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Emerging data indicate that rice consumption may lead to poten-
tially harmful arsenic exposure. However, few human data are
available, and virtually none exist for vulnerable periods such as
pregnancy. Here we document a positive association between rice
consumption and urinary arsenic excretion, a biomarker of recent
arsenic exposure, in 229 pregnant women. At a 6-mo prenatal visit,
we collected a urine sample and 3-d dietary record for water, fish/
seafood, and rice. We also tested women’s home tap water for
arsenic, which we combined with tap water consumption to esti-
mate arsenic exposure through water. Women who reported rice
intake (n = 73) consumed a median of 28.3 g/d, which is ∼0.5 cup
of cooked rice each day. In general linear models adjusted for age
and urinary dilution, both rice consumption (g, dry mass/d) and
arsenic exposure throughwater (μg/d) were significantly associated
with natural log-transformed total urinary arsenic ( β̂rice= 0.009,
β̂water = 0.028, both P < 0.0001), as well as inorganic arsenic, mono-
methylarsonic acid, and dimethylarsinic acid (each P < 0.005). Based
on total arsenic, consumption of 0.56 cup/d of cooked rice was
comparable to drinking 1 L/d of 10 μg As/L water, the current US
maximum contaminant limit. US rice consumption varies, averaging
∼0.5 cup/d, with Asian Americans consuming an average of >2
cups/d. Rice arsenic content and speciation also vary, with some
strains predominated by dimethylarsinic acid, particularly those
grown in the United States. Our findings along with others indicate
that rice consumption should be considered when designing arsenic
reduction strategies in the United States.

Arsenic, ubiquitous in the environment, has been linked to
multiple adverse health outcomes, including skin lesions (1,

2), cancers (3, 4), and cardiovascular disease (5, 6), and there is
increasing concern about the effects of low-dose exposures (7, 8).
Arsenic exposure during pregnancy is a particular public health
concern due to the additional health risks imposed on the fetus.
In epidemiological studies, maternal urinary arsenic (a bio-
marker of recent exposure) has been related to infant mortality
(9) and low birth weight (10). Moreover, in utero arsenic expo-
sure has been linked to hampered immune function (11) and
increased mortality from lung cancer later in life (12). Given
that fetal development is generally a period of heightened vul-
nerability to environmental toxicants (13), it is especially crucial
to characterize the sources and extent of arsenic exposure in
pregnant women.
Whereas arsenic exposure through contaminated drinking wa-

ter is well-documented, emerging data indicate that dietary intake
of arsenic also may be substantial (14, 15). Rice in particular has
been implicated as a major potential route for exposure (16–18),
in that paddy field biogeochemistry and rice physiology combine
to give elevated grain arsenic (19, 20). However, there is large
variability in the concentration and speciation of arsenic in dif-
ferent rice cultivars (16–18, 21), which makes exposure assessment
difficult. Rice consumption in the United States is much lower
than in Asian countries, but is increasing rapidly. Americans
consume more than three times as much rice now as during the

1930s (22), averaging about 0.5 cup of cooked rice/d (22). Still,
there is great variability by ethnic group, with Asian Americans
consuming an average of more than 2 cups/d (23). Rice con-
sumption may be of particular concern in the United States, be-
cause rice grown in some regions of the United States has been
reported to have higher average total arsenic concentrations than
rice grown in other geographic regions (16, 21). However, US rice
typically contains a higher proportion of dimethylarsinic acid (16,
21, 24), a form of organic arsenic generally considered less toxic. It
is essential to understand the extent of arsenic exposure through
this staple food.
Here we report our findings on urinary arsenic excretion in

relation to recent rice consumption in 229 pregnant women in a
region of the United States with elevated well water arsenic
concentrations (25). We quantified the contribution of rice and
home tap water to arsenic exposure, measured via urinary ar-
senic concentration, in the women.

Results and Discussion
Women in this initial sample experienced a range of arsenic
exposures via their home tap water (Table 1). Home water arsenic
concentration ranged from the detection limit (≤0.07 μg/L) to
nearly 100 μg/L and was highly right-skewed. Thirty-two women
(14%) consumed home drinking water above the current US
Environmental Protection Agency (US EPA) standard and World
Health Organization drinking water guideline (10 μg/L). The
median consumption of home tap water was 0.7 L/d [interquartile
range (IQR) 0.1–1.2] through drinking and cooking. By multi-
plying each individual’s reported home tap water intake by the
arsenic concentration in her well water, we estimated that the
women consumed a median of 0.27 μg of arsenic/d through home
tap water (IQR 0.01–2.23; range 0–133.34).
Rice intake ranged from 0 to 112.5 g/d (measured as a dry

mass), with a mean of 11.3 g/d. The distribution was highly right-
skewed, with 156 out of the 229 women consuming no rice in the
2 d before urine collection and the remaining 73 women con-
suming a median of 28.3 g/d (IQR 27.5–55.8), which is ∼0.5 cup of
cooked rice or 1 cup of rice cereal.
Similarly, urinary arsenic concentrations varied among women.

The median total urinary arsenic concentration, calculated by
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summing the concentrations of inorganic arsenic (iAs), mono-
methylarsonic acid (MMA), and dimethylarsinic acid (DMA), was
3.78 μg/L (IQR 1.80–6.10), which was within the range of the US
population as a whole (26). Total arsenic concentrations were
unrelated to gestational week (rs = −0.03, P = 0.66). Although
other studies found that arsenic methylation increased with ges-
tational week (27, 28), methylation efficiency measured as the
ratios of MMA to iAS, and DMA to MMA, was not associated
with gestational week in our sample (rs =−0.002, P=0.98 and rs =
0.01, P=0.86, respectively), possibly due to the narrow gestational
window under observation (IQR 23.9–28.0 wk). Among the 180

subjects who reported using their tap water for drinking or cook-
ing, home water arsenic concentration was associated with total
urinary arsenic concentration (rs = 0.43, P < 0.0001).
The median total urinary arsenic concentration was 1.89 μg/L

higher among women who reported rice consumption during the
2 d before urine collection compared with those who did not (P <
0.001) (Table 2). In examining the median concentrations of the
various urinary arsenic species separately, rice consumers had 0.07
μg/L higher iAs (P = 0.03), 0.18 μg/L higher MMA (P < 0.01),
and 1.25 μg/L higher DMA (P < 0.001) than nonconsumers. The
large difference in urinary DMA concentrations may reflect the
consumption of rice that is particularly high in DMA [as found for
some US-grown rice (16, 21, 24)], together with the excretion of
consumed iAs that was methylated in the body.
Ln-transformed total urinary arsenic concentration increased

with increased rice consumption and exposure to arsenic via tap
water, controlling for age and urinary creatinine (Table 3 and
Fig. 1). Based on our model, each μg of As exposure from water
was associated with a 3% increase in total urinary arsenic (P <
0.0001), and each g of rice consumed was associated with a 1%
increase in total urinary arsenic (P < 0.0001) (Table 3). Con-
suming 0.56 cup (32 g) of cooked rice/d resulted in a predicted
total urinary arsenic concentration that was comparable to that
predicted from consuming 1 L/d of water at the US EPA Max-
imum Contaminant Level (MCL) (10 μg/L) (Table 3 and Fig. 1).
In our model, arsenic exposure derived from household tap
water intake and concentrations explained 12% of the variability
of total urinary arsenic. Rice consumption alone, without ac-
counting for the arsenic concentration of the specific rice, was
able to explain 4% of the variability of total urinary arsenic. The
associations between rice consumption and urinary iAs, MMA,
and DMA were similar to those for total urinary arsenic (Table 3
and Fig. S1); no statistically significant associations were ob-
served between rice consumption and arsenobetaine, iAs/MMA,
or MMA/DMA (Table S1). Results were robust to outliers.
Our findings suggest that many people in the United States may

be exposed to potentially harmful levels of arsenic through rice
consumption. The average daily rice consumption in the United
States is about 0.5 cup of cooked rice (22), just below our estimated
threshold based on the drinking water MCL urinary equivalent.
Importantly, there is high variability in rice consumption (23), such
that some groups may have considerably higher arsenic exposure
through rice. In two national surveys, non-Hispanic blacks, His-
panics, and those of “other race” (including Asian, Pacific Islander,
American Indian, and Alaskan Native) were more likely to con-
sume rice than non-Hispanic whites; members of the “other race”

Table 1. Selected characteristics of 229 pregnant women from
a New Hampshire pregnancy cohort

Variable

Maternal age (y) 30.8 (4.5)
Weeks of gestation at urine collection 26.0 (3.1)
Prepregnancy BMI (kg/m2) 24.8 (4.8)
Parity 1.1 (1.1)
Smoking status
Never 184 [80.3]
Ever 16 [7.0]
Current 10 [4.4]
Unknown 19 [8.3]

Education level
Less than 11th grade 3 [1.3]
High school graduate or equivalent 18 [7.9]
Junior college graduate or some college

or technical school
51 [22.3]

College graduate 89 [38.9]
Postgraduate schooling 49 [21.4]
Unknown 19 [8.3]

Home water arsenic concentration (μg/L) 1.0 {0.2–4.8}
Home tap water consumption (L/d) 0.7 {0.1–1.2}
Drinking (L/d) 0.7 {0.0–1.2}
Cooking (L/d) 0.0 {0.0–0.1}

Rice consumption (g, dry mass/d) 0.0 {0.0–27.5}

Maternal age, weeks gestation, prepregnancy BMI, parity, smoking sta-
tus, and education level were from self-reports by subjects. Home water
arsenic concentrations were measured from home water samples using in-
ductively coupled plasma mass spectrometry at the Trace Element Analysis
facility at Dartmouth College. Consumption of rice and household tap water
was measured from a food diary of the 2 d before urine collection. Data are
presented as mean (SD), number [%], and median {interquartile range}.

Table 2. Median {interquartile range} of creatinine and urinary arsenic metabolites for all
subjects, then rice eaters and non-rice eaters separately

Variable Total (n = 229) Rice eaters* (n = 73) Non-rice eaters (n = 156) P†

Creatinine‡ (mg/dL) 54.85 {27.69–101.05} 51.81 {29.02–89.73} 57.65 {26.68–107.10} 0.69
Arsenobetaine (μg/L) 0.67 {0.07–5.47} 0.57 {0.07–3.66} 0.69 {0.09–7.74} 0.33
iAS (μg/L) 0.24 {0.13–0.40} 0.28 {0.13–0.51} 0.21 {0.13–0.36} 0.03
MMA (μg/L) 0.30 {0.14–0.50} 0.41 {0.18–0.63} 0.23 {0.13–0.43} <0.01
DMA (μg/L) 3.25 {1.51–5.53} 4.09 {2.42–7.20} 2.84 {1.34–4.40} <0.001
Total arsenic (μg/L) 3.78 {1.80–6.10} 5.27 {2.86–8.72} 3.38 {1.64–5.39} <0.001
MMA/iAs (μg/L) 1.07 {0.70–1.52} 1.16 {0.76–1.70} 1.01 {0.68–1.41} 0.11
DMA/MMA (μg/L) 9.86 {8.05–13.14} 9.86 {7.89–15.21} 9.83 {8.17–12.65} 0.63

Urinary creatinine was measured using Cayman’s Creatinine Assay, and urinary arsenic metabolites were
measured via HPLC. Total urinary arsenic is the sum of inorganic arsenic, monomethylarsonic acid, and dimethy-
larsinic acid; arsenobetaine was not included in this total.
*Women who reported any rice consumption during the 2 d before urine collection were categorized as “rice
eaters.”
†P from the Wilcoxon rank-sum test comparing the median urinary concentration of different variables in rice
eaters and non-rice eaters.
‡Sample sizes for creatinine measurements are 64 for rice eaters and 134 for non-rice eaters, respectively.
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category consumed the largest average amount of rice (2.2 cups/d)
(23). In a 2009 study of a USKorean community, the mean cooked
rice intake was 2.9 cups/d (29), and themedian total urinary arsenic
concentration (iAs + MMA + DMA) was more than three times
the national median (21.6 μg/L vs. 6.0 μg/L) (26). Additionally, ∼3
millionAmericans (30) with celiac disease, an autoimmune disease
triggered by gluten ingestion, may also have high levels of arsenic
exposure via rice. Consuming a gluten-free diet is the only medi-
cally accepted treatment for celiac disease, and affected individuals
often substitute rice for the gluten-containing grains of wheat,
barley, and rye (30).
The large variability in arsenic in different rice strains leads to

considerable uncertainty in estimated exposures for a given mass
of consumed rice. Both the concentration and speciation of ar-
senic in rice vary with rice cultivar and the arsenic content of the
agricultural soil (16, 17). For example, Williams et al. (17) found
that rice grown in the south-central United States had a sub-
stantially higher average total arsenic concentration than rice
grown in California (0.30 vs. 0.17 μg As/g rice). The percentage
of arsenic in rice that is in inorganic forms also has been shown
to vary substantially (21); one study reported rice samples that
ranged from 27 to 86% inorganic arsenic, with the remainder
largely composed of DMA (16). This same study found that the
arsenic in rice grown in the United States was predominantly
DMA, with 42% of the arsenic in inorganic forms (16). Although
inorganic arsenic is thought to be more harmful than DMA (31),
further epidemiological studies are needed to better understand
the health risks of DMA, which is a demonstrated carcinogen in
rats (32). More detailed information regarding the types and

sources of rice consumed, combined with further characteriza-
tion of arsenic concentrations and speciation in rice and rice
products, would allow future epidemiological studies to better
assess arsenic exposure through this grain.
Fetal development represents a particularly vulnerable win-

dow of arsenic exposure, with both immediate and long-term
health risks (10–12). At present, the health consequences of low
levels of arsenic exposure to the developing fetus are not well-
understood, as epidemiological studies of arsenic and fetal de-
velopment have been done almost exclusively in populations with
high levels of exposure. Knowing whether the health risks of
arsenic exposure extend to low levels for developmental out-
comes, as they do with cancer outcomes (33), would allow for
better consultation with pregnant women about arsenic-related
risks and ways to limit those risks during pregnancy.
The large and statistically significant association we observed

between rice consumption and urinary arsenic, in addition to
earlier reports of elevated arsenic concentrations in rice (16, 17),
highlights the need to regulate arsenic in food (34, 35). There are
no statutory limits for the arsenic content of food sold in the
United States and European Union, in stark contrast to China,
where the maximum safe level of inorganic arsenic in rice is
0.15 μg/g (36). Setting such limits would protect consumers from
unknowingly purchasing rice or rice products with high levels of
arsenic. In addition, limits would encourage cultivation of rice
strains that do not incorporate as much arsenic and reduce the
use of arsenic-contaminated land for agriculture. Given the po-
tentially adverse health consequences of arsenic at low levels
of exposure, it is imperative that the health impact of arsenic
exposure through rice consumption be characterized.

Methods
Pregnancy Cohort. In January 2009, we began enlisting pregnant women
(ages 18–45) who reported using a private, unregulated water system (e.g.,
private well) at their home, through prenatal clinics in New Hampshire. A
spot urine sample was requested at the prenatal visit at ∼24–28 wk of
gestation. Women were provided with a prelabeled, acid-washed, screw-
top, 120-mL urine specimen container that contained 30 μL of 10 mM dia-
mmonium diethyldithiocarbamate to stabilize arsenic species. Samples were
stored upright, maintained at 4 °C, and sent via courier in a styrofoam box to
the Pathology Department at Dartmouth Hitchcock Medical Center for
processing within 24 h. Samples were aliquoted and stored at −80 °C. One
aliquot was shipped on dry ice to the University of Arizona Hazard Identi-
fication Core for analysis, with every tenth sample replicated as part of
quality control. We determined urinary creatinine in a second aliquot using
Cayman’s Creatinine Assay Kit and protocol.

Womenwere asked to record their intake of water, rice, rice products, and
fish/seafood in each of the 3 d before the urine sample. We asked the source
of intake (home tap water, work tap water, restaurant tap water, bottled
water, or other) for water used in both beverages (e.g., tea and coffee) and
food (e.g., soups and jello). Rice products included rice and hot rice cereals
prepared with or without home tap water, premade rice, and cold dry
rice cereals.

Additionally, we instructed women on the collection of water samples
from their household (i.e., kitchen) tap. Women were given containers with
prepaid mailing materials to return the samples to the study office. Samples
were collected in commercially washed (mineral-free) high-density poly-
ethylene bottles that meet EPA standards for water collection (I-Chem).

Table 3. Parameter estimates (95% confidence interval) for the increase in natural log-
transformed total urinary arsenic (sum of iAs, MMA, and DMA) with increased rice consumption
and arsenic exposure from water, with and without urinary creatinine in the model

b̂, without creatinine b̂, creatinine included

Age (y) 0.028 (0.004, 0.053) 0.012 (−0.005, 0.030)
Urinary creatinine (mg/dL) 0.011 (0.009, 0.012)
Rice consumption (dry g/d) 0.008 (0.002, 0.013) 0.009 (0.005, 0.013)
As exposure from water (μg/d) 0.021 (0.013, 0.029) 0.028 (0.021, 0.036)

All analyses are adjusted for maternal age (n = 198).

Fig. 1. Circles show age- and creatinine-adjusted ln-transformed total uri-
nary arsenic (sum of inorganic As, MMA, and DMA) versus arsenic exposure
via tap water (μg/d) and rice consumption (dry g/d). The plane represents the
predicted urinary arsenic concentrations from our multiple regression
model, given the cohort’s mean age of 30.9 y and median urinary creatinine
concentration of 58.3 mg/dL.
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Bottles were kept in clean, sealed plastic bags to prevent contamination.
Instructions stated to collect the sample using the provided gloves after
running the tap for 2–3 min and to transfer the sample into a provided,
sealed plastic bag to avoid contamination. Two water samples were re-
quested if tap water filters were used—one before and one after filtration.
All samples were labeled with preprinted labels with the subject’s ID number.
Water samples were frozen at −20 °C upon arrival at the study office and
then sent frozen to the Dartmouth Trace Element Analysis Core for analysis.
Every tenth sample was sent in duplicate as part of quality control.

Arsenic Analysis: Water. Drinking water samples were analyzed for arsenic
concentration by inductively coupled plasma mass spectrometry (ICP-MS) at
the Trace Element Analysis Core at Dartmouth using a quadrupole collision
cell 7500c Octopole Reaction System ICP mass spectrometer (Agilent) and He
as a collision gas to remove polyatomic interferences. All sample preparations
and analyses were carried out in a trace metal-clean HEPA-filtered-air en-
vironment. Analytical blanks and potential instrumental drifts were carefully
monitored, and instrument standardization and reproducibility were per-
formed with National Institute of Standards and Technology traceable
standards and certified standard reference materials.

Samples (3-mL) were transferred to a polypropylene vial and 20 μL of
concentrated trace metal-grade nitric acid was added before analysis. The
analytical uncertainty of ICP-MS analyses using a weighted linear regression
calibration method is typically ±3–5%. The detection limit ranged from
0.009 to 0.074 μg/L (mean = 0.014 μg/L), with detectable levels in over 96%
of the samples tested to date.

Arsenic Analysis: Urine. Upon arrival at the University of Arizona, urine
samples were transferred to 15-mL tubes and frozen at −20 °C until analysis
(within 1 mo of collection). Samples were analyzed for individual species
of urinary arsenic using a high-performance liquid chromatography (HPLC)
ICP-MS system (37–39). This system uses an HPLC pump (Dionex GP50 pump)
and an HPLC column (Hamilton PRP100X) connected to a collision cell ICP
mass spectrometer. The arsenic speciation method is capable of quantita-
tively determining five arsenic species in urine: AsIII, AsV, DMAV, MMAV, and
arsenobetaine. Before injection into the chromatographic system, the urine
sample was filtered through a 0.45-μm membrane filter under pressure from
a disposable syringe and diluted fivefold with the mobile phase [30 mM
(NH4)2HPO4, pH 8]. The sample volume was 100 μL and the column flow rate
was 1 mL/min. The separated arsenic species were detected by ICP-MS using
time-resolved analysis at m/z 75. The detection limits ranged from 0.10 to
0.15 μg/L for the individual arsenic species.

We calculated total urinary arsenic concentrations by summing inorganic
arsenic (AsIII and AsV) and the metabolic products MMAV and DMAV.
Arsenobetaine was excluded from this calculation, as it is thought to be
nontoxic and pass through the body without being metabolized (40).

Estimation of Rice Consumption. For the 73 women who consumed rice and
rice products, we estimated their total rice consumption by converting the
information in the dietary record to dry grams using the US Department of
Agriculture (USDA) National Nutrient Database (41). For cooked rice, par-
ticipants reported the number of 8-oz cups of cooked rice eaten; we calcu-
lated the dry mass of rice consumed (g) by dividing the number of kcal in
a cooked cup of rice by the kcal/g in dry rice of that type. We repeated this
calculation for each of the nine types of rice listed in the database and
obtained an average of 55.1 g dry rice in 1 cup of cooked white rice and 59.3 g
dry rice in 1 cup of cooked brown rice. Relative consumption of white and
brown rice from a postpartum questionnaire was then used to weight the
values for white and brown rice, producing a single estimate of 56.7 g of dry
rice in each cup of cooked rice. The USDA database also was used to obtain
the mass of dry rice in 1 cup of hot rice cereal using the Cream of Rice entry
(34.3 g) and for 1 cup of cold rice cereal using the Rice Krispies and Rice Chex
entries (average = 27.5 g). We then multiplied the cups consumed for each

category of rice item by the average mass per cup and summed across all
categories of rice.

Estimation of Arsenic Exposure via Water. Each woman’s consumption of
home tap water was also determined. For the women who consumed rice
prepared with home tap water, we added 0.52 cup of water per cup of
cooked rice consumed to this total. We made this correction because women
who ate rice prepared with home tap water did not report using water for
cooking rice as they did for other foods (e.g., soups, juices, etc.). The cor-
rection factor was determined using the USDA database for moisture in dry
and cooked rice for all nine types of rice in the database, paralleling our
estimates for grams of rice consumed. Including this water for cooking did
not change the estimated associations or level of significance between rice
and water intake and urinary arsenic concentrations. We converted the
number of 8-oz cups of home water consumed via drinking or food prepa-
ration during each of the 2 d before the urine sample to liters.

Finally, we estimated arsenic exposure via water (μg) by multiplying water
consumption (L) in the 2 d before the urine sample by the measured arsenic
concentration in that water (μg/L). At this stage, we excluded one woman
from further analysis because she reported using water from two wells with
very different arsenic concentrations, but not the number of cups of water
consumed from each well.

Data Analysis. We categorized women who reported any rice or rice product
consumption in the 2 d before urine collection as “rice eaters,” and all others
as “non-rice eaters,” and then compared median urinary creatinine, arsenic
metabolites, MMA/iAs, DMA/MMA, and total arsenic (sum of iAs, MMA, and
DMA) between groups using the nonparametric Wilcoxon rank-sum test
(SAS version 9.2; SAS Institute).

We evaluated the relationship between ln-transformed urinary arsenic
and estimated arsenic exposure via water and intake of rice in grams for the
2 d before the urine sample using general linear models (SAS version 9.2). A
2-d window was used based on arsenic excretion studies by Buchet et al.
(42) and Tam et al. (43); results were not sensitive to the use of 1-, 2-, or 3-d
intake windows.

We adjusted for age (y) based on an established relationship between age
and urinary arsenic (40, 44, 45) and for urinary dilution by including urinary
creatinine in the model (46). Time of pregnancy at urine collection (gesta-
tional week), prepregnancy body mass index (BMI), parity, smoking, and
education level were not included in the adjustment model because they
were not related to urinary arsenic concentrations and rice or water con-
sumption in bivariate analyses.

Given our multiple regression model for ln-transformed urinary arsenic
concentration as a function of age, urinary creatinine, rice consumption, and
water exposure (μg arsenic/d), we predicted the urinary arsenic concentra-
tion for a woman at the mean age in our cohort (30.9 y) and median urinary
creatinine concentration (54.9 mg/dL) for different rice consumptions and
arsenic exposures through water. For rice, we back-converted the grams of
dry rice/d consumed into cups/d of cooked rice for easy interpretation, as-
suming that the rice was cooked in arsenic-free water; this assumption
should result in a more conservative estimate of the impact of rice con-
sumption on urinary arsenic.
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