Photothermal regulation of gene expression triggered by laser-induced carbon nanohorns

Eijiro Miyakoa,1, Tomonori Deguchib, Yoshihiro Nakajimac, Masako Yudasakad, Yoshihisa Hagiharaa, Masanori Horiie,2, Mototada Shichiria, Yuriko Higuchic, Fumiyoshi Yamashitae, Mitsuru Hashidae, Yasushi Shijiera, Yasukazu Yoshidaa,c, and Sumio Iijimad,f,g,1

Contributed by Sumio Iijima, April 3, 2012 (sent for review February 2, 2012)

The development of optical methods to control cellular functions is important for various biological applications. In particular, heat shock promoter-mediated gene expression systems by laser light are attractive targets for controlling cellular functions. However, previous approaches have considerable technical limitations related to their use of UV, short-wavelength visible (vis), and infrared (IR) laser light, which have poor penetration into biological tissue. Biological tissue is relatively transparent to light inside the diagnostic window at wavelengths of 650–1,100 nm. Here we present a unique optical biotechnical method using carbon nanohorn (CNH) that transforms energy from diagnostic window laser light to heat to control the expression of various genes. We report that with this method, laser irradiation within the diagnostic window resulted in effective heat generation and thus caused heat shock promoter-mediated gene expression. This study provides an important step forward in the development of light-manipulated gene expression technologies.

The authors declare no conflict of interest.

*To whom correspondence may be addressed. E-mail: e-miyako@aist.go.jp or iiijima@meijo-u.ac.jp.

†Present address: Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan.

1To whom correspondence may be addressed. E-mail: e-miyako@aist.go.jp or iiijima@meijo-u.ac.jp.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204391109/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1204391109
multiwalled CNTs on cells are associated with the CNTs and/or long, rigid morphology (39, 40). The deleterious effects of compared with other nanocarbons because of metal impurities.

We next investigated the influence of various BSA-functionalized nanocarbon complexes on mitochondrial enzyme activity in cells, using a 2-(4-iodosophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-1) assay (SI Appendix, Fig. S1D–F). BSA–CNT demonstrated low cytotoxicity in various cultured cells, including mouse fibroblasts (NIH 3T3), mouse colon cancer (Colon-26), and rat C6 glioma (C6) cells, although it was absorbed by cells by endocytosis (SI Appendix, Fig. S3) (44, 45). The low CNH toxicity was also confirmed in both in vitro (41, 44, 45) and in vivo studies (41–43). We found that BSA–CNT has lower cytotoxicity than BSA–CNTs (Fig. 1E). BSA-modified single-walled CNTs have relatively high toxicity compared with other nanocarbons because of metal impurities and/or long, rigid morphology (39, 40). The deleterious effects of multiwalled CNTs on cells are associated with the CNTs’ diameter and length (46, 47). Despite these studies, the detailed mechanisms of toxicity of nanocarbons remain unclear. In any case, these results clearly demonstrate that BSA–CNT has many properties important for the control of cellular functions, including powerful photothermal performance, high photostability, low cytotoxicity, and high water dispersibility.

Gene Expression Triggered by Laser-Induced CNH Complexes.

The aim of this study was to remotely control heat shock promoter-mediated gene expression using heat converted by BSA–CNH from laser light with a wavelength within the diagnostic window. In our first system, we analyzed laser-triggered remote gene expression in various cells and transgenic medaka (Fig. 2). The ultimate goal of our research is to detect the expression of various exogenous genes inserted downstream of heat shock promoters. In the present study, we selected GFP, red fluorescent protein (DsRed), and luciferase as model targeted genes for expression via heat shock promoter. These proteins are beneficial in that they are directly visualized by the fluorescent microscopy and bioimaging analyzers. In contrast, we chose the HSP70 promoter as a model promoter for gene expression, because its functions are relatively well understood in various HSP family members (14–18). In our system, we analyzed laser-triggered remote gene expression in various cells and transgenic medaka (Fig. 2). The ultimate goal of our research is to detect the expression of various exogenous genes inserted downstream of heat shock promoters. In the present study, we selected GFP, red fluorescent protein (DsRed), and luciferase as model targeted genes for expression via heat shock promoter. These proteins are beneficial in that they are directly visualized by the fluorescent microscopy and bioimaging analyzers. In contrast, we chose the HSP70 promoter as a model promoter for gene expression, because its functions are relatively well understood in various HSP family members (14–18). In addition, many previous researchers have examined regulation of gene expression by the HSP70 promoter (1–8).

We measured fluorescent protein expression in three stably transfected cell lines to determine whether the heat shock process was triggered by heat transferred from laser light by BSA–CNH present in the cell culture medium (Fig. 24). We chose NIH 3T3, Colon-26, and C6 cells as expression models based on their ease of transfection and handling. GFP from *Aequorea victoria* (48) and DsRed from *Anthozoa* species were the two reporter

S Appendix Fig. S1A and B. An aqueous CNH complex dispersion (CNH concentration, 100 μg/mL) exhibited a significant increase in temperature over time (26–28) under 670-nm laser irradiation with an increase in laser power, whereas control dispersions without CNH complexes showed no increase in temperature at all laser powers (Fig. 1C). Moreover, there was no sedimentation of the functionalized CNH complexes, even at a relatively high laser power of 300 mW (laser power density, ∼15 mW/mm²) (SI Appendix, Fig. S1C). Temperature differences (∆T) of BSA–CNT complexes were higher than those of other BSA-functionalized CNT (BSA–CNT) complexes with single-walled CNTs or multiwalled CNTs under 785-nm laser irradiation, likely because of the greater water dispersibility of BSA–CNT (Fig. 1D and SI Appendix, Fig. S2). In the present study, we used two laser wavelengths, because CNH complexes have high optical absorbance over a wide range of wavelengths (Fig. 1B).

Gene Expression Triggered by Laser-Induced CNH Complexes.

The aim of this study was to remotely control heat shock promoter-mediated gene expression using heat converted by BSA–CNH from laser light with a wavelength within the diagnostic window. In our first system, we analyzed laser-triggered remote gene expression in various cells and transgenic medaka (Fig. 2). The ultimate goal of our research is to detect the expression of various exogenous genes inserted downstream of heat shock promoters. In the present study, we selected GFP, red fluorescent protein (DsRed), and luciferase as model targeted genes for expression via heat shock promoter. These proteins are beneficial in that they are directly visualized by the fluorescent microscopy and bioimaging analyzers. In contrast, we chose the HSP70 promoter as a model promoter for gene expression, because its functions are relatively well understood in various HSP family members (14–18). In addition, many previous researchers have examined regulation of gene expression by the HSP70 promoter (1–8).

We measured fluorescent protein expression in three stably transfected cell lines to determine whether the heat shock process was triggered by heat transferred from laser light by BSA–CNH present in the cell culture medium (Fig. 24). We chose NIH 3T3, Colon-26, and C6 cells as expression models based on their ease of transfection and handling. GFP from *Aequorea victoria* (48) and DsRed from *Anthozoa* species were the two reporter
genes used (49). When irradiated with optimized laser power, which raised the temperature to \(\sim 42 \, ^\circ \text{C} \), NIH 3T3 and Colon-26 cells expressed GFP and C6 cells expressed DsRed (Fig. 2A and SI Appendix, Fig. S4). The optimal temperature of 42 \(^\circ \text{C} \) for effective gene expression in these cells was determined by their incubation in thermostatic chambers, in which cell viability was not affected at temperatures up to 42 \(^\circ \text{C} \) (SI Appendix, Fig. S5). Transfected NIH 3T3 cells also expressed \textit{Pyrearinus termitilluminans} luciferase (50),

Fig. 2. Photothermic regulation of gene expression in cells and transgenic medaka. (A) Expression of fluorescent proteins in (1) NIH 3T3, (2) Colon-26, and (3) C6 cells driven by laser-induced CNH complexes. Cells were irradiated at various laser powers, and expression of fluorescent proteins was observed by fluorescence microscopy. Laser power: (1) 150 mW (\(\sim 12 \, \text{mW/mm}^2 \)), laser wavelength, 670 nm; (2) 210 mW (\(\sim 11 \, \text{mW/mm}^2 \)), laser wavelength, 785 nm; (3) 140 mW (\(\sim 7 \, \text{mW/mm}^2 \)), laser wavelength, 785 nm). (B) Real-time monitoring of luciferase expression in NIH 3T3 cells after 670-nm laser irradiation for 30 min at various laser power levels: 50 mW (\(\sim 3 \, \text{mW/mm}^2 \)), 100 mW (\(\sim 5 \, \text{mW/mm}^2 \)), and 300 mW (\(\sim 15 \, \text{mW/mm}^2 \)). (C) Venus expression behavior in embryo and young transgenic medaka before laser irradiation (1) and after laser irradiation (3). Laser power: (2) 50 mW (\(\sim 3 \, \text{mW/mm}^2 \)), (3) 100 mW (\(\sim 5 \, \text{mW/mm}^2 \)), (4 and 6) 150 mW (\(\sim 8 \, \text{mW/mm}^2 \)).

Fig. 3. In vivo gene expression by laser-induced CNH complexes. (A) Location and geometry of suspensions consisting of NIH 3T3 cells and CNH complexes inside the tissue. (B) Photographs of suspensions consisting of NIH 3T3 cells and CNH complexes injected in a nude mouse. (C) Photograph of a 785-nm laser spot on the body of a mouse. (D) Thermographic measurement on the mouse’s body surface with 785-nm laser-induced CNH complexes [laser power, 150 mW (\(\sim 12 \, \text{mW/mm}^2 \)); irradiation time, 5 min]. (E) Bioimaging of in vivo gene expression driven by photothermal properties of CNH complexes. The right side of the body surfaces of mice were irradiated with a 785-nm laser at three preset temperatures: (1) 42 \(^\circ \text{C} \), (2) 39 \(^\circ \text{C} \), and (3) 45 \(^\circ \text{C} \).

Miyako et al. PNAS | May 8, 2012 | vol. 109 | no. 19 | 7525
which emits green light (λ_{max}, 538 nm) with n-luciferin as a substrate. Photothermal properties of CNH complexes drive luciferase expression only after application of laser irradiation at 100 mW (5 mW/mm2) (Fig. 2B and SI Appendix, Figs. S5F and S6). To quantify luciferase expression for each laser power, we monitored luminescence intensity [measured in relative light units (RLU)/min] in real time using a luminometer. In control experiments performed without laser irradiation or BSA–CNH, we observed no significant gene expression. Moreover, the cells irradiated without CNH complexes did not express proteins.

We investigated the laser-induced gene expression behavior of the NIH 3T3 cells encapsulating BSA–CNH complexes to reduce the amount of CNHs administered (SI Appendix, Fig. S7). In this system, many CNH complexes were located inside the cells (SI Appendix, Fig. S3). Maximum GFP expression was observed at 300 mW (\sim24 mW/mm2). We also investigated the photothermic regulation of gene expression by laser-induced BSA–CNH dispersed in 0.3% artificial water in transgenic medaka (Fig. 2C). Significant variations in expression of variants of yellow fluorescent protein (Venus) (51) in embryos and young transgenic medaka (52) were observed for each laser power. Maximum Venus expression was observed at 150 mW (\sim8 mW/mm2) and \sim39 °C. A previous study reported activation of the heat shock promoter at \sim39 °C in medaka cells (52). In control experiments without BSA–CNH, the same laser irradiation caused no Venus expression. Thus, these results definitively indicate that gene expression in cells and medaka can be controlled using the photothermal properties of BSA–CNH.

In Vivo Gene Expression by Laser-Induced CNHs. Finally, we investigated in vivo gene expression driven by the photothermal properties of BSA–CNH in a living mouse (Fig. 3). We chose

![Fig. 4](https://www.pnas.org/cgi/doi/10.1073/pnas.1204391109 Miyako et al.)
luciferase as the reporter gene because it provides bioluminescence without background fluorescence and allows highly sensitive detection. Suspensions of BSA–CNH and stably transfected NIH 3T3 cells were injected at two locations on the back of a nude mouse (Fig. 3A and B). Almost all of the BSA–CNH complexes were located around the cells, near their surface, because of the slow cellular uptake of the CNH complexes (SI Appendix, Fig. S3). Body surface temperature was monitored using a thermographic camera during 785-nm laser irradiation for 30 min [laser output: ~80–200 mW (~6–16 mW/mm²); preset temperatures: 39, 42, and 45 °C (Fig. 3C and D)]. After 5 h, NIH 3T3 cells under the skin expressed luciferase, as detected on in vivo bioimaging (Fig. 3E and SI Appendix, Fig. S8).

To quantify the observed light, demarcated regions of interest over the cell-injected areas and evaluated the mean luminescence intensity (i.e., total number of photons per pixel in the cell-injected area) in these areas. The maximum luminescence intensity value was obtained at a body surface temperature of 42 °C. The maximum RLU in the cell-injected area under laser irradiation (preset temperature, 42 °C) was approximately sevenfold higher than that in the control experiment without laser irradiation. Meanwhile, the maximum RLU in the cell-injected area was approximately threefold higher at 42 °C than at 39 °C. The luminescence intensity value was lowest at a preset temperature of 45 °C, probably as a result of cell death due to the excess photothermal effects of CNH complexes. Supporting this idea, burn injury appeared near the injected areas only at 45 °C (SI Appendix, Fig. S9). BSA–CNH is nontoxic, as demonstrated by various bio-compatibility analyses, including blood investigations, weight determinations, and pathological examinations (Fig. 4 and Table 1). Careful visual observations revealed no signs of inflammatory reaction against BSA–CNH, but did identify a large CNH aggregation encapsulated by s.c. tissue (Fig. 4F). Virtually no changes in the weight of mice and without injections of CNH complexes were seen (Fig. 4B), and no histological abnormalities, such as granulomas or fibrosis, were observed (Fig. 4 C and D). H&E staining confirmed a wide distribution of CNH throughout the s.c. tissue (Fig. 4E). Immunohistochemical staining revealed the absence of undesired inflammatory responses; although CNH uptake by macrophages (41, 42) stained with rabbit anti-ionized calcium binding adaptor molecule 1 was observed (53) (Fig. 4F). Furthermore, complete blood cell count and biochemical examinations of BSA–CNH were all normal, at least for 30 d (Table 1). In particular, virtually no changes in levels of inflammatory markers (i.e., WBC and C-reactive protein) were seen after injection of BSA–CNH.

These results clearly demonstrate that CNH complexes have low toxicity, at least for 30 d. However, we recently reported that CNHs are highly accumulated in the organs of the reticuloendothelial system (43). In addition, Lacotte et al. (41) reported activation of immunocompetent cells by chemically functionalized CNHs. Thus, further detailed studies on the biocompatibility of CNHs (e.g., high doses and long-term use) are needed to obtain a conclusive answer. In any case, we have demonstrated that BSA–CNH effectively causes a temperature increase in mice by channeling the powerful photothermal effect of CNH, thereby stimulating significant in vivo gene expression.

Conclusions

In the present study, we have successfully developed a unique gene expression system that uses the photothermal properties of water-dispersible BSA–CNH complexes and operates through a heat shock promoter. The complexes enable remote in vitro gene expression in various cells and transgenic medaka by external laser irradiation. Moreover, we successfully controlled gene expression remotely in a mice using a low-power laser that can penetrate living tissue. We believe that this is a unique demonstration of remote control of gene expression that relies on the powerful photothermal properties of nanomaterials. This work is a proof-of-principle study demonstrating that in vitro and in vivo gene expression can be mediated by the photothermal properties of nanocarbons. Further studies are needed to investigate efficient laser irradiation systems and appropriate stereotactic administration of cells and nanocarbons within an organism to determine the effective expression of various target genes in a deep tissue for advanced optogenetics and therapeutic agents. Future technological advances might allow temporopatial in vivo expression and regulation of various genes inserted downstream of heat shock promoters. On the other hand, it is well known that HSPs are the most attractive biomolecules as therapeutic targets and therapeutic agents (14–18). Herein, heat shock promoter-mediated gene expression system is going to be a powerful activator in health and diseases. This study has identified a potent tool for application in various biological fields, including analysis of cell signaling within organisms, investigation of genetic mechanisms, and development of unique cell therapies and tissue engineering techniques.

Methods

Detailed information on functional nanocarbon complexes, characterization of BSA–CNH, temperature assays, plasmid construction, cell cultures and stable transfections, cellular uptake of CNH complexes, cytotoxicity tests of nanocarbon complexes, in vitro laser experiments, and animal experiments is provided in SI Appendix.

Table 1. CBC and biochemical examination of mice after injections of BSA–CNH complexes or saline

<table>
<thead>
<tr>
<th>Method</th>
<th>Entry</th>
<th>Unit</th>
<th>BSA–CNH complex</th>
<th>Saline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>After 7 d</td>
<td>After 30 d</td>
</tr>
<tr>
<td>CBC</td>
<td>WBC</td>
<td>Cells/µL</td>
<td>3,000</td>
<td>3,167</td>
</tr>
<tr>
<td>Biochemical examination</td>
<td>CRP</td>
<td>mg/L</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>AST</td>
<td>IU/L</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>ALT</td>
<td>IU/L</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>LDH</td>
<td>IU/L</td>
<td>539</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>Amylase</td>
<td>IU/L</td>
<td>1,775</td>
<td>2,347</td>
</tr>
<tr>
<td></td>
<td>CK</td>
<td>IU/L</td>
<td>217</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Total protein</td>
<td>mg/L</td>
<td>54</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td>mg/L</td>
<td>45</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>BUN</td>
<td>mg/L</td>
<td>192</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Creatinine</td>
<td>mg/L</td>
<td>0.9</td>
<td>1</td>
</tr>
</tbody>
</table>

Data are average values from five experiments. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, Blood urea nitrogen; CK, creatine kinase; CRP, C-reactive protein; LDH, lactate dehydrogenase.
ACKNOWLEDGMENTS. We thank Dr. Hirobumi Suzuki (Olympus) for providing the prispt70-luc2, Keiko Nishio and Mari Sasao (Health Research Institute, National Institute of Advanced Industrial Science and Technology) for assisting with the experiments, and NEC for providing the carbon nanohorn. This work was supported by the Japan Prize Foundation and Grant-in-Aid for Young Scientists B 23700568.

Supporting information for:

Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns

Eijiro Miyakoa,1, Tomonori Deguchib, Yoshihiro Nakajimac, Masako Yudasakad, Yoshihisa Hagiharaa, Masanori Horiea,2, Mototada Shichiri, Yuriko Higuchie, Fumiyoshi Yamashitae, Mitsuru Hashidae, Yasushi Shigerie, Yasukazu Yoshidaa,c and Sumio Iijimad,f,g,1

aHealth Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan; bHRI, AIST, 3-11-46 Nakouji, Amagasaki, Hyogo 661-0974, Japan; cHRI, AIST, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; dNanotube Research Center, AIST, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; ePresent address: Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; fDepartment of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; gMeijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, Japan; and NEC, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan

1To whom correspondence may be addressed. E-mail: e-miyako@aist.go.jp or iiijimas@meijo-u.ac.jp.
SI Experimental Methods

Functional nanocarbon complexes. BSA–CNH complexes were prepared as follows. CNH (10 mg) (average diameter, about 80–100 nm; purity, 95%; metal-free) (supplied by NEC) and BSA (10 mg) (Wako) were sonicated for 30 min in medium (10 ml) on ice (<8°C) in an ultrasonication bath (USD-2R; power output, 80 W; oscillation frequency, 40 kHz; AS ONE) to obtain a uniform dispersion for subsequent in vitro and in vivo experiments. Fluorescent Alexa 488–BSA–CNH was obtained as follows. Carboxy-functionalized CNH (CNH–COOH) was prepared as described previously (1). The functional groups of CNH–COOH were estimated by the thermogravimetry-differential thermal analysis (TG-DTA) (TGA 2950; TA Instruments) (1). CNH–COOH (5 mg) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (WSC) (50 mg) (Wako) were sonicated in PBS (Wako) (pH 7.3, 5 ml) for 1 h. Temperature was maintained below 8°C using an ice bath. Alexa 488–BSA (5 mg) (Invitrogen) was dispersed in a black-coloured CNH–COOH aqueous solution (5 ml). After the mixture was vigorously stirred for 24 h at room temperature under shaded conditions, and was then filtered (Omnipore; pore size, 100 nm; Millipore) to remove the unreacted Alexa 488–BSA and washed with PBS (100 ml). Finally, Alexa 488–BSA–CNH complexes on a filter were resuspended in medium (10 ml) for subsequent in vitro experiments. Average particle size of Alexa 488–BSA–CNH complex was estimated about 150 nm by means of DLS analysis. Before the DLS measurement, The Alexa 488–BSA–CNH complex dispersion (5 μg/ml) was filtered through a cellulose acetate membrane (Advantec; pore size = 200 nm). Other BSA–functionalized CNTs, such as HiPco SWCNT [super-purified SWCNTs (purity, >95%); diameter, ~0.8–1.2 nm; length, ~0.1–1 μm; Unidym], CoMoCAT SWCNT [CG-100 (purity, >90%); diameter, ~0.7–1.3 nm; length, ~0.45–2.3 μm; SouthWest Nano Technologies] and MWCNT [purity, >95%; diameter, ~10–40 nm; length, ~10 μm; Meijo Nano Carbon], were prepared in a manner similar to BSA–CNH.

Characterisation of BSA–CNH. Sizes of BSA–CNH were measured using AFM (JSPM-4210; JEOL) (a tapping mode cantilever was used) and DLS (LB-550; HORIBA). The optical absorption spectra of BSA–CNH in several aqueous solutions were measured using an UV–vis–NIR spectrometer (V-630; JASCO) at room temperature.

Temperature assay. Dispersions of BSA–CNH (CNH concentration, 100 μg/ml) in cellular medium (250 μl) and cellular medium alone (as control) (250 μl) were irradiated with 670-nm laser light (spot diameter, ~5 mm) (BWF-670-300E; B&W Tek) at various power levels (50–300 mW). The temperature of the solutions (not directly under the laser beam) was measured using a K-type thermocouple probe (CT-280WR; Custom) or a temperature sensor (AD-5601A; A & D). Before experiments, the indicators for temperature measurements were calibrated to obtain accurate temperature values. Temperature elevations of various nanocarbon complex dispersions were investigated in a manner similar to those of BSA–CNH complex dispersions, except for the type of laser wavelength. The nanocarbon dispersions (250 μl) [nanocarbon concentration, 100 μg/ml; solvent, PBS buffer (pH 7.3)] were irradiated with continuous 785-nm laser light (spot diameter, ~4 mm) (BRM-785-1.0-100-0.22-SMA; B&W Tek) at 300 mW (~24 mW/mm²) for 5 min. The temperatures of the dispersions were measured (not directly under the laser
beam) using the K-type thermocouple probe.

Plasmid construction. To construct reporter vectors, firefly luciferase *luc*2 of pHsp70-luc2 (gift from Dr H. Suzuki of Olympus) carrying the human Hsp70 promoter (2) (−193 to +1 bp, where +1 indicates the putative transcription start site) was replaced with *HindIII* and *XbaI* fragments of ELuc-PEST cDNA (Toyobo) of pSV40-dELuc (3) in which the PEST element of mouse ornithine decarboxylase was fused in frame to the C terminus of enhanced beetle luciferase ELuc (dELuc), resulting in pHsp70-dELuc. The Hsp70 promoer-dELuc-SV40 polyA cassette was PCR amplified using pHsp70-dELuc (template) and the following set of primers: 5′-GTACTAACATACGCTCTCCATC-3′ and 5′-GATGAGTTTTGGACAAACCACAAC-3′. The amplified fragment product was digested with *XbaI* and ligated into a *Sper* site upstream of IRES2 of pIRES2-AcGFP1 (Clontech) from which the cytomegalovirus (CMV) promoter was deleted by inverse PCR using a set of primers, 5′-ATGCATGGCGGTAATACGGTTATCCACAG-3′ and 5′-AGATACTAGTGCTCAAGCTCAATTCTGAG-3′, resulting in pHsp70-dELuc-IRES-AcGFP1. To generate the pHsp70-DsRed vector, DsRed cDNA was PCR amplified using DsRed1-N1 (Clontech, template) and a set of primers, 5′-CCCAAGCTTCCACCATGGTGC-3′ and 5′-GCTCTAGACTACAGGAACAGGTG-3′, and digested with *HindIII* and *XbaI*. The product was ligated into the *HindIII*/*XbaI* fragment of pHsp70-luc2 from which luc2 cDNA had been removed.

Cell cultures and stable transfections. NIH 3T3 (RCB1826; RIKEN BioResource Center), Colon-26 (RCB2657; RIKEN BioResource Center) and C6 (JCRB9096; National Institute of Biomedical Innovation) cells were used for *in vitro* and *in vivo* experiments. The cells were typically seeded in 35-mm polystyrene dishes (Nunc) and grown in cell culture media supplemented with 10% FBS (JRH Biosciences) and an antibiotic mixture [penicillin (100 units/ml), streptomycin (100 μg/ml) and amphotericin B (250 ng/ml)] (antibiotic–antimycotic mixed stock solution; Nacalai). NIH 3T3 cells were grown in Dulbecco’s Modified Eagle medium (DMEM) (Invitrogen). Colon-26 and C6 cells were grown in Roswell Park Memorial Institute 1640 (RPMI-1640) medium (Nacalai). For stable transfections, the reporter vector (pHsp70-dELuc-IRES-AcGFP1 or pHsp70-DsRed) and pcDNA3 (Invitrogen) were mixed at a ratio of 10:1 and introduced into cells using Lipofectamine 2000 (Invitrogen). Transfections with Lipofectamine 2000 were performed exactly as described in the manufacturer’s manual. Stable transfected cell lines were constructed using the geneticin G418 sulphate (G418) resistance gene of cells. G418-resistant colonies were pooled and stable transfectants were maintained in medium supplemented with 10% FBS and the antibiotic mixture (above mentioned) containing G418 (500 μg/ml) (Nacalai). Using a fluorescent microscope (IX71; Olympus) and luminometer (AB-2250; Atto), expression of targeted proteins (GFP, DsRed and luciferase) in stable transfectants was confirmed after heating for 1 h at 37–50°C in a 5% CO2 incubator (MCO-17AIC; Sanyo) or usual gas-phase incubator (MOV-212S; Sanyo) (Fig. S5).

Cellular uptake of CNH complexes. Cell densities in the media solutions were ~4 × 104 cells/cm2. After incubation for 6 or 24 h at 37°C in 5% CO2 atmosphere, cell culture media were replaced with the Alexa
488–BSA–CNH complex dispersion (5 μg/ml) consisting of 10% FBS, 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)/NaOH (pH 7.0) and antibiotics, and cultures were incubated at 4 or 37°C. After incubation for 6 or 24 h, Alexa 488–BSA–CNH complex dispersions were removed and the cells were washed with fresh culture media. The cellular uptake of CNH complexes was investigated using a confocal microscope (FV10i; Olympus). The excitation wavelength was 488 nm, and fluorescence emission was detected at 525 nm.

Cytotoxicity tests of nanocarbon complexes. Mitochondrial enzyme activity was examined using WST-1. For the WST-1 assay, cells were seeded in 96-well plates (Nunc) at ~2 × 10⁵ cells/well, incubated for 24 h, removed from the culture medium and then exposed to nanocarbon complex dispersions (100 μl/well) for 6 and 24 h. For the determination of mitochondrial enzyme activity, the cells were incubated with 10-fold diluted WST-1 solution (100 μl/well) (Premix WST-1 Cell Proliferation Assay System; Takara Bio) at 37°C for 2 h. The optical density of formazan was measured at 440 nm using a Multiskan Ascent plate reader (Thermo Labsystems). Measurements of intracellular caspase-3 activity were studied as follows. To obtain total cell extracts, nanocarbon complex-treated cells were collected with 0.25% trypsin, washed with cold PBS and resuspended for 10 min in ice-cold lysis buffer containing 150 mM NaCl, 50 mM Tris-HCl, pH 7.4, 50 mM NaF, 5 mM ethylenediaminetetraacetic acid (EDTA), 0.5% Triton X-100 and 1 mM Na₃VO₄, along with a protease inhibitor cocktail tablet (Roche Diagnostics GmbH). Nuclei and unlysed cell debris were removed by centrifugation at 10,000 g for 1 min. The protein concentration was determined using a BCA protein assay kit (Thermo Fisher Scientific), with BSA as a standard. Caspase-3 activity was measured by cleavage of the Asp-Glu-Val-Asp (DEVD) peptide-conjugated 7-amino-4-trifluoromethyl coumarin (AFC), according to the protocol outlined by the manufacturer of the caspase-3 fluorometric protease assay kit (Medical and Biological Laboratories). Substrate cleavage, which resulted in the release of AFC fluorescence (λₑx, 400 nm; λₑm, 505 nm), was measured using a Fluoroskan Ascent CF plate reader. Cell death was determined using an apoptosis detection kit (Medical and Biological Laboratories). Treated cells were stained with annexin V-FITC and propidium iodide (PI) and analysed using a flow cytometer (Cytomics FC500 Flow Cytometry System; Beckman Coulter) equipped with a 488-nm argon laser. Data were collected for 10,000 events. Statistical analyses were performed using an analysis of variance with Tukey’s test (ANOVA), and a p value of less than 0.05 was considered significant.

In vitro laser experiments. Fluorescent proteins (GFP or DsRed) in cells were expressed using laser-induced CNH complexes as follows. The cells were irradiated in suspension for these experiments. The cells were seeded in 10-cm polystyrene dishes and grown in DMEM or RPMI-1640 media supplemented with 10% FBS, penicillin (100 units/ml), streptomycin (100 μg/ml), amphotericin B (250 ng/ml) and G418 (500 μg/ml). Cell densities in the media were ~4 × 10⁴ cells/cm². After incubation for 24 h at 37°C in 5% CO₂ atmosphere, the culture medium was divided into four dispersions (250 μl × 4) of BSA–CNH (CNH concentration, 100 μg/ml). Obtained suspensions were added to poly(methyl methacrylate) (PMMA) cuvettes (Tokyo Glass Kikai) and irradiated with 670 and 785-nm laser light at various power levels [100 (~8 mW/mm²) to 300 mW (~24 mW/mm²)] for 30 min at room temperature.
After laser irradiation, the media were replaced with fresh media consisting of phenol red-free media (2 ml) containing 10% FBS, penicillin (100 units/ml), streptomycin (100 μg/ml), amphotericin B (250 ng/ml) and G418 (500 μg/ml). After overnight incubation, fluorescent protein expression in cells was investigated using the fluorescence microscope (IX71; Olympus) and analysed using analysis software (ImageJ; NIH).

The laser-induced gene expression behaviour of the NIH 3T3 cells encapsulating BSA–CNH complexes were investigated as follows. Cell densities of NIH 3T3 in the media were ~4 × 10^4 cells/cm^2. After incubation for 24 h at 37°C in 5% CO₂ atmosphere, the culture medium was replaced with medium containing dispersed BSA–CNH (CNH concentration, 10 μg/ml). After incubation for 24 h at 37°C in 5% CO₂ atmosphere, the culture media were washed with cell medium to remove the extra CNH complexes, and then detached from the surface by the addition of trypsin-EDTA solution (Invitrogen) for laser radiation steps. Suspensions of the cells encapsulating CNH complexes (250 μL) were added to poly(methyl methacrylate) (PMMA) cuvettes and irradiated with 785-nm laser light at various power levels [50 (~4 mW/mm²) to 500 mW (~40 mW/mm²)] for 30 min at room temperature. After laser irradiation, the media were replaced with fresh media consisting of phenol red-free media (2 ml) containing 10% FBS, penicillin (100 units/ml), streptomycin (100 μg/ml), amphotericin B (250 ng/ml) and G418 (500 μg/ml). After overnight incubation, GFP expression in cells was investigated using the fluorescent microscope and analysed using analysis software.

Analysis of luciferase expression in NIH 3T3 cells was performed as follows. The cells were irradiated in monolayer for these experiments. NIH 3T3 cells were seeded in 35-mm glass-bottom dishes (Matsunami Glass Ind., Ltd.) and grown in DMEM medium supplemented with 10% FBS and antibiotics. Cell densities in the media were ~2 × 10^4 cells/cm². After incubation for 24 h at 37°C in 5% CO₂ atmosphere, the culture media in the dishes were replaced with media (250 μl) containing BSA–CNH (CNH concentration, 1000 μg/ml). After 670-nm laser irradiation for 30 min at room temperature, the media were replaced with fresh media consisting of phenol red-free DMEM (2 ml) containing 200 μM D-luciferin as a substrate (Toyobo), 10% FBS, 4 mM glutamine and 25 mM HEPES/NaOH (pH 7.0). Luciferase expression was monitored in real time using the luminometer.

Animal experiments. All animal experiments were performed strictly in accordance with protocols approved by the Institutional Animal Care and Use Committee of AIST and Kyoto University. Expression of Venus, a variant of yellow fluorescent protein, in transgenic medaka by laser-induced CNH was performed as follows. Transgenic medaka, transfected with olphsp70.1-hRluc-Venus, was prepared in a manner similar to that in our previous report (6). The 0.3% artificial seawater (250 μl) (Marin Art SF; Osaka Yakken) containing BSA–CNH (CNH concentration, 100 μg/ml) was added in PMMA cuvettes. Embryos or young transgenic medakas were added to the CNH dispersion. After 670-nm laser irradiation for 30 min, the dispersions were replaced with fresh 0.3% artificial seawater (250 μl) and incubated in polystyrene-type 96-well microplates (Nunc) overnight at 28°C. Medakas were not placed directly under the laser beam in an attempt to avoid phototoxic reactions. Venus expression in transgenic medaka was monitored using a fluorescence microscope (M205FA; Leica).

Luciferase was expressed by NIH 3T3 cells in a mouse as follows. Stable NIH 3T3 cell lines transfected
with pHsp70-dELuc-IRES-AcGFP1 were seeded in 10-cm polystyrene dishes (Nunc) and grown in DMEM media supplemented with 10% FBS and antibiotics. The cell density in the medium solution was ~4 × 10^4 cells/cm². After incubation for 24 h at 37°C in 5% CO₂ atmosphere, the culture media were replaced with media (100 μl) containing BSA–CNH (CNH concentration, 100 μg/ml). Suspensions of cells and BSA–CNH (50 μl) were injected at two positions on the back under the skin of a nude 8-week-old female mouse (n = 3; BALB/cSlc-nu/nu; Japan SLC). The injection site on one side was irradiated with 785-nm laser light for 30 min. During laser irradiation, temperature of the mouse’s body surface was monitored by IR thermography (Ti10; Fluke), and the laser power was modulated to preset temperatures (39, 42 and 45°C). Laser power levels [~80–200 mW (~6–16 mW/mm²)] had to be adjusted because pentobarbital anaesthesia caused significant temperature changes in the mouse. In vivo luciferase expression was monitored by bio-imaging (Nightowl NC320; Berthold Technologies), and picture processing was performed using ImageJ. Before imaging, D-luciferin solutions (6 mg/ml, 200 μl) (XenoLight Rediject D-Luciferin; Sumisho Pharma International) as substrates were injected into the abdominal cavity of the mouse.

CNH biocompatibility was investigated as follows. Saline (100 μl) containing BSA–CNH (CNH concentration, 100 μg/ml) or only saline (100 μl) was injected into the back under the skin of a 7-week-old female mouse (n = 5; BALB/cSlc; Japan SLC). After 7 and 30 days, blood samples were collected from the inferior vena cava of the mouse and the injected area was observed by incising an affected site (Fig. 4). Complete blood cell count (CBC) and biochemical examination were performed by BioGate Co., Ltd and Oriental Yeast Co., Ltd (Table 1). Pathological examinations of tissue slices were typically performed by Hist Science Laboratory Co., Ltd. In brief, after the test periods, animals were euthanised by exsanguination under pentobarbital anaesthesia, and their tissues were autopsied. Skin tissues were fixed in 10% buffered formalin, embedded in paraffin, sectioned, stained with hematoxylin and eosin (HE) and then histopathologically observed under an optical microscope. Immunohistochemical staining of macrophages was performed at Hist Science Laboratory Co., Ltd. In brief, sections were prepared from the paraffin blocks. The sections were deparaffinised in xylene and ethanol. After rinsing, endogenous peroxidase was blocked by incubation with 3% H₂O₂ for 5 min. The sections were then incubated overnight with Iba1 (1:400) (Wako) at room temperature. After rinsing, the sections were incubated with the secondary antibodies [Histofine Simple Stain Mouse MAX PO (Rat); Nichirei] for 30 min at room temperature. After washing, Iba1-specific immunolabelling was examined using diaminobenzidine (Nichirei). Nuclei were also stained with hematoxylin.

SI text
Characterisation of BSA–CNH complexes. Structural characterisation, photothermostability and cytotoxicity analyses of BSA–CNH complexes were investigated (Fig. S1). Average size of BSA–CNH was estimated about 100–200 nm by AFM and DLS (Figs. S1A and S1B). DLS is a powerful technique for the sizing of nanoparticles and characterization of their properties in the liquid phase (7). The BSA–CNH was highly stable in DMEM containing 10% FBS with no aggregation after 7 days in storage at 4°C (Figs. S1C). Average size of BSA–CNH remained about the same for 7 days. We observed no sedimentation of the
functionalised CNH complexes, even at a relatively high laser power (300 mW) (Fig. S1D). The temperature directly under the laser beam path could be significantly greater than the temperature outside of the path (Fig. S1E). We also investigated the effect of CNH concentration on the temperature increase (Fig. S1F). The optimal concentration of CNH for effective heating of solution was ca. 100 μg/ml. The BSA–CNH complex dispersion was applied to NIH 3T3, Colon-26 and C6 cells, and mitochondrial enzyme activities were measured after 6 and 24 h using the WST-1 assay (Fig. S1G). We consider that WST-1 assay is suitable for the evaluation of the cytotoxicity of nanocarbons (4, 5). In all cases, most cells were alive even when cells were exposed to highly concentrated CNH dispersions (1000 μg/ml). Next, intracellular caspase-3 activity was investigated as an apoptosis marker (Fig. S1H). No significant increases in caspase-3 activity were observed in any cell. Cell viability was also measured by flow cytometry (Fig. S1I).

The cells exposed to BSA–CNH complex dispersions for 24 h were stained with annexin V-FITC and PI, and fluorescence was measured by flow cytometry. Most cells were normal. Both annexin V-FITC and PI fluorescence did not increase significantly. This result indicates that BSA–CNH does not dramatically induce apoptosis or necrosis in cultured cells following 24 h of exposure. These results definitively indicate that BSA–CNH has low cytotoxicity.

Dispersion property of BSA–nanocarbon complexes. Dispersion property of BSA–nanocarbon complexes was investigated (Fig. S2). BSA–CNH is well dispersed in PBS without visible aggregations even after incubation for 24 h. BSA–CNT is dispersed in PBS to some extent, with CNT aggregations being deposited at the bottoms of vials after incubation for 24 h. Most BSA–CNH complexes are suspended in a supernatant after centrifugation. In contrast, a large amount of CNTs are deposited at the bottoms of microtubes. These results clearly indicate that BSA molecules have greater dispersion ability for CNH than for CNTs.

Cellular uptake of CNH complexes. We synthesized the fluorescent Alexa 488–BSA–CNH complex by covalent technique to prevent the uptake of unattached Alexa 488–BSA molecules into cells (1, 8). When NIH 3T3 cells were incubated with Alexa 488–BSA–CNH complex dispersions at 37°C, cellular uptake was observed using a confocal microscope. The fluorescent image (Fig. S3A Left), the DIC image (Fig. S3A Centre), and a combination of the two images (Fig. S3A Right) revealed that fluorescence was mainly emitted from the cell interior, indicating that Alexa 488–BSA–CNH was taken inside the cells. To study the mechanism of cellular uptake of Alexa 488–BSA–CNH, we incubated the cells with cellular media containing Alexa 488–BSA–CNH at 4°C for 24 h. The confocal microscope images revealed (Fig. S3B) that Alexa 488–BSA–CNH was located mainly around the cell membranes but not inside the cells, indicating that cell internalisation was energy dependent. Thus, endocytosis (1, 8) is a possible cellular uptake pathway for these nanostructures. In other cells (Colon-26 and C6), we also confirmed an endocytotic phenomena associated with Alexa 488–BSA–CNH (Figs. S3E–L). In addition, uptake of Alexa 488–BSA–CNHs into cells was slow although Alexa 488–BSA–CNH was absorbed onto the cell surfaces when the cells were incubated at 37 or 4°C for short-time exposure treatment (6 h).
Protein expression in cells triggered by laser-induced CNH complexes. Protein expression behaviour in cells was observed after laser irradiation or incubation in thermostatic chambers (Figs. S4–S6). The optimal laser powers for effective gene expression in cells were determined (Fig. S4). We confirmed that the distinguished NIH 3T3 cell death did not occur under the optimal laser power (Fig. S4C). In addition, influence of temperature on protein expression in cells was investigated (Fig. S5). When the incubation temperature was 42°C, NIH 3T3 cells effectively expressed a large amount of GFP and luciferase (Fig. S5A–F). In addition, GFP expression behaviour is the same in both adherent and floating cell systems. Furthermore, when the preset temperature was 42°C, maximum fluorescent protein expression levels were obtained in other cells (Colon-26 and C6) (Fig. S5G–P). We confirmed that these cells were destroyed by treatment with high temperature (over 45°C). In addition, NIH 3T3 cell death was also observed by the excess photothermal properties of CNH complexes (Fig. S6). These results indicated that the optimal temperature for effective gene expression was approximately 42°C. We have investigated the laser-induced gene expression behaviour of the NIH 3T3 cells encapsulating BSA–CNH complexes in order to reduce the amount of CNHs administered (Fig. S7). Maximum GFP expression was observed at 300 mW (~24 mW/mm²). We also observed that high power laser irradiation (> 350 mW) damages cells.

Repeatability tests. We obtained almost the same results and confirmed the reproducibility (Fig. S8).

Laser-irradiated areas. Burn injury appeared near the injected areas only at 45°C (Fig. S9).

Fig. S1. Characterisation of BSA–CNH complexes. (A–C) Structural characterisation and photothermostability of BSA–CNH complexes. (A) AFM image of BSA–CNH complexes. (B) DLS analysis of BSA–CNH. (C) Photos of BSA–CNH dispersions in DMEM containing 10% FBS after incubation at 4°C for 7 days. The concentration of CNH was 100 μg/ml. Average sizes of CNH complexes were measured by DLS. (D) Photographs of 0.01 wt% BSA–CNH in 0.3% artificial seawater after 785-nm laser irradiation for 30 min. Laser power = 300 mW (~24 mW/mm²). (E) Thermographic measurement of 0.01 wt% BSA–CNH in DMEM containing 10% FBS after 785-nm laser irradiation for 30 min. White circle indicates the laser spot. (F) Photoinduced temperature elevation at various CNH concentrations under continuous 785-nm laser irradiation at 300 mW (~24 mW/mm²) for 5 min. * = Not determined because the temperature did not increase. (G–I) Cytotoxicity analyses of BSA–CNH complexes. (G) Effect of BSA–CNH complexes on mitochondrial enzyme activity determined by a 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-1) assay. The percentage of mitochondrial enzyme activity compared with the standardised control was 100%. NIH 3T3, Colon-26 and C6 cells were exposed to the BSA–CNH complex dispersion at various concentrations for 6 and 24 h. (H) Caspase-3 activity in cells exposed to BSA–CNH. The value of activity in the standardised untreated cells was set to 1. Statistical analysis was carried out using ANOVA (Tukey’s test). a p < 0.05, b p < 0.0001; c p < 0.0025. (I) Detection of apoptotic cells following BSA–CNH exposure. The data are presented as the percentage of apoptotic cells among 10,000 cells. Values are averages of three independent experiments. An index of living cells is a well-established measure of mitochondrial enzyme activity.
Fig. S2. Dispersion property of BSA–nanocarbon complexes. (A) Photos of BSA-functionalised nanocarbon complexes in PBS after immediate ultrasonication. (B) Photos of nanocarbon complexes after centrifugation (9100 g, 15 min, 4°C). Red arrows indicate the precipitates derived from CNT aggregations. (1) CNH, (2) high-pressure carbon monoxide (HiPco) SWCNT, (3) cobalt–molybdenum catalyst (CoMoCAT) SWCNT and (4) MWCNT. Concentrations of nanocarbons are 100 μg/ml.
Fig. S3. Confocal microscopy images of various cells after incubation with Alexa 488–BSA–CNH complexes. (A–D) NIH 3T3, (E–H) Colon-26 and (I–L) C6 cells. (A–L) Fluorescence (left), differential interference (DIC) contrast (centre) and a combination of fluorescence and DIC images (right). (A, E, I) Incubation time = 24 h, Incubation temperature = 37°C. (B, F, J) Incubation time = 24 h, Incubation temperature = 4°C. (C, G, K) Incubation time = 6 h, Incubation temperature = 37°C. (D, H, L) Incubation time = 6 h, Incubation temperature = 4°C.
Fig. S4. Protein expression in cells triggered by laser-induced CNH complexes. (A and B) GFP expression in stably transfected NIH 3T3 cells triggered by 670-nm laser-induced CNH complexes. * = Not determined because no fluorescence was detected. (C) WST-1 assay of NIH 3T3 cells after laser-induced CNH complexes. (D and E) GFP expression in stably transfected Colon-26 cells triggered by 785-nm laser-induced CNH complexes. (F and G) DsRed expression in stably transfected C6 cells triggered by 785-nm laser-induced CNH.
Fig. S5. Influence of temperature on protein expression in cells.

(A–F) Influence of temperature on GFP and luciferase expression in stably transfected NIH 3T3 cells.

(A–D) Fluorescent microscopy images of NIH 3T3 cells after heating for 1 h at various temperatures (37, 40, 42, 45 and 50°C).

(F) Influence of temperature on luciferase expression in NIH 3T3 cells.

(G–K) Influence of temperature on GFP expression in stably transfected Colon-26 cells.

(L–P) Influence of temperature on DsRed expression in stably transfected C6 cells.

(A, G, L) Incubation temperature = 37°C.

(B, H, M) Incubation temperature = 40°C.

(C, I, N) Incubation temperature = 42°C.

(D, J, O) Incubation temperature = 45°C.

(E, K, P) Incubation temperature = 50°C.

Low magnification (×4) images of adherent \([X=1 \ (X=A-P)]\) and floating \([X=3 \ (X=A-P)]\) cell systems.

High magnification (×10) images of adherent \([X=2 \ (X=A-P)]\) and floating \([X=4 \ (X=A-P)]\) cell systems. DIC (left) and fluorescence (right) images.
Fig. S6. Observation of NIH 3T3 cell death driven by the photothermal properties of CNH complexes. (A) Photographs of cell dishes after laser irradiation [(1) 300 mW (~15 mW/mm²), (2) 250 mW (~13 mW/mm²), (3) 200 mW (~10 mW/mm²), (4) 150 mW (~8 mW/mm²), (5) 100 mW (~5 mW/mm²) and (6) 50 mW (~3 mW/mm²)]. (B) Optical microscopy images of NIH 3T3 cell death at various objective magnifications (left: ×4, centre: ×10, right: ×20). (C) Increases in the temperature of BSA–CNH complex dispersions (250 μl, CNH concentration = 1000 μg/ml) in glass bottom dishes under continuous 670-nm laser irradiation at various laser powers [50 mW (~3 mW/mm²)–300 mW (~15 mW/mm²)]. We used a high concentration of CNH sample (1000 μg/ml) in this experiment for effective heating of the solution in a large-sized dish (35 mm).
Fig. S7. (A) Schematic illustration of this experiment. (B and C) GFP expression behaviour of the laser-induced NIH 3T3 cells encapsulating BSA–CNH complexes triggered by 785-nm laser-irradiation.
Fig. S8. Luciferase expression in stably transfected NIH 3T3 cells injected under the skin of three different nude mice after 785-nm laser irradiation. Preset temperature = 42°C.

Fig. S9. Photographs of laser-irradiated areas. Preset temperatures: (i) 39°C, (ii) 42°C and (iii) 45°C.