shown. The stop cassettes used for each recombinase differed only by the sequence of the recombinase target site, shown here for B3 in the green boxes, that flank the transcriptional terminators. Note that recombination sites for B3 and the other recombinases are themselves inverted repeats separated by a spacer that determines the directionality of the recombination reaction. The same tandem transcriptional terminators, which are derived for the Drosophila Hsp70Bb gene (ref. 3; shown in blue) and the early SV40 transcription unit (refs. 17 and 18; shown in red) were used in all stop cassettes. The sequence of the target sites used for the other recombinases are shown in B–E; references for these target site sequences can be found in the main text.