Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas

Knud A. Jønsen1, Pierre-Henri Fabre2, Susanne A. Fritz3,4, Rampal S. Etienne5, Robert E. Ricklefs6, Tobias B. Jørgensen7, Jon Fjeldså8, Carsten Rahbek9, Per G. P. Ericson10, Friederike Woog11, Eric Pasquet12, and Martin Irestedt1

*Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen Ø, Denmark; 1Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; 2Biodiversity and Climate Research Centre (BiK-F) and Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt, Germany; 3Community and Conservation Ecology, Centre for Evolutionary and Ecological Studies, 9700 CC Groningen, The Netherlands; 4Department of Biology, University of Missouri, St. Louis, MO 63121; 5Department of Vertebrate Zoology, Swedish Museum of Natural History, SE-10405 Stockholm, Sweden; 6Department of Ornithology, Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany; 7Unité Mixte de Recherche 7205, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS), F-75231 Paris Cedex 05, France; 8Unité Mixte de Service 2700, Muséum National d'Histoire Naturelle, CNRS, F-75231 Paris Cedex 05, France; 9Molecular Systematic Laboratory, Swedish Museum of Natural History, SE-10405 Stockholm, Sweden

Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved March 2, 2012 (received for review September 27, 2011)

Adaptive radiation is the rapid diversification of a single lineage into many species that inhabit a variety of environments or use a variety of resources and differ in traits required to exploit these. Why some lineages undergo adaptive radiation is not well-understood, but filling unoccupied ecological space appears to be a common feature. We construct a complete, dated, species-level phylogeny of the endemic Vangidae of Madagascar. This passerine bird radiation represents a classic, but poorly known, avian adaptive radiation. Our results reveal an initial rapid increase in evolutionary lineages and diversification in morphospace after colonizing Madagascar in the late Oligocene some 25 Mya. A subsequent key innovation involving unique bill morphology was associated with a second increase in diversification rates about 10 Mya. The volume of morphospace occupied by contemporary Madagascar vangas is in many aspects as large (shape variation)—or even larger (size variation)—as that of other better-known avian adaptive radiations, including the much younger Galapagos Darwin’s finches and Hawaiian honeycreepers. Morphological space bears a close relationship to diet, substrate use, and foraging movements, and thus our results demonstrate the great extent of the evolutionary diversification of the Madagascar vangas.

Results and Discussion

Adaptive Radiation of the Madagascan Vangidae. The maximum-likelihood analyses and Bayesian analyses performed on our concatenated dataset, and on the individual partitions, yielded trees that were topologically congruent for well-supported nodes (Fig. L4 and Figs. S1–S6). Whereas the individual gene trees all found non-Madagascar taxa, the continental “Vangidae” (Philentoma, Bias, Hemipus, Tephrodornis, and Prionops), nested within the Madagascan Vangidae clade, analyses of the concatenated dataset recovered the Madagascan Vangidae as monophyletic (with low support). A recent analysis of a 13-gene dataset on most vanga species (17) agrees with our more tentative phylogenetic framework, precluding in-depth ecological and evolutionary interpretations of this enigmatic bird family.

In this study, we present a complete species-level molecular phylogeny of the Madagascan Vangidae, including representatives of all putative close relatives from Africa and Asia (Table S1). Additional African “vanga” species have previously been included in the family Vangidae by some authors, but a recent study has shown that the Madagascan vangas form a distinct monophyletic group (17). We focus on the phylogeny of the endemic Madagascan vangas to test a number of characteristics pertaining to mode and tempo of adaptive radiation in Madagascar with explicit emphasis on physical, ecological, and evolutionary opportunity required for adaptive radiation, in the sense of Simpson (2), to take place. Specifically, we (i) assess the ecological opportunity available when the ancestral vangang arrived in Madagascar, (ii) examine diversification rates through time, (iii) investigate evolutionary rates of morphological diversification (disparity-through-time plot) in combination with examining tree imbalance to locate specific evolutionary transitions (key innovations) that might have increased speciation rates, and, finally, (iv) use a unique statistical approach to investigate a second speciation pulse that coincides with topological imbalance for a clade suggesting a marked shift in foraging strategy (key innovation). Specifically, we test whether the diversification dynamics of that clade are coupled to the diversity-dependent pattern of the remaining Madagascan vangas.
Fig. 1. (A) Watercolor by J.F. illustrating the Madagascan vanga species and morphological diversity. From the bottom moving clockwise: Mystacornis crossleyi, Cyanolanius (two species), Calicalicus (two species), Euryeros, Schetba, Vanga, Xenoprotostris (three species), Oriolia, Falcula, Artamella, Leptopterus, and Newtonia (four species). (B) Bayesian topology of the Vangidae and other closely related core corvoids obtained from the combined dataset of six genes (Myo, ODC, GAPDH, Fib-5 c-mos, and ND2). Bayesian posterior probabilities >0.90 (except for the Madagascan vanga clade, pp = 0.88 are indicated to the left of the nodes (asterisks indicate posterior probabilities of 1.00) followed by maximum-likelihood bootstrap values ≥70% from 100 pseudoreplicates. (C) Map of Madagascar depicting the main habitat zones.
finding that the Madagascan Vangidae represent a radiation with a single origin, contrary to conclusions based on previous morphological studies (15). We considered these phylogenetic results good evidence for monophyly, so further analyses focused only on the Madagascan Vangidae (henceforth referred to as Vangidae). Systematic relationships at the base of the Vangidae generally had low support, consistent with rapid diversification in the early history of the group (3, 4, 17), although low support values could also simply reflect poor signal in the data. All recognized genera within the family received high support, as did a clade consisting of *Artamella, Falculea, Orioila,* and *Xenopirostris,* and a tight link between *Eutycteros* and *Schetba.* A chronogram for the Vangidae (Fig. 2A) suggested that the initial radiation started in the Late Oligocene (23 Mya) and that most recognized genera had already appeared by the mid-Miocene (15 Mya). A recent genus-level phylogeny broadly confirms these results (17). Thus, the Vangidae are old compared with other insular adaptive radiations of birds, such as Galapagos finches and Hawaiian honeycreepers, which started diversifying about 4 and 6 Mya, respectively (18, 19).

The lineage-through-time plot for the Vangidae indicates high diversification rates at the early stage of the radiation (Fig. 2B, bold line), followed by a slowdown roughly between 20 and 10 Mya. Although this diversification pattern agrees with that of Reddy et al. (17) based on their genus-level phylogeny, our species-level phylogeny suggests a subsequent second radiation burst between 10 and 5 Mya, after which diversification rates once again slowed. Accordingly, the number of speciation events per 1-My interval varied widely through time, decreasing initially but with a distinct second peak (Fig. 2B). We investigated this second burst of radiation more closely using a unique method to detect a decoupling of the diversity-dependent dynamics of the innovative clade from the ancestral clade (i.e., key innovation) in combination with morphological data (discussed in the following sections).

Across the whole phylogeny of Madagascan vangas, we found strong support for decreasing diversification rates through time, a pattern that has been termed “diversity dependence” (20). Both the γ and ΔAIC₉₉ statistics (21, 22) rejected constant diversification rates for the maximum clade credibility (MCC) tree under all tested scenarios (Table S2). The significant decrease in diversification rates through time implies the progressive filling of ecological space as the vangid radiation progressed, which is usually seen as a feature of adaptive radiation (4, 11). It also suggests that the Vangidae have reached their “species carrying capacity” or ecological limit (23).

According to Simpson (2), adaptive radiations emerge from three kinds of ecological opportunity: physical, ecological, and evolutionary. The first criterion merely requires that opportunity exists, and indeed the Vangidae evolved on an ecologically diverse island (13). The second criterion requires that opportunities are not limited by competitors or predators, a hypothesis that has not previously been explicitly tested for vangas (e.g., 15–17). The time of arrival to Madagascar of the ancestral vang 22–29 Mya coincides with the arrival of several potentially competing types of birds and predatory mammals, such as tenrecs, rodents, and carnivores (24, 25). When vangids colonized Madagascar, all groups of present-day mammals, to the exclusion of lemurs, had only recently become established on Madagascar. Although fossil information is lacking, the contemporary avifauna of Madagascar includes two small, ancient endemic clades of nonpasserine birds (Mesitornithidae and *Leptosomus*), and otherwise only groups that arrived after the colonization of the first vangids. The ancestors of endemic nonpasserine radiations such as the couas (*Cuculidae; Couinae*) and ground rollers (*Brachypteraciidae*) initially colonized Madagascar in the Miocene (20–28), and most passerine taxa did not arrive until the Plio-Pleistocene (*Dicrurus* (29); *Nectarinia* (30); *Zosterops* (31); *bulbuls* (32)], except for a few groups that arrived in the Miocene (*Foudia* (33); *Coracina* (34); possibly Madagascan warblers, *Bernieridae* (28)). However, most bird groups are represented by a few, relatively undiversified species. We cannot exclude significant extinction of a previously diverse fauna that might have occupied Madagascar in the Miocene, but given that the present fauna is depauperate compared with ecologically similar continental areas, the first vangid ancestor likely arrived on an island with abundant physical and ecological opportunity.

Morphological Diversification. Simpson’s (2) third criterion refers to the appearance of novel evolutionary adaptations. To trace the connection between morphological adaptation and diversification, we examined seven morphological traits (wing length, tail length, tarsus length, middle toe length, and the length, width, and depth of the culmen measured at the base). In a principal components (PC) analysis, the first axis (PC1) was linked to size and explained 81.6% of the total variance. The other prominent axes (PC2–PC4) were related to shape variation, particularly with respect to bill size.
and shape, and explained 14.1% of the total. We then generated disparity-through-time (DTT) plots (Fig. 2C), which partition the contemporary morphological diversity among lineages existing at each time point during the history of the clade (35). Observed morphological disparity among lineages was compared with expected disparity based on simulating a morphological character evolving under a random walk on the phylogenetic tree (35). The higher the value of relative disparity, the greater the average volume of morphological space occupied by subclades relative to the morphological disparity of the taxon as a whole. The average disparity in beak morphology is much higher within subclades than expected under Brownian motion, indicating that vangid species within subclades have diversified in beak morphology to the extent that the subclades overlap in beak morphospace (Fig. 2C). In contrast, disparity in all PC axes taken together, and in the axis reflecting body size in particular, is partitioned among rather than within subclades, suggesting that subclades occupy different parts of the body-size spectrum and that body size has evolved relatively little since its initial diversification among the major clades of Vangidae.

Our results for body size (PC1) therefore concur with adaptive radiation theory: Clades that accumulate species rapidly appear to fill size-dependent ecological space quickly, because subclades evolve to fill different parts of morphospace or adaptive zones (35). Within these adaptive zones of body size occupied by the different subclades, species within subclades subsequently diverged with respect to beak morphology, indicating adaptive differentiation of diet and foraging modes within subclades, to the degree that some species from different subclades occupy the same parts of beak morphospace. Based on an ancestral reconstruction of foraging behavior, Reddy et al. (17) suggested that the diversification of vangas reflected early adaptation to different feeding strategies in the group. The overlap of subclades in beak morphospace and their differentiation in body size shown here suggest a more complex, possibly two-step adaptive process, a hypothesis we investigate in detail in the next section.

Although the ecological specializations of species of Madagascan vangids has not been characterized directly, one can estimate space filling in comparative analyses by the occupation of morphological space (Fig. 3), which bears a close relationship to diet, substrate use, and foraging movements. Strikingly, the Madagascar radiation has produced nearly the variance in size (PC1) exhibited by passerine birds as a whole, and somewhat more than observed in the Hawaiian honeycreepers and Galapagos finches. Shape variation (PC2–PC6) is less extensive, but is largely because the range of other passerines on PCS (bill width/bill depth), the Madagascar species tending to have deep, narrow bills. Thus, the classic island radiations—and the Madagascan vangids are no exception—tend to fill morphological space idiosyncratically and have not achieved the morphological diversity of complete continental passerine avifaunas. Nonetheless, the Madagascan Vangidae species are among the most diverse morphologically of passerine families, which is consistent with rapid diversification in a largely open ecological space.

Two Adaptive Radiations in One. Going beyond previous studies, we show that the high initial speciation rate and subsequent marked slowdown were followed by a second peak in speciation rate in the Late Miocene before diversification again slowed toward the present (Fig. 2B); this second peak in lineage diversification coincided with a marginal second peak in the disparity of bill morphology (Fig. 2C). Simpson’s (2) third criterion (evolutionary adaptations) explicitly refers to the consequence of a key innovation, that is, the promotion of diversification by providing access to new ecological space. We suggest that the second peak in diversification might have followed a morphological key innovation within the Vangidae, providing a subclade of vangas new ecological opportunity through changing morphology.

To test this hypothesis, we first investigated tree imbalance of the Madagascan vangas, because a significant departure from the appropriate null model (the equal-rates Markov model) should indicate whether lineages within a tree have diversified with different rates (36). The Vangidae phylogeny was significantly more imbalanced than expected under the equal-rates Markov model (MCC tree, \(\beta = -1.09 \), upper confidence interval limit = \(-0.05\)), but no single node in the phylogeny showed significant imbalance according to the \(\Delta_1 \) statistic (37). We did, however, find a significant shift in diversification rate at node B (\(P = 0.039 \)) when applying the relative cladogenesis test, which compares diversification rates for lineages within time slices (38). The clade descending from node B (Fig. 2A) is therefore unusually diverse given diversification rates for the vangids as a whole, and appears to have increased the species carrying capacity for Madagascan vangas. This clade consists of a group of species with strongly divergent bill morphologies: heavy bills for *Xenopirostris* and a long bill for *Falcula* (Fig. 1). The only other species with heavy bills (*Vanga* and *Euryceros*) are found in the sister clade, and it is noteworthy that this clade (node A in Fig. 2A) includes all of the descendants with massive bills, although the diversification rate shift at this node A is only marginally significant (rate cladogenesis test, \(P = 0.057 \)).

To further test the hypothesis of diversification resulting from a key innovation in this subclade, we used the key innovation model of Etienne and Haegeman (39) that is based on the Etienne et al. (40) diversity-dependent birth–death model (where the speciation rate is assumed to be linearly declining with diversity). This key innovation model assumes that diversification is generally diversity-dependent, but key innovations decouple the diversification dynamics of the clade having the key innovation from that of the species lacking it. This decoupling removes the constraint of competition from other species on the innovative lineage, providing the opportunity for rapid radiation. The likelihood approach developed by Etienne and Haegeman (39) for testing this key innovation model also allows for estimating the diversification parameters, including clade-level carrying capacities for the subclade and the main clade (Table S3). We found strong support for a decoupling of diversification dynamics for the subclade descending from node B (the node found to be significantly imbalanced and including species with a divergent bill morphology) from the diversity dependence of the remaining vangids. The fitted parameters for this subclade
included the same initial speciation rate and extinction rate, but a different “clade carrying capacity.” Thus, the accumulation of lineages through time provides support for the Madagascan vangas as two radiations in one, with a subclade increasing the ecological species limit to a whole about 10 Mya, although both radiation fronts appear to have reached their ecological limits at present. Vangid congers are largely allopatric and ecophenotypically similar and, as such, may not count fully in an adaptive radiation. However, the decoupling of diversification dynamics for the subclade descending from node B was significant, even when treating the species within each of the genera Newtonia, Xenopirostris, Calicalicus, and Cyanolanius as single taxa.

The second speciation burst therefore constitutes a significant second radiation probably due to a key innovation. Our results show that it is consistent with species within subclade B partitioning beak morphospace, as indicated by the second peak in the morphological disparity index as a whole about 10 Mya (Fig. 2C). However, it is not only the design of the bill that matters but also the way it is put to use. Members of clade B exhibit unusual adaptations in foraging behavior (cf. 17). All members are probers, and Xenopirostris, Oriotia, and Artamella species strip bark off trees to search for food underneath, whereas Falculeus has evolved a long decurved bill, which it uses to retrieve prey items hidden underneath the bark or in deep crevices. This “woodcrecker” key innovation may have been so advantageous that the clade was able to radiate significantly, even after the vangids as a whole had reached an ecological limit signify by a decreasing diversification rate. We propose that this key innovation at node B caused a second adaptive radiation in a clade that had already diversified adaptively, with each genus within clade B filling a slightly different foraging niche.

In conclusion, phylogenetic diversification rates combined with morphological trait measurements demonstrate that the Vangidae constitute a textbook example of an adaptive radiation with a complex history of ecological innovation. The adaptation of bill shapes to different foraging techniques may have partitioned the ecological space among subclades and driven diversification in Madagascan vangas, comparable in scope to other bird radiations (i.e., Galapagos finches, Hawaiian honeycreepers). The strong evidence we show for decreasing diversification rates over time may be interpreted as a sign of progressive niche filling, which would be expected for an adaptive radiation (4, 11, 41). In addition, our results suggest that a key innovation in beak shape supportive of novel woodcrecker foraging behaviors within the family created a second adaptive radiation with a second burst of speciation.

Materials and Methods

Taxon Sampling and Phylogenetic Analyses. We sequenced six genes (four nuclear introns, one nuclear coding region, and one mitochondrial gene, in total 3,977 bp) for all 22 putative members of the Vangidae. In the phylogenetic analyses, we included a number of African and Asian species that have been demonstrated to be closely related to the Vangidae (Table 51). We used MrBayes version 3.1.2 (42) to estimate phylogenetic relationships. Substitution models were determined with MrModeltest version 2.0 (43), using the Akaike information criterion (AIC) (44). In the analyses of individual genes, four Metropolis-coupled Markov chain Monte Carlo (MCMC) simulations, one cold and three heated, were run for 20 million iterations with trees sampled every 500 iterations. For the combined analysis, the MCMC was run for 50 million iterations. The burn-in and convergence diagnostics were graphically assessed using AWTY (45). Maximum-likelihood analyses were performed using GARLI version 0.95 (46). Five independent analyses (50 million generations) were performed, and nodal support was evaluated with 100 nonparametric bootstrap pseudoreplications.

Dating Analyses. We used BEAST version 1.5 (47, 48) to estimate the divergence dates within Vangidae; we assigned the best-fitting model, as estimated by MrModelttest version 2.0 (43), to each of the partitions. We assumed a Yule speciation process for the tree prior and an uncorrelated log-normal distribution for the molecular clock model (49). We used default prior distributions for all other parameters and ran MCMC chains for 50 million generations. We used the program Tracer (50) to assess convergence diagnostics. To obtain absolute diversification times, we relied on two previously published age estimates within the Passeriformes (the age of Acanthisittidae versus other passerines at 76 My ± 8 SD, and the age of the basal oscine divergence at 63 ± 2 SD) generated by Barker et al. (51) based on three different approaches. The confidence intervals for our calibration points represent averages, with 95% confidence intervals including the most extreme ages in the study.

The use of secondary calibration points is associated with substantial error margins. To further corroborate the absolute dating estimates, we assessed the molecular rate of evolution (corrected pairwise distances) for the mitochondrial marker (ND2) for nodes younger than 12 My, which has been demonstrated to maintain a rate of evolution of ~2% per My (52). The two dating approaches produced congruent results.

Morphylo. To examine the history of morphological variation, we measured 1-21 individuals (in total 264 individuals) of each of 22 species of vangas from museum collections around the world (deposited in Dryad; http://dx.doi.org/10.5061/dryad.mhzqf615). The characters examined (wing length, tail, tarsus, and middle toe, and the length, width, and depth of the culmen measured at the base) are believed to represent various aspects of adaptation to differences in habitat use and foraging strategies (53, 54). All values were log-transformed, and all morphological characters were entered into a model of Brownian motion and compared to the observed phenotypic disparity among and within subclades relative to total disparity at all time bins in a phylogeny. DTT was computed using the average squared Euclidian distances implemented in the GEIGER package for R (56). The morphological disparity index was computed to assess whether disparity within lineages was less than or greater than the median expectations of the null distribution.

Madagascan morphological diversification was compared with the Passeriformes as a whole based on a principal components analysis calculated from the covariance matrix of seven log10-transformed variables measured on 1,612 species broadly sampled, including all 22 species of Madagascan Vangidae and 11 continental species in the genera Philetornaa, Hemipus, Tephrodornis (Asia), Prionops, and Bias (Africa). (Inquiries concerning these data should be directed to R.E.R.)

Analyses of Diversification Rates and Tree Imbalance. We used two statistical measures to test for constant diversification rates in the phylogeny of Vangidae: the γ statistic (21) and ΔAICc (22). One thousand trees were randomly sampled from the posterior distribution of the dating analysis, disregarding the burn-in, to take uncertainty in phylogenetic reconstruction into account. All diversification rate analyses were carried out on the MCC tree of those 1,000 posterior trees. Multiple sequences, outgroups, and continental vangas were deleted from the trees, so that each Madagascan vanga species was represented by only one tip. Analyses were run in R version 2.10.1 (55) and its contributed package LASER (57).

We used LASER to generate four sets of null distributions for each of our statistics, by simulating 5,000 trees under the pure-birth model (constant speciation rate, no extinction), for each set. Because our phylogenetic reconstructions included all 22 known species, we did not have to account for unsampled species (e.g., 17, 20). The first set of trees was simulated to grow from the root until the tip number reached 22, which assumes that 100% of the vanga species are known. We then simulated trees under each of the assumptions that 75%, 50%, and 25% of vanga species are known, and subsequently deleted tips at random until the simulated trees contained 22 tips. This procedure takes into account undescribed or extinct species, assuming that these are missing at random in the phylogeny (20, 21).

Strongly negative γ values indicate a decrease in diversification rates through time, so we tested the observed γ values against the four sets of null simulations with one-tailed tests (21). We fitted five diversification models to our trees 100,000 times in a maximum-likelihood framework (22), two of which had constant diversification rates through time (the pure-birth model and the model of Brownian motion), two with a root-zero (constant speciation rate, zero extinction rates) and three of which were rate-variable models (models of diversity-dependent diversification with logistic and exponential growth rates, and a modified pure-birth model with one switch between two constant
speciation rates). To avoid inflation of type I error rates, the ΔAICc statistic is then the difference in AIC values of the best rate-variable model and the best rate-constant model, so we tested for significantly positive ΔAICc values with one-tailed tests (22).

Furthermore, we assessed whether diversification rates have been equal throughout the evolutionary history of the Vangidae (i.e., the MCC tree). We computed the β parameter with the R package apeTreeshape (58), which compares nodal imbalance throughout the phylogeny to the equal-rates Markov model (36). Under this null model, every node should have an equal chance of diversification, and β should be indistinguishable from zero. Strongly negative β values indicate strong imbalance, whereas strongly positive values indicate unusual balance; both cases imply that diversification rates may have varied through time and/or between clades.

Two approaches to identify nodes with unusually high numbers of descendants (i.e., unusually species-rich clades) were used: the Δ1 statistic, which considers topological information only (37, 59), and the relative clade size (38) which compares nodal imbalance throughout the phylogeny to the equal-rates Markov model (36). Under this null model, every node should have an equal chance of diversification, and the relative clade size may have happened between node A and node B. We used the AIC to differentiate between the models (39).

ACKNOWLEDGMENTS. We thank Muséum National d’Histoire Naturelle, Paris; Naturhistoriska Riksmuseet, Stockholm; Staatliches Museum für Naturkunde Stuttgart; the British Museum of Natural History; and the Natural History Museum of Denmark for provision of material for this study. K.A.J., P.-H.F., S.A.F., J.F., and C.R. acknowledge the Danish National Research Foundation for support to the Center for Macroecology, Evolution and Climate. R.S.E. thanks the Netherlands Organization for Scientific Research for financial support. P.E. acknowledges the Swedish Research Council (Grant 621-2010-5321).
Supporting Information
Jønsson et al. 10.1073/pnas.1115835109

Fig. S1. The 50% majority rule consensus tree of Vangidae obtained from the Bayesian analysis of 375 aligned bases of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The appropriate substitution model TIM+Γ was determined with MrModeltest (1), using the Akaike information criterion (AIC) (2, 3). In the Bayesian analysis (4, 5), the Markov chain Monte Carlo (MCMC) was run using Metropolis coupling, with one cold and three heated chains, for 10 million iterations with trees sampled every 500 iterations. Bayesian inference (BI) harmonic mean −ln 2962.70. The number of iterations discarded before the posterior probabilities were calculated (i.e., the length of the burn-in period) was graphically estimated using AWTY (6, 7) by monitoring the change in cumulative split frequencies. Two independent runs initiated from random starting trees were performed, and the log-likelihood values and posterior probabilities for splits and model parameters were checked to ascertain that the chains had reached apparent stationarity. Maximum-likelihood (ML) analyses were performed using GARLI version 0.95 (8). Five independent analyses (20 million generations) were performed. Nodal support was evaluated with 100 nonparametric bootstrap pseudoreplications. The score of the best-likelihood tree (−ln 2827.81) was within 0.05 likelihood units of the best tree recovered in each of the other four runs, suggesting that the five runs had converged. Bayesian posterior probabilities are indicated above nodes (asterisks indicate posterior probabilities of 1.00), and ML bootstrap values are indicated below nodes. Members of Vangidae are indicated in bold.

The 50% majority rule consensus tree of Vangidae obtained from the Bayesian analysis of 630 aligned bases of ornithine decarboxylase introns 6 and 7 (ODC). The appropriate substitution model TVM+Γ was determined with MrModeltest (1), using the AIC (2, 3). In the Bayesian analysis (4, 5), the MCMC was run using Metropolis coupling, with one cold and three heated chains, for 10 million iterations with trees sampled every 500 iterations. BI harmonic mean = −ln 3606.54. The number of iterations discarded before the posterior probabilities were calculated (i.e., the length of the burn-in period) was graphically estimated using AWTY (6, 7) by monitoring the change in cumulative split frequencies. Two independent runs initiated from random starting trees were performed, and the log-likelihood values and posterior probabilities for splits and model parameters were checked to ascertain that the chains had reached apparent stationarity. ML analyses were performed using GARLI version 0.95 (8). Five independent analyses (20 million generations) were performed. Nodal support was evaluated with 100 nonparametric bootstrap pseudoreplications. The score of the best-likelihood tree (−ln 3505.62) was within 0.05 likelihood units of the best tree recovered in each of the other four runs, suggesting that the five runs had converged. Bayesian posterior probabilities are indicated above nodes (asterisks indicate posterior probabilities of 1.00), and ML bootstrap values are indicated below nodes. Members of Vangidae are indicated in bold.

Fig. S3. The 50% majority rule consensus tree of Vangidae obtained from the Bayesian analysis of 702 aligned bases of myoglobin intron 2 (Myo). The appropriate substitution model K80+Γ was determined with MrModeltest (1), using the AIC (2, 3). In the Bayesian analysis (4, 5), the MCMC was run using Metropolis coupling, with one cold and three heated chains, for 10 million iterations with trees sampled every 500 iterations. BI harmonic mean −ln 4125.66. The number of iterations discarded before the posterior probabilities were calculated (i.e., the length of the burn-in period) was graphically estimated using AWTY (6, 7) by monitoring the change in cumulative split frequencies. Two independent runs initiated from random starting trees were performed, and the log-likelihood values and posterior probabilities for splits and model parameters were checked to ascertain that the chains had reached apparent stationarity.

ML analyses were performed using GARLI version 0.95 (8). Five independent analyses (20 million generations) were performed. Nodal support was evaluated with 100 nonparametric bootstrap pseudoreplications. The score of the best-likelihood tree (−ln 3992.8146) was within 0.5 likelihood units of the best tree recovered in each of the other four runs, suggesting that the five runs had converged. Bayesian posterior probabilities are indicated above nodes (asterisks indicate posterior probabilities of 1.00) and ML bootstrap values are indicated below nodes. Members of Vangidae are indicated in bold.

Fig. S4. The 50% majority rule consensus tree of Vangidae obtained from the Bayesian analysis of 623 aligned bases of β-fibrinogen intron 5 (Fib5). The appropriate substitution model TrN+Γ was determined with MrModeltest (1), using the AIC (2, 3). In the Bayesian analysis (4, 5), the MCMC was run using Metropolis coupling, with one cold and three heated chains, for 10 million iterations with trees sampled every 500 iterations. BI harmonic mean −ln 3346.42. The number of iterations discarded before the posterior probabilities were calculated (i.e., the length of the burn-in period) was graphically estimated using AWTY (6, 7) by monitoring the change in cumulative split frequencies. Two independent runs initiated from random starting trees were performed, and the log-likelihood values and posterior probabilities for splits and model parameters were checked to ascertain that the chains had reached apparent stationarity.

ML analyses were performed using GARLI version 0.95 (8). Five independent analyses (20 million generations) were performed. Nodal support was evaluated with 100 nonparametric bootstrap pseudoreplications. The score of the best-likelihood tree (−ln 3263.37) was within 0.05 likelihood units of the best tree recovered in each of the other four runs, suggesting that the five runs had converged. Bayesian posterior probabilities are indicated above nodes (asterisks indicate posterior probabilities of 1.00) and ML bootstrap values are indicated below nodes. Members of Vangidae are indicated in bold.

Fig. S5. The 50% majority rule consensus tree obtained from the Bayesian analysis of 606 bp of oocyte maturation factor Mos (c-mos). The appropriate substitution model TIM+I+Γ was determined with MrModeltest (1), using the AIC (2, 3). In the Bayesian analysis (4, 5), the MCMC was run using Metropolis coupling, with one cold and three heated chains, for 10 million iterations with trees sampled every 500 iterations. BI harmonic mean −ln 2607.89. The number of iterations discarded before the posterior probabilities were calculated (i.e., the length of the burn-in period) was graphically estimated using AWTY (6, 7) by monitoring the change in cumulative split frequencies. Two independent runs initiated from random starting trees were performed, and the log-likelihood values and posterior probabilities for splits and model parameters were checked to ascertain that the chains had reached apparent stationarity. ML analyses were performed using GARLI version 0.95 (8). Five independent analyses (20 million generations) were performed. Nodal support was evaluated with 10,000 nonparametric bootstrap pseudoreplications. The score of the best-likelihood tree (−ln 2461.90) was within 2 likelihood units of the best tree recovered in each of the other four runs. Bayesian posterior probabilities are indicated above nodes (asterisks indicate posterior probabilities of 1.00), and ML bootstrap values are indicated below nodes. Members of Vangidae are indicated in bold.

Fig. S6. The 50% majority rule consensus tree of Vangidae obtained from the Bayesian analysis of 1,041 aligned bases of NADH dehydrogenase subunit 2 (ND2). The appropriate substitution model GTR+I+Γ was determined with MrModeltest (1), using the AIC (2, 3). In the Bayesian analysis (4, 5), the MCMC was run using Metropolis coupling, with one cold and three heated chains, for 10 million iterations with trees sampled every 500 iterations. BI harmonic mean −ln 18233.41. The number of iterations discarded before the posterior probabilities were calculated (i.e., the length of the burn-in period) was graphically estimated using AWTY (6, 7) by monitoring the change in cumulative split frequencies. Two independent runs initiated from random starting trees were performed, and the log-likelihood values and posterior probabilities for splits and model parameters were checked to ascertain that the chains had reached apparent stationarity. ML analyses were performed using GARLI version 0.95 (8). Five independent analyses (20 million generations) were performed. Nodal support was evaluated with 100 nonparametric bootstrap pseudoreplications. The score of the best-likelihood tree (~ln 18347.45) was within 0.5 likelihood units of the best tree recovered in each of the other four runs, suggesting that the five runs had converged. Bayesian posterior probabilities are indicated above nodes (asterisks indicate posterior probabilities of 1.00), and ML bootstrap values are indicated below nodes. Members of Vangidae are indicated in bold.

Table S1. Taxa and individuals included in the study

<table>
<thead>
<tr>
<th>Species</th>
<th>Voucher no.</th>
<th>Myo</th>
<th>ODC</th>
<th>GAPDH</th>
<th>Fib5</th>
<th>c-mos</th>
<th>ND2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terpsiphone viridis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnorhina tibicen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicrurus bracteatus/paradiseus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artamus cyanopterus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aegithina tiphia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philentoma velata, pyrhoptera avocinctus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philentoma velata, xanthornus aviventer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newtonia brunneicauca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newtonia fanovanae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Species names are abbreviated for brevity.

References:
- Jonsson et al. www.pnas.org/cgi/content/short/1115835109
- [Link to article](#)
Table S1. Cont.

<table>
<thead>
<tr>
<th>Species</th>
<th>Voucher no.</th>
<th>Myo</th>
<th>ODC</th>
<th>GAPDH</th>
<th>Fib5</th>
<th>c-mos</th>
<th>ND2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sturnus vulgaris</td>
<td>NRM 966615,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRM 20046688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal oscines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menura novaehollandiae</td>
<td>MV F722,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unvouchered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suboscines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitta versicolor, guajana</td>
<td>DQ786002,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DQ785966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthisitta chloris</td>
<td>NRM 569989,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unvouchered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMNH, American Museum of Natural History (New York, United States); ANSP, Academy of Natural Science (Philadelphia, United States); ANWC, Australian National Wildlife Collection (Canberra, Australia); FMNH, Field Museum of Natural History (Chicago, United States); IPMB, Institut für Pharmazie und Molekulare Biotechnologie, Heidelberg University (Germany); KU, University of Kansas (Lawrence, United States); LSUMZ, Museum of Natural Science, Louisiana State University (Baton Rouge, United States); MNHN, Muséum National d’Histoire Naturelle (Paris, France); MV, Museum Victoria, Melbourne, Australia; NRM, Naturhistoriska Riksmuseet (Stockholm, Sweden); SMNS, Staatliches Museum für Naturkunde (Stuttgart, Germany); USNM, United States National Museum (Washington, DC, United States); UWBM, Burke Museum, University of Washington (Seattle, United States); ZMUC, Zoological Museum, University of Copenhagen (Denmark). F, sequenced from fresh material; T, sequenced from toe pads.

*Sequence downloaded from GenBank.

Table S2. Testing for constant diversification rates in the Vangidae using the γ and ΔAICc statistics

<table>
<thead>
<tr>
<th>Tree simulations</th>
<th>γ MCC</th>
<th>95th percentile</th>
<th>ΔAICc</th>
<th>MCC</th>
<th>95th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>−2.9313</td>
<td>11.4694</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% known</td>
<td>0.0002***</td>
<td>0.0006***</td>
<td>0.0008***</td>
<td>0.0034**</td>
<td></td>
</tr>
<tr>
<td>75% known</td>
<td>0.0006***</td>
<td>0.0026**</td>
<td>0.0012**</td>
<td>0.0052**</td>
<td></td>
</tr>
<tr>
<td>50% known</td>
<td>0.0004***</td>
<td>0.0022**</td>
<td>0.0034**</td>
<td>0.0106*</td>
<td></td>
</tr>
<tr>
<td>25% known</td>
<td>0.0072**</td>
<td>0.0198*</td>
<td>0.0094**</td>
<td>0.0280*</td>
<td></td>
</tr>
</tbody>
</table>

The observed values of the two measures are given for the maximum clade credibility (MCC) tree. Other values are P values for the MCC tree and the 95th percentile of a random sample (1,000 trees) from the posterior distribution of trees. These P values were generated from simulated null distributions, where 5,000 trees were simulated for each assumed total species number, going from all species known (100%) to only 25% of species known. ***P < 0.001, **P < 0.01, *P < 0.05.
Table S3. Comparison of various birth–death models of diversification: constant-rate models (CR), models with an overall shift in speciation rate, extinction rate, or carrying capacity (SR), and key innovation models (KI)

<table>
<thead>
<tr>
<th>Model Description</th>
<th>λ_1</th>
<th>μ_1</th>
<th>K_1</th>
<th>λ_2</th>
<th>μ_2</th>
<th>K_2</th>
<th>T_s</th>
<th>ΔAIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure-birth (CR1)</td>
<td>0.06</td>
<td>0 (fixed)</td>
<td>∞ (fixed)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>23.8</td>
</tr>
<tr>
<td>Birth–death (CR2)</td>
<td>0.06</td>
<td>0.00</td>
<td>∞ (fixed)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>21.8</td>
</tr>
<tr>
<td>Pure-birth with shift in speciation rate (SR1)</td>
<td>0.27</td>
<td>0 (fixed)</td>
<td>∞ (fixed)</td>
<td>0.04</td>
<td>0 (fixed)</td>
<td>∞ (fixed)</td>
<td>19.77</td>
<td>13.9</td>
</tr>
<tr>
<td>Diversity-dependent specification without extinction (CR3)</td>
<td>0.20</td>
<td>0 (fixed)</td>
<td>22.57</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>12.0</td>
</tr>
<tr>
<td>Diversity-dependent specification with diversity-independent extinction (CR4)</td>
<td>0.57</td>
<td>0.04</td>
<td>21.34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>12.5</td>
</tr>
<tr>
<td>Diversity-dependent specification with diversity-independent extinction with shift in carrying capacity (SR2)</td>
<td>0.46</td>
<td>0.00</td>
<td>12.56</td>
<td>λ_1</td>
<td>μ_1</td>
<td>21.84</td>
<td>9.77</td>
<td>3.26</td>
</tr>
<tr>
<td>Diversity-dependent specification with diversity-independent extinction and key innovation, with two clades having the same parameters (KI1)</td>
<td>0.23</td>
<td>0.00</td>
<td>16.00</td>
<td>λ_1</td>
<td>μ_1</td>
<td>K_1</td>
<td>9.77</td>
<td>6.61</td>
</tr>
<tr>
<td>Diversity-dependent specification with diversity-independent extinction and key innovation, with two clades having different carrying capacities (KI2)</td>
<td>0.62</td>
<td>0.02</td>
<td>15.53</td>
<td>λ_1</td>
<td>μ_1</td>
<td>5.81</td>
<td>9.77</td>
<td>0</td>
</tr>
<tr>
<td>Diversity-dependent specification with diversity-independent extinction and key innovation, with two clades having different carrying capacities and different extinction rates (KI3)</td>
<td>0.60</td>
<td>0.02</td>
<td>15.51</td>
<td>λ_1</td>
<td>0.00</td>
<td>5.65</td>
<td>9.77</td>
<td>1.72</td>
</tr>
<tr>
<td>Diversity-dependent specification with diversity-independent extinction and key innovation, with two clades having different carrying capacities and different speciation rates (KI4)</td>
<td>0.57</td>
<td>0.02</td>
<td>15.42</td>
<td>1.15</td>
<td>μ_1</td>
<td>5.41</td>
<td>9.77</td>
<td>1.36</td>
</tr>
<tr>
<td>Diversity-dependent specification with diversity-independent extinction and key innovation, with two clades having different parameters (KI5)</td>
<td>0.55</td>
<td>0.02</td>
<td>15.51</td>
<td>1.98</td>
<td>0.06</td>
<td>5.62</td>
<td>9.77</td>
<td>2.90</td>
</tr>
</tbody>
</table>

All models with diversity-dependent diversification have a linearly declining speciation rate with diversity (1). For the SR models, λ_2, μ_2, and K_2 refer to the parameters after the shift, whereas for KI models they refer to the parameters of the innovative subclade. T_s is the time of the shift and refers to the timing of the shift (in SR models) or the key innovation event (KI), which in the latter case was confined between 18.8 and 9.65 Mya. ΔAIC denotes the differences in AIC values, the lowest value (0) being the best model. Technical note: The SR1 model differs from the Yule2rate model as implemented in the LASER package (2) in that the shift time can be anywhere; it need not be at a branching point. In this case, it is just after a branching point. For the SR2 model, the shift is just before the branching point. —, not applicable.