Functional genomics identifies therapeutic targets for MYC-driven cancer

Masafumi Toyoshima-a,1, Heather L. Howie-b, Maki Imakura-b, Ryan M. Walsh-b,2, James E. Annis-b,2, Aaron N. Chang-b,3, Jason Frazier-b,4, B. Nelson Chau-b,5, Andrey Loboda-d, Peter S. Linsley-b,6, Michele A. Cleary-b,7, Julie R. Parke-e, and Carla Grandori-b,5,6,8

aDepartment of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; bRosetta Inpharmatics, LLC, Merck & Co., Inc., Seattle, WA 98109; Queilos High Throughput Screening Core, Department of Pharmacology, Institute for Stem Cells and Regenerative Medicine and cSeattle Children's Hospital and Department of Pediatrics, University of Washington, Seattle, WA 98109; and dMerck & Co., West Point, PA 19486

Edited* by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved April 19, 2012 (received for review December 23, 2011)

MYC oncogene family members are broadly implicated in human cancers, yet are considered “undruggable” as they encode transcription factors. MYC also carries out essential functions in proliferative tissues, suggesting that its inhibition could cause severe side effects. We elected to identify synthetic lethal interactions with c-MYC overexpression (MYC-SL) in a collection of ~3,300 druggable genes, using high-throughput siRNA screening. Of 49 genes selected for follow-up, 48 were confirmed by independent retesting and approximately one-third selectively induced accumulation of DNA damage, consistent with enrichment in DNA-repair genes by functional annotation. In addition, genes involved in histone acetylation and transcription, such as TRRAP and BRD4, were identified, indicating that the screen revealed known MYC-associated pathways. For in vivo validation we selected CSNK1e, a kinase whose expression correlated with MYCN amplification in neuroblastoma (an established MYC-driven cancer). Using RNAi and available small-molecule inhibitors, we confirmed that inhibition of CSNK1e halted growth of MYCN-amplified neuroblastoma xenografts. CSNK1e had previously been implicated in the regulation of developmental pathways and circadian rhythms, whereas our data provide a previously unknown link with oncogenic MYC. Furthermore, expression of CSNK1e correlated with c-MYC and its transcriptional signature in other human cancers, indicating potential broad therapeutic implications of targeting CSNK1e function. In summary, through a functional genomics approach, pathways essential in the context of oncogenic MYC but not to normal cells were identified, thus revealing a rich therapeutic space linked to a previously “undruggable” oncogene.

WNT | SHH | PER | PES1 | CECR2

The MYC oncogene is a central driver in many human cancers, and its amplification is associated with poor prognosis in breast (1), prostate (2), colon (3), and pediatric cancers such as neuroblastoma (for review see ref. 4). In addition, c-MYC overexpression together with gene amplification has been reported in over 50% of ovarian cancers (5), in ~30% of hepatocellular carcinoma (6), and in a high percentage of small-cell and non–small-cell lung cancer (7). This high frequency of MYC family deregulation in human cancers suggests that a strategy to target MYC-driven cancers may be relevant for a broad population of patients. Recently, systemic inhibition of MYC using a transgenic mouse model has demonstrated the efficacy of a dominant negative MYC in mediating tumor regression (8). However, MYC family members encode a basic helix loop helix type of transcription factors without obvious druggable domains (9), rendering the identification of small-molecule inhibitors a challenge (10). In addition, as MYC oncoproteins carry out essential functions in proliferative tissues (11), prolonged inhibition of MYC function could cause severe toxicity.

Previous studies using a candidate approach have indicated that the fitness of MYC-overexpressing cells (12) and cancers (13–15) is highly dependent upon other genes and pathways, which may not be essential in the context of normal cells, or of cancers driven by different oncogenic signals. These studies also demonstrated that inhibition of these MYC “synthetic lethal” interactions is an effective therapeutic strategy (13). To broadly identify genes that exhibit a synthetic lethal relation with oncogenic expression of MYC we have used a high-throughput functional genomic approach (16) focused on the druggable genome. As the genetic noise inherent in established cancer cell lines could constitute a potential source of bias, we chose to screen an isogenic pair of primary cells (human foreskin fibroblasts, HFFs), where the only perturbation was overexpression of c-MYC through a retroviral vector (17) and to validate the “hits” in cancer cell contexts. HFFs are unique in that they do not senesce in response to MYC overexpression (17) or introduction of an activated RAS oncogene (18), a property that has been attributed to lack of culture stress. Furthermore, c-MYC overexpression in HFFs recapitulates both the gene expression signatures and cellular phenotypes of MYC-driven cancers (17, 19, 20).

Results

siRNA Screening Identifies a Network of Genes Required for Survival of c-MYC Overexpressing Cells. We used a high-throughput automated approach for testing of an arrayed siRNA library to quantify the effects of siRNAs against a custom-designed collection of ~3,300 druggable genes (9) and 200 microRNAs. We compared the viability of HFF cells stably transduced with a retroviral vector expressing c-MYC (HFF-MYC) and HFF cells with a control empty vector, pBabe (HFF-pBabe) (17) (Fig. 14 shows a schematic of the experimental set-up). The siRNA library collection was designed to target all known human kinases, ubiquitin ligases, DNA repair proteins, and a custom collection of genes involved in cancer pathways, with each target gene being interrogated by a pool of three unique siRNAs. As has been shown in other biologically driven systems, three technical replicates and a one-gene-per-well approach enabled derivation of hits with statistical significance for each gene tested (21, 22). Cell viability was assessed using Alamar Blue staining and was quantified using an EnVision plate reader (Perkin-Elmer). The results of the screen revealed 148 hits, defined according to a Z score of ≥2 (23), including 140 genes and eight microRNAs (Fig. 1B). Here, we focus on the 140 gene hits, identified as required for survival of c-MYC overexpressing cells.
which we designate MYC-synthetic lethal (MYC-SL) genes. To eliminate siRNAs that exhibited substantial growth inhibition properties in normal cells, siRNAs with >50% reduced viability in HFF-pBabe were eliminated from further consideration regardless of differential toxicity. This process left 102 MYC-SL gene hits for follow-up (Dataset S1).

Network analysis identified known connections [based on the Ingenuity-curated database between the hits (blue) and a pre-assembled MYC core pathway (red)] (Fig. S1). About 50% of the MYC-SL hits had known connections with MYC and functionally related genes. For example, TRRAP is a direct MYC-binding partner that mediates recruitment of histone acetyltransferase to selective MYC-bound promoters (24). Several MYC-SL hits were linked to the basic transcriptional machinery (see TBP node in Fig. S1) including POLR2E, POLR2I, and GTF2H4. CDK2 was also identified as a MYC-SL gene, a finding consistent with its
essential role in limiting MYC-induced senescence in a mouse model of tumorigenesis (25). Additionally, the identification of PES1, a gene involved in ribosomal biogenesis (26), among MYC-SL genes is consistent with the direct stimulation of rRNA synthesis by c-MYC (19) and with the “addiction” to elevated ribosomal function of MYC-induced lymphomas (27). The broad spectrum of potential MYC-SL genes thus reflects known MYC functions linked not only to chromatin modification such as TRRAP, BRD4 (28), and CEGR2 (29), but also to metabolism (ALDOA and PDK1), DNA repair (DBB2, GTF2H4, NELLI, POLH, and RAD21), apoptosis (BNIP2, BOK, and MCL1), and mitotic control (WEEL1 and NEK2) (Fig. S1 and Dataset S1).

For follow-up, we selected 49 MYC-SL genes on the basis of best-predicted druggability, potential involvement in cancer pathways, and ranking in differential toxicity. Highlighting the robustness of the screen, 48 of the 49 tested genes were confirmed with more than one siRNA and in an additional matched pair of HFFs (98% confirmation rate, see Dataset S2 for the list of validated and selected MYC-SL), pescadillo homolog 1 (PES1), cat eye syndrome chromosome region, candidate 2 (CECR2), and casein kinase 1 epsilon (CSNK1ε), were further tested via lentiviral-mediated shRNA knockdown, which confirmed their differential growth inhibition in HFF-MYC versus HFF-pBabe control (Fig. 1 C and D). Examination of differential toxicity in HFF-MYC cells was also consistent with the majority of MYC-SL genes by assessing levels of DNA damage and apoptosis, siRNA-mediated knockdown of 12 (~25%) of the hits resulted in elevated γ-H2AX foci in HFF-MYC but not in control cells. This result indicates that induction of DNA damage is a significant consequence of the MYC-synthetic lethal interaction (Fig. 1E for quantitation and Fig. 1F for representative images; summarized in Dataset S2). This finding is consistent with the role of MYC in promoting genomic instability (30) and replication-associated damage resulting from an acceleration of S phase (20, 31). Additionally, siRNA-mediated knockdown of 34 of 41 MYC-SL genes induced caspase-3 and -7 cleavage in HFF-MYC but not in HFF-pBabe (Fig. 1G and Dataset S2). The fact that the results from the original high-throughput screen could be recapitulated using a combination of three knockdown protocols (siRNA pools, deconvoluted siRNA pools, and lentiviral shRNAs) as well as independent assays indicates the robustness of our screening platform.

Targeting Casein Kinase 1 Epsilon Leads to Tumor Regression in Preclinical Models of MYCN-Driven Neuroblastoma. To validate MYC-SL genes in a model of MYC-driven cancer, we selected neuroblastoma cell lines with or without MYCN amplification. Amplification of MYCN in neuroblastoma is a clear driver of tumorigenesis and the strongest molecular marker of poor prognosis, used for treatment stratification (32, 33). The similar transcriptional programs and cellular phenotypes of both c-MYC and MYCN (34), and the finding that MYCN can replace c-MYC during murine development (35) supports the idea that synthetic lethal interactions could be conserved. We therefore screened neuroblastoma cell lines with (IMR-32) or without (SK-N-AS) MYCN amplification with siRNAs targeting the 48 confirmed MYC-SL genes. Twelve MYC-SL genes exhibited selective lethality in MYCN-amplified neuroblastomas (marked in blue in Dataset S2), indicating at least partial overlap of synthetic lethal interactions by both MYC family members in a cancer-cell setting. We chose to focus on one of these genes, CSNK1ε, for preclinical validation according to several criteria. First, CSNK1ε expression correlated with MYCN amplification in a set of clinically annotated neuroblastoma tumor samples (see Fig. 4D). Second, siRNAs or stable knockdown of CSNK1ε ranked among the top genes for differential lethality in HFF-MYC versus HFF-pBabe, while exhibiting minimal toxicity to normal HFFs (~77%, Fig. 1D and Dataset S1), suggesting the possibility of a good therapeutic window. Third, pharmacologic inhibitors were readily available (36), enabling verification in preclinical models. The differential growth inhibition by CSNK1ε knockdown in MYCN-amplified neuroblastoma cells was confirmed in vitro using conditional lentiviral vectors targeting CSNK1ε with two different hairpins, in two MYCN-amplified cell lines (IMR-32 and SK-N-BE2) and a MYCN-nonamplified line (SK-N-AS) (Fig. 2A–C). The specificity of the lentiviral-expressed short hairpins was confirmed by measuring the relative levels of mRNA expression of the six known isoforms of CSNK1ε by qRT-PCR and by microarray analysis, both of which indicated that CSNK1ε was the only gene whose expression was significantly reduced by the knockdown (Fig. S2 and Dataset S3).

As an in vivo preclinical validation model, SK-N-BE2 (MYCN-amplified) neuroblastoma cells were transduced in vitro with either a control sh-expressing lentiviral vector or with shCSNK1ε and injected into the flanks of immunodeficient mice. Once tumors became engrafted (~8–10 mm, equal to ~300 mm² volume), mice were exposed to doxycycline to induce RNAi, and tumor growth was measured over time. As shown in Fig. 2D, neuroblastoma growth was significantly impaired in three of four treated mice, validating in vivo the MYC-synthetic lethal relationship with CSNK1ε through single gene knockdown. The short treatment window for mouse 3 was due to the presence of a large ulcerative tumor in the control.
flank that forced the early termination of the drug treatment, whereas mouse 4 likely represented tumor cells escaping silencing.

We next proceeded to evaluate a small molecule inhibitor of CSNK1e enzymatic activity, IC261 (36). In vitro experiments had confirmed that MYC overexpressing cells were more sensitive to IC261 relative to cells with normal levels of MYC, with >100-fold differences in IC50 (Fig. S3 A, B, D, and E). IMR-32 (MYCN amplified) cells were used as a therapeutic xenograft model instead of SK-N-BE2, as the latter were established posttreatment and exhibit resistance to all chemotherapeutics (37). IMR-32 cells were highly sensitive to IC261 in vitro (Fig. S3B). A cohort of 10 xenograft-bearing mice was randomized into two groups with approximately equal tumor burden; one group was treated with daily s.c. injection of IC261 for 8 consecutive days, whereas the control group was treated with DMSO-vehicle only. IC261 was effective in halting tumor growth in all treated mice (Fig. 3A). A photograph of a representative mouse from each group before and after treatment is shown in Fig. 3A. Histopathological examination of the tumor tissue remaining after IC261 treatments, indicated a pronounced decrease in proliferation defect measured by BrdU labeling, whereas only modest apoptosis was detected via TUNEL assay at this time point (Fig. 3C and D). However, the selective growth inhibition both in vitro and in vivo obtained by genetic knockdown and small-molecule inhibitor validate CSNK1e as a potential therapeutic target for MYCN-driven neuroblastoma. Recently, a more specific small-molecule inhibitor specific for CSNK1e as well as d (delta) isoforms (PF-670462), became commercially available. MYCN-amplified and nonamplified neuroblastoma cell lines were reassessed using this more specific inhibitor, and the results were consistent with that seen following treatment with IC261 (38) (Fig. S3C).

CSNK1e Expression Correlates with MYCN Amplification in Neuroblastoma and c-MYC in Adult Cancers. Through a metaanalysis of primary neuroblastoma microarray data, CSNK1e expression was found to correlate with both MYCN amplification and poor prognosis (http://pub.abcc.ncifcrf.gov/cgi-bin/JK; Fig. 4 A and B). This correlation was confirmed in three representative cell lines at the protein level (Fig. 4C) and at the RNA level in these and additional cell lines (Fig. 4H). It is worth noting that neuroblastomas without MYCN amplification do indeed express c-MYC, which has been reported to be linked to WNT activity (39) (Fig. 4 F and G). However, the levels of c-MYC are much lower than that present in HFF-MYC or MYCN-amplified neuroblastoma, as clearly indicated by qRT-PCR (Fig. 4G). The fact that CSNK1e knockdown did not affect the growth of MYCN-nonamplified neuroblastoma cell lines, is also consistent with the lack of up-regulation of CSNK1e in these cells. These results suggest that MYC-SL interactions here reported are selective for a high threshold of MYC overexpression (see Discussion).

Among the six CSNK1 isoforms tested, epsilon up-regulation was present in all cells with MYCN amplification and it was also the predominant isoform expressed in these cells (Fig. 4H). These findings, as well as the presence of potential MYC-MAX binding sites in the promoter region of CSNK1e (Fig. S4), suggested that CSNK1e mRNAs could be directly regulated by c-MYC/MYCN. Consistently, CSNK1e protein is up-regulated in both HFF-MYC (Fig. 4D) and upon induced MYCN expression in the neuroblastoma cell line Tet21N (40) (Fig. 4E). ChIP analysis of HFF-MYC cells indicated that c-MYC binds to at least two consensus sites, upstream and downstream from the transcriptional start site of the CSNK1e promoter, providing further evidence that the gene could be directly regulated by MYC (Fig. S4). However, we could not definitely demonstrate MYCN enrichment to the CSNK1e gene in neuroblastoma cells, possibly due to the high levels of MYCN protein not specifically bound to DNA. It is also likely that other factors contribute to the elevated transcription of CSNK1e in MYCN-amplified neuroblastoma. However, consistently with the hypothesis that CSNK1e expression is directly or indirectly linked to MYC overexpression, a metaanalysis indicated a significant positive correlation of both c-MYC levels and the c-MYC–associated “signature” with CSNK1e levels in colon, lung, and breast cancers (http://www.intogen.org/expo/; Fig. S5). Because CSNK1e exhibits synthetic lethality with MYC overexpression, its up-regulation particularly in MYC-overexpressing cancers, may be of functional significance.

Discussion

MYC-Synthetic Lethal Pathways. With the goal to identify therapeutic targets for MYC-driven cancers, this study reports the findings of a high-throughput arrayed siRNA screen from a collection of ~3,300 potentially druggable human genes as well as genes with cancer annotation. Prominent functional categories among the identified MYC-SL genes were related to DNA repair
(most enriched according to GeneGo), metabolism, apoptosis, basic transcription machinery, ribosomal RNA synthesis, mitotic control, and developmental pathways (Fig. S1 and Dataset S1). The screen also identified a known MYC interacting partner, TTRAP, involved in recruitment of histone acetyltransferase complexes to MYC-regulated target genes (41). In addition, two proteins involved in transcriptional elongation, such as the bromodomain protein BRD4 (28) and CDK12 (CRKRS in Dataset S1) (42, 43), were among MYC-SL interactions. The recent utilization of bromodomain inhibitory molecules to target MYC-driven cancer models independently confirms the sensitivity of MYC-expressing cancer cells to BRD4 inhibition (44, 45). The role of complexes involved in transcriptional pausing/release among MYC-synthetic lethal is intriguing in light of recent demonstration of a role for c-MYC in this process in murine embryonic stem cells (46). Our findings suggest that a heightened dependence upon transcriptional elongation occurs only in the context of aberrant MYC expression, but not in normal cells. Finally, the enrichment in DNA-repair and -checkpoint genes (Dataset S1 for complete gene list) is consistent with the increased genomic instability and dramatic increase in the rate of DNA replication observed both in mammalian cells and in the Xenopus model system caused by MYC overexpression (20, 31, 47). MYC-SL genes related to DNA repair represent candidates for drug development with the potential to be used in combination with standard-of-care genotoxic treatments.

While this paper was under review, a study using the pooled lentiviral screening approach identified synthetic lethal interactions upon induction of a MYC-ER fusion in primary epithelial mammary cells (48). The results indicated a role in SUMOylation that influenced MYC transcriptional activity and exhibited synthetic lethality. Among the candidate genes reported by Kessler et al. (48) only one gene was in common with our screen result: BRD4; all others were in similar classes. Different cell systems (MYC-ER versus constitutive c-MYC), different screening methods (pooled shRNA versus arrayed siRNAs), and different libraries (sh against 30,000 genes versus siRNAs against 3,300 genes) could explain the lack of overlap. However, the high reproducibility of the screen here reported (48 of 49 genes tested) underscores the accuracy of the one gene-per-well approach.

CSNK1e: A Druggable Gene Overexpressed in MYC-Driven Cancers

We focused on CSNK1e as proof of principle to demonstrate the power to rapidly translate screening results to preclinical models. In fact, small-molecule inhibitors were readily available (36, 38), and CSNK1e expression significantly correlated with MYC amplification in neuroblastoma. We also found that CSNK1e expression was associated with c-MYC in other tumor settings such as colon, lung, and breast cancer (Fig. S5). An independently derived link between MYC and CSNK1e was obtained through the geno-mrome-wide identification of modifiers of transcription factor activity through the MINDy algorithm, where CSNK1e scored as modifier of MYC target gene expression (49). CSNK1e was previously implicated in WNT and SHH (for review see ref. 50) and phosphorylation of PER to regulate circadian rhythms (51, 52), whereas only recently CSNK1e has been implicated in cancer (53–55). However, this is a unique demonstration of a functional link between CSNK1e and MYC to influence cancer growth and to implicate CSNK1e as a therapeutic target in MYC-driven cancers.

In the future, to stratify cancers that may benefit from CSNK1e inhibition other than MYC-amplified neuroblastoma, it will be important to establish a threshold of MYC expression that could predict sensitivity to inhibition of CSNK1e. Perhaps the expression of CSNK1e itself could constitute a biomarker of sensitivity. Our study suggests that the ideal setting for therapeutics toward CSNK1e and perhaps other MYC-SL genes might be cancers where MYC expression is both intrinsically and prominently altered, such as consequent to gene amplification. In contrast, in instances where MYC expression is induced in the context of extracellular signaling pathways, those cancers may not be sensitive to inhibition of MYC-SL genes, but likely to respond to inhibition of MYC itself, as most proliferative cells. In summary, our study revealed candidates for therapeutic development identified through an efficient pipeline, which combined the power of high-throughput arrayed siRNA screening with optimized isogenic cell
pairs for target discovery, followed by validation in molecularly characterized cancer cells.

Materials and Methods

Cell Culture and Reagents. For the siRNA screen, primary human foreskin fibroblasts (HFF) transduced with pBabe-puro or pBabe-c-MYC-puro were utilized. Neuroblastoma cell lines were obtained from the American Type Culture Collection and from Dr. Susan Cohn (University of Chicago, Chicago, IL). The MYCN-inducible Tet21N cells were obtained from Robert N. Eisenman (Fred Hutchinson Cancer Research Center, Seattle, WA). For culture conditions and details see SI Materials and Methods.

siRNA Screen. For information regarding the siRNA transfection, optimization, and read-out assay for high throughput screening see SI Materials and Methods.

DNA Damage and Apoptosis Assays. siRNA pools corresponding to the confirmed genes were manually transfected in the HFF-pBabe-c-MYC and HFF-pBabe-puro isogenic pair in 96-well format. Details for immunofluorescence detection of DNA damage and apoptosis can be found in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Dr. Susan Cohn for sharing her knowledge of the role of MYCN amplification in neuroblastoma and for cell lines; Kristin Robinson for maintaining cell cultures; Kay Gurley for histopathological analysis of tumors; Jody Carter, Bruce Clurman, Robert Eisenman, Harold Bolouri, and Chris Kemp for critical reading of the manuscript; Travis Biechele and Daniel Dioiliat for discussions; and the Galloway laboratory for support and reagents. This work was supported by an award from the Ben Towne Endowment (to J.R.P.), R01 AG026661 from National Institute on Aging (to C.G.), and a Pilot Grant (to C.G.) from the National Cancer Institute Cancer Center Support Grant S-P30 CA015704 to the Fred Hutchinson Cancer Research Center.

16. Benanti JA, Galloway DA (2004) Normal human fibroblasts (HFF) transduced with pBabe-puro or pBabe-c-MYC-puro were used for support and reagents. This work was supported by an award from the Ben Towne Enowment (to J.R.P.), R01 AG026661 from National Institute on Aging (to C.G.), and a Pilot Grant (to C.G.) from the National Cancer Institute Cancer Center Support Grant S-P30 CA015704 to the Fred Hutchinson Cancer Research Center.
Supporting Information

Toyoshima et al. 10.1073/pnas.1121119109

SI Materials and Methods

Cell Culture and Reagents. The primary human foreskin fibroblasts (HFFs) and retroviral vectors (pBabe-puro and pBabe-c-MYC-puro) were as previously described (1). Cell were grown in DMEM (Gibco-BRI) with 1% (vol/vol) penicillin/streptomycin and 10% (vol/vol) FBS. Neuroblastoma cell lines: SK-N-AS, SK-N-BE2, and IMR-32 cells were obtained from American Type Culture Collection; SH-SY5Y, LAN-5, NBL-W-N, SMS-KCN, and SMS-KCNR were provided by Dr. Susan Cohn (University of Chicago, Chicago), MYCN-inducible Tet21N cells originally described by Lutz et al. (2), were obtained from Robert N. Eisenman [Fred Hutchinson Cancer Research Center (FHCRC), Seattle WA], All neuroblastoma cells were grown in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco-BRI) with 25 mM of Hepes, l-glutamine, penicillin/streptomycin, and 10% (vol/vol) FBS. All cells were incubated humidified at 37 °C and 5% CO2. All shRNA expressing stable cell lines were grown in the medium supplemented with 10% (vol/vol) Tet-approved FBS (Clontech). Doxycycline and IC261 were purchased from Sigma.

siRNA Screen. siRNA library. The siRNA library targeting c-MYC (sc-42 and sc-764; Santa Cruz Biotechnology), anti-H2AX Millipore Anti Phospho-H2AX (Ser139, 07-164). was used for screening as follow: Dharmafect 1 as transfection reagent at a ratio of 1:1 volume with siRNAs; the siRNA amount at 1.25 μmol/L per well. The following conditions, including cell number, type of transfection reagent, and plating different cell concentrations. A matrix of 136 different sequences for each cell type (HFF-pB and HFF-MYC) was designed with an algorithm described (5) with the following modifications: on day 1, cells were seeded in 384-well tissue culture plates (Matrix Technologies) at 400 (HFF-pB) and 200 (HFF-MYC) cells per well in 50 μL per well of complete medium using a WellMate (Matrix Technologies); on day 2, cells were transfected using a Biomek FX and the transfection efficiency of the siRNAs for silencing while minimizing their off-target effects (4). Sigma-Aldrich has adopted this screening design algorithm and siRNAs targeting the drugable genome are now commercially available (MISSION pre-arranged siRNA libraries).

siRNA transfection optimization. siRNAs transfection and readout timing were optimized to achieve a Z’ factor for HFF-pBabe of 0.645 and for HFF-MYC of 0.726, using a negative control siRNA (siLuc) and a highly toxic siRNA, in this case targeting the kinesin motor protein Kiff 11. Briefly, the linear range for Alamar Blue assay for each cell type (HFF-pB and HFF-MYC) was defined by plating different cell concentrations. A matrix of 136 different conditions, including cell number, type of transfection reagent, siRNA ratio relative to transfection reagent, and final transfection amounts were also tested in duplicates. The readout timing was tested at 72 and 96 h. The conditions with best Z’ factor were then used for screening. The HTS screening conditions. HFF-MYC and HFF-pB control cells were transfected with siRNAs using Dharmafect I with three siRNAs targeting the same gene pooled at equal molarity (final concentration of each siRNA, 17 nM; total siRNA concentration, 50 nM) to target one gene per well. The screen was carried out in triplicate replicates. Semi-automated transfections were carried out as described (5) with the following modifications: on day 1, cells were seeded in 384-well tissue culture plates (Matrix Technologies) at 400 (HFF-pB) and 200 (HFF-MYC) cells per well in 50 μL per well of complete medium using a WellMate (Matrix Technologies); on day 2, cells were transfected using a Biomek FX and the plates were incubated at 37 °C in a 5% CO2 incubator for 72 h; on day 5, (a total of 96 h from the time of plating) cell viability was determined using the Alamar Blue reagent (BioSource International) following the assay conditions previously described (5). The plates were incubated for 1–4 h at 37 °C prior to measuring fluorescence (544-nm excitation, 590-nm emission) with an Envision multilabel plate reader (PerkinElmer). The fluorescence signal was corrected for background (no cells). Cell growth was expressed as percent viability relative to the median value of wells transfected with an siRNA to luciferase. Hits were determined by Z score ≥2, calculated as described (6).

DNA Damage and Apoptosis Assays. siRNA pools corresponding to the confirmed gene hits were manually transfected in the HFF-MYC and HFF-pBisogenic pair in 96-well format using RNAi-Max (Invitrogen) transfection reagent in 100 μL volume. The following conditions, including cell number, type of transfection reagent, and plating different cell concentrations. A matrix of 136 different sequences for each cell type (HFF-pB and HFF-MYC) was defined with an algorithm developed to increase efficiency of the siRNAs for silencing. Nuclear fluorescence signal was within Hoechst-stained nuclei was quantified using an INCell automated microscope, with a 10x objective, capturing five images per well. Nuclear fluorescence in control mock transfected samples was used to set a threshold for background fluorescence. Nuclei with fluorescence intensity above this negative threshold was automatically counted in all fields. To measure induction of apoptosis following the siRNA transfection, Caspase-Glow 3/7 reagent was added to live cells (Promega) and luminescence was immediately quantified using the EnVision multilabel plate reader (PerkinElmer). Apoptotic readouts were corrected for cell density normalized to parallel transfected samples where cells were quantified using with Alamar Blue staining.

mRNA Expression by Real-Time PCR. Total RNA was isolated using the RNeasy Mini kit (Qiagen) according to manufacturer’s protocol, and the quantity and quality of the RNA was analyzed by the spectrophotometer. One microgram of total RNA was reverse transcribed using the SuperScript II (Invitrogen) and random hexamer primers (Invitrogen) at 42 °C for 50 min. Resultant cDNA was used in a quantitative real time-PCR with ABI 7900HT systems and pre-designed TaqMan probes (Applied Biosystems) for CSNK1e (Hs00266431_m1), PES1 (Hs00362795_g1), CE2R (Hs00299898_m1), CSNK1a (Hs00793391_m1), CSNK1g1 (Hs00222804_m1), CSNK1g2 (Hs00176258_m1), CSNK1g3 (Hs00177858_m1), CSNK1d (Hs01020332_m1), and MYCN (Hs00232074_m1). Each determination of Ct values was done in triplicate and normalized with Ct value of triplicate measurements using TaqMan probes for GAPDH (ABI; 4352934) from the same samples. The comparative Ct method was used to determine gene expression levels.

Western Blotting. Preparation of whole cell lysates and Western blotting were performed as previously described (7) with the following antibodies: anti-CSNK1e (610445; BD Biosciences), anti-c-MYC (sc-42 and sc-764; Santa Cruz Biotechnology), anti-MYCN (NCM-II; Santa Cruz Biotechnology), antiactin (AC-15; Abcam). Quantitation of Western blot was performed using ImageJ software (National Institutes of Health).

Generation of shRNA Lentiviruses. Constitutive expressing short hairpin RNAs (shRNA) for CSNK1e, PES1, and CECR2 (1, 2, 3, 38x207)
and 3 for each gene), and nontargeting control (shControl) were cloned into the pLenti-viral vector pHUGW, as previously described (8). The core sequences of each shRNA are as follows:

- CSNK1e no. 1 (GCAACCTGGCTCATCATCG)
- CSNK1e no. 2 (GCTACGTGCTCATGACTCA)
- CSNK1e no. 3 (GCGAGGATGATGGAAGGATCA)
- PES1 no.1 (GCCCTGGAGAAGGAAAGATG)
- PES1 no. 2 (GCAITCTCAGGGCATTTAC)
- PES1 no. 3 (GCAAGGCTTCTCTTGTCCATCA)
- CEPR no. 1 (GGAGTTAGAAGCCGCTCTC)
- CEPR no. 2 (GCAGGCCTCAAGTGAAGATTTA)
- CEPR no. 3 (GAGGAAAGATGAAAGCACAAGA)

shControl (CAACAGATGAGAGGACCAACAA)

To generate tet-inducible cell lines, neuroblastoma cell lines were first transduced with a lentivirus expressing tS (tetracycline-controlled transcriptional repressor; Clontech) and selected with neomycin. The tS-expressing cells were subsequently infected with an shRNA-expressing lentiviral vector derived from pLent6 as described (9); shRNA and a scramble were designed and constructed in the pLent6-tts system using the Gateway LR Clonase. The core target sequences used in doxycycline-inducible shRNA are as follows: CSNK1e sh no. 1 (GGCTATCCTCGCAATTTCT) and CSNK1e sh no. 2 (GAACGGATCAGCGAGAAGA). shRNA encoding plasmids were transfected into 293T cells with helper plasmids encoding gag-pol and vesicular stomatitis virus envelope glycoprotein using Fugene6 (Roche). Growth media was changed the following day and lentivirus containing supernatants were harvested and concentrated by centrifugation. Lentivirus stocks were tested on NB cells, IMR-32 were counted, resuspended in 1:1 culture medium/Matrigel (BD Bioscience) on ice, and injected s.c. into the flank of 6- to 8-wk-old female NOD/SCID gamma null mice under protocol approved by the FHCRC committee (IRB no. 1712). After 4 wk, (tumor diameter of 1.0 cm), the IC-261 treatment group (n = 5). Injection of dimethyl sulfoxide [10% (vol/vol) DMSO; control group] or IC-261 s.c. (20.5 mg/kg also in 10% DMSO) were performed daily for 8 d. For doxycycline-inducible knockdown experiments, SK-N-BE2 tS cells infected with either the lentiviral tet-controlled shCSNK1e no. 1 or shControl were transduced in vitro. Two days following transduction, 2.5 × 10⁶ cells in 0.2 mL PBS were inoculated s.c. into the left and right flanks of NOD/SCID gamma null mice (n = 4). After tumors were established, mice were exposed to doxycycline (2 mg/mL in 5% sucrose) ad libitum in their drinking water. The volume of the implanted tumor was measured every 2–3 d with a caliper, using the formula: V = L × W/2, where V is volume (mm³), L is biggest diameter (mm), and W is smallest diameter (mm). Mice were killed by CO₂ inhalation the day after the last treatment and then tumors were fixed or frozen for further study.

Immunohistochemical Staining. Tissues were fixed in normal buffered formalin and subsequently processed to paraffin. Tissue sections of 4 μm were deparaffinized, rehydrated, and stained for H&E, TUNEL, or BrdU. Sections for BrdU (Dako) staining were treated with HCl and trypsin before incubating with primary antibody. For TUNEL staining, TACS2 TdT kit (Trevigen) was used according to manufacturer’s instructions. All bright-field images were captured using a Nikon Labophot-2 microscope with Spot Insight color camera and version 3.2 Spot Insight software (Diagnostic Instruments, Inc.). All images shown are representative of at least 10 fields, viewed over 2 stained sections per animals. Quantitation was performed using 10 fields per animal.

Statistical Analysis. All columns represent mean ± SDs, unless otherwise noted. All statistical analyses were performed using unpaired two-tailed t test unless otherwise indicated. Survival curves were constructed according to the Kaplan–Meier method and compared with the log-rank test. Graphpad Prism version 4.00 or SPSS (IBM) were used for statistical analysis.

Fig. S1. Network analysis to visualize known literature connections between MYC-SL “hits” (blue) and their connection with a preassembled MYC “core” pathway (red). All connections were drawn on the basis of Ingenuity-curated literature. Only the MYC-SL with known direct connections with the MYC core components are here visualized. Each line represents a single reference and the color of connecting lines indicated the type of interaction as indicated in the box. Arrows mark genes referred to in the text.

Fig. S2. Conditional knockdown of CSNK1e with lentiviral-expressed short hairpins does not affect expression of other CSNK1e isoforms. Relative mRNA expression of CSNK1 A (alpha), G1 (gamma 1), G2 (gamma 2), G3 (gamma 3), and D (delta) in SK-N-BE2 cells transduced with lentiviral vectors expressing shCSNK1e nos. 1 and 2 (Fig. 2) and treated with either DMSO or doxycycline for 48 h. Relative levels of each gene were calculated using the \(\Delta\Delta CT\) method using GAPDH to normalize mRNA levels within each sample.
Fig. S3. Chemical inhibition of CSNK1e kinase activity shows selective toxicity to MYC-overexpressing cells. (A) HFF cell lines with or without c-Myc overexpression were treated with 0–10 μM IC261 for 48 h. Cells were exposed to CellTiter-Glo reagent and viability was assessed by ATP-induced chemiluminescence. Values indicate mean ± SD. (B) Tet21N cells with or without doxycycline treatment and IMR-32 cells (MYCN amplified) were treated with 0–30 μM IC261 for 48 h. Cells were exposed to CellTiter-Glo reagent and the viability was assessed by ATP-induced chemiluminescence. Values indicate mean ± SD. (C) HFF-MYC, HFF-pBabe, and MYCN amplified (IMR-32) and MYCN nonamplified (SK-N-AS) were incubated with different concentrations of PF-670462, a selective inhibitor of CSNK1e and δ (delta), and viability was measured at 48 h by CellTiter-Glo. (D) Cell growth curves for HFF-pBabe incubated with two different concentrations of IC261. (E) Cell growth curves for HFF-MYC incubated with different concentrations of IC261.
Fig. S4. The CSNK1e gene contains functional MYC-MAX consensus sites. (A) Genomic sequence surrounding the CSNK1e transcription start site (both up- and downstream) as well as the first and second intron of CSNK1e contains several predicted MYC-MAX binding sites (1). The binding-site sequences and relative positions to the transcription start site and are shown according to the National Center for Biotechnology Information map view. Primers used for ChIP are shown in red and numbered to match the ChIP data shown. (B) ChIP of c-MYC at the CSNK1e promoter in HFF-MYC and HFF-pBabe cell lines. Data shown are percent input, normalized to the IgG control. Nucleolin was used as a positive control for c-MYC association as it represents a well-documented direct MYC-target gene.

Fig. S5. Correlation between c-MYC probe/signature and CSNK1e expression. The expO public database (http://www.intgen.org/expo/) was queried with probe sets 202332_at and 225756_at for CSNK1e, and 202431_s_at for MYC, along with a “Myc signature” (1). For our analysis, 325 breast, 269 colon, and 114 lung tumors were analyzed. Positive correlations were observed in all three tumor groups, which was statistically significant for all comparisons (Pearson’s correlation).

Dataset S1. List of all gene hits here referred to as MYC-SL

A total of 102 genes out of 148 hits remained after siRNAs with percent viability of <50% in control HFF-pB were eliminated. microRNAs are also not listed here. The indicated percent viability is the average of three replicates and is expressed as percent viability relative to the median value of wells transfected with an siRNA to luciferase. Hits were determined by Z score ≥2, calculated as described in ref. 6. The last column refers to the ratio of percent viability of a given siRNA pool in HFF-pB/HFF-MYC.

Dataset S2. List of confirmed MYC-synthetic lethal genes

Forty-nine genes among the 102 MYC-SL genes were selected because of druggability and best differential toxicity for further confirmation. Here shown are the 48 genes, which were confirmed by selective growth inhibition in an additional pair of matched HFF–c-MYC and control HFF-pB and with more than one siRNA upon deconvolution of the siRNA pool used in the screen. *CECR2 was confirmed by only one siRNA, but is listed here as it was confirmed by lentiviral-mediated silencing in HFF-MYC cells (Fig. 1).

Dataset S3. Microarray analysis following lentiviral-mediated knockdown of CSNK1e indicates that CSNK1e is the only significantly reduced gene

MYCN-amplified SK-N-BE2 cells were transduced with lentiviral vectors expressing shCSNK1e no. 1 or shControl. Two days postinfection, cells were split and exposed to doxycycline to induce expression of the short hairpins and RNA was extracted at days 1, 2, and 3 from both shControl or shCSNK1e no. 1 and analyzed on the Illumina microarray platform. The ratio of gene expression for each gene after CSNK1e knockdown to control was calculated. As this was an exploratory experiment, a time course rather than three technical replicates was selected.