Structure of the yeast F$_1$F$_o$-ATP synthase dimer and its role in shaping the mitochondrial cristae

Karen M. Daviesa, Claudio Anselmia, Ilka Wittigb, José D. Faraldo-Gómeza, and Werner Kühlbrandta,1

aDepartment of Structural Biology, Max Planck Institute of Biophysics and bTheoretical Molecular Biophysics Group and Cluster of Excellence ‘Macromolecular Complexes’, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany; and cMolecular Bioenergetics Group, Goethe-University, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany

Edited by Richard Henderson, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom, and approved June 29, 2012 (received for review March 16, 2012)

We used electron cryomicroscopy of mitochondrial membranes from wild-type and mutant Saccharomyces cerevisiae to investigate the structure and organization of ATP synthase dimers in situ. Subtomogram averaging of the dimers to 3.7 nm resolution revealed a V-shaped structure of twofold symmetry, with an angle of 86° between monomers. The central and peripheral stalks are well resolved. The monomers interact within the membrane at the base of the peripheral stalks. In wild-type mitochondria ATP synthase dimers are found in rows along the highly curved cristae ridges, and appear to be crucial for membrane morphology. Strains deficient in the dimer-specific subunits e and g or the first transmembrane helix of subunit 4 lack both dimers and lamellar cristae. Instead, cristae are either absent or balloon-shaped, with ATP synthase monomers distributed randomly in the membrane. Computer simulations indicate that isolated dimers induce a plastic deformation in the lipid bilayer, which is partially relieved by their side-by-side association. We propose that the assembly of ATP synthase dimer rows is driven by the reduction in the membrane elastic energy, rather than by direct protein contacts, and that the dimer rows enable the formation of highly curved ridges in mitochondrial cristae.

membrane-protein oligomerization | membrane deformation | molecular dynamics simulations | bioenergetics | ATP synthesis

The F$_1$F$_o$ ATP synthase is a highly conserved molecular machine that catalyses the production of ATP from ADP and P$_i$ in energy-converting membranes of eukaryotes and bacteria. ATP synthesis is powered by an electrochemical transmembrane gradient. The mitochondrial ATP synthase is located in the inner membrane cristae (1,2), where it forms dimers (3). These dimers are organized in rows, located along the highly curved ridges of the cristae (4–6). The ATP synthase of yeast (Saccharomyces cerevisiae) has a molecular mass of approximately 600 kDa and consists of thirteen different core subunits (α, β, γ, δ, ε, OSP, 4, 6, 8, 9,d, f, and h) (7). The basic structure of the F$_1$F$_o$ ATP synthase as determined by electron cryomicroscopy (8, 9) is the same in all eukaryotes and bacteria. The F$_1$F$_o$ ATP synthase can be divided into four structural units, all of which are functionally essential: The catalytic head group ([\(\alpha\beta\gamma\)], the central stalk (γ, δ, ε), the peripheral stalk (4, d, h), and the membrane region (9,d, 6, 8, f). The first two units are often referred to as the F$_1$ subcomplex and the last two as the F$_o$ subcomplex. The oligomycin sensitivity conferring protein (OSCP) subunit connects the peripheral stalk to the catalytic domain. The complete enzyme works by rotary catalysis (reviewed in ref. 10). The atomic structures for both the yeast and bovine F$_1$/rotor ring assemblies (11–13) have been determined by X-ray crystallography, as has part of the bovine peripheral stalk subcomplex (14, 15).

In addition to the 13 different core subunits, the yeast F$_1$F$_o$ ATP synthase contains four other protein subunits known as e, g, i, and k. Of these, e, g, k were first discovered in the ATP synthase dimer (3). Subunits e and g, which also occur in mammals, are small, integral membrane proteins with a single predicted transmembrane helix featuring a GXXXG motif. Subunit g has a small N-terminal matrix domain that can be cross-linked to subunit 4 (16), and subunit e has a short C-terminal domain with a predicted coiled-coil motif exposed to the cristae space. Initial characterization of these subunits suggested they were involved in ATP synthase dimer formation, as no dimers could be extracted from mitochondria lacking either subunit e or g (3, 17). However, in subsequent work small amounts of ATP synthase dimers were reported in digitonin extracts of these mutants (18). Biochemical cross-linking (19–21) and FRET (fluorescence resonance energy transfer) studies (22) likewise suggested dimers of the mitochondrial ATP synthase without subunits e and g, casting further doubt on the role of these subunits in dimer formation.

By electron cryomicroscopy of mitochondria and mitochondrial membranes from six different species (5, 6) we found that the ATP synthase forms extensive rows of dimers along the highly curved cristae ridges in mammals, plants, and fungi. While the two F$_1$ subcomplexes within each dimer were consistently 28 nm apart, the distance between adjacent dimers along the rows was variable, indicating that the dimers do not interact directly. Here, we report a three-dimensional map of the ATP synthase dimer in wild-type mitochondrial membranes, obtained by subtomogram averaging. At a resolution of 3.7 nm, the map clearly reveals the two catalytic heads in the dimer, with the central and peripheral stalks linking them to the membrane. The map indicates a constant angle of 86° between the monomers, and enables us to pinpoint the location of the dimer interface. To clarify the role of subunits e and g in the dimer, we obtained tomographic volumes of mitochondrial membranes from yeast mutants lacking these subunits or the first transmembrane helix of subunit 4 (su4TM1). We find that in these mutants the ATP synthase fails to form dimers or any higher oligomeric assemblies. Lastly, we show by large-scale molecular dynamics simulations that the energy of membrane deformation is sufficient to drive the formation of ATP synthase dimer rows without the need for specific protein-protein interactions.

Results

Subtomogram Averaging Reveals Architecture of the ATP Synthase Dimer In Situ. Tomograms of mitochondrial membranes from
the yeast *Saccharomyces cerevisiae* were assessed for the distribution of ATP synthase, which appears as 10 nm spherical densities positioned 5 nm above the membrane (5, 6). Pairs of particles along highly curved membrane ridges were extracted and averaged. The resulting subtomogram average was generated from 121 subvolumes and shows two ATP synthase monomers forming a V-shaped dimer, with their long axes crossing at an angle of 86° (Fig. 1). The peripheral and central stalks are clearly resolved. The dimer interface is located in the membrane between the two peripheral stalks. The two ATP synthase complexes can be superimposed onto each other by a rotation of 180° about an axis normal to the membrane. Fourier shell correlation [FSC (23)] between two randomly-selected halves of the data indicated a resolution of 3.7 nm at 50% correlation (Fig. S1).

Fit of Subcomplex Structures. In the subtomogram average of the dimer, each ATP synthase monomer resembles the published cryo-EM maps of the bovine and yeast mitochondrial ATP synthase obtained by single-particle analysis [Fig. S2 (8, 9)]. To determine whether our map is also consistent with the results of high-resolution X-ray crystallography, the X-ray structures of the yeast *F*₁/rotor ring assembly [PDB entry 2WPD; (12)] and the bovine peripheral stalk fragment [2CLY; (14)] were fitted as rigid bodies (Fig. 2). Alternatively, the X-ray structure of the bovine *F*₁/peripheral stalk assembly [2WSS; (15)] was placed into the subtomogram average (Fig. S3).

In both cases, the catalytic *F*₁ unit fitted the main globular density very well, and the γ, δ, and ε subunits filled the density of the central stalk. As in the single particle maps (8, 9), the *F*₁ region in the subtomogram average has pseudo-sixfold symmetry with alternating short and long edges (Fig. 2B). These edges correspond to the catalytic and noncatalytic α/β interfaces of the *F*₁ subcomplex (24), which allowed us to optimize the fit of the *F*₁/rotor ring assembly. The resulting fit positioned the β subunits in the three stronger of the six densities, with a noncatalytic α/β interface roughly parallel to the peripheral stalk density (9, 15) (Fig. 2C). The N-terminal ends of the rotor ring subunits in the *F*₁/rotor ring assembly [2WPD; (12)] filled the bulge of density on the intra-cristae side of the membrane (Fig. 24).

In the alternative fit of the *F*₁/peripheral stalk assembly (2WSS), the peripheral stalk subunits did not sit fully in the corresponding density of the subtomogram average (Fig. S3 A and C), whereas the structure of the bovine peripheral stalk fragment (2CLY) fitted this density almost perfectly (Fig. 2, and Fig. S3 B and D). This finding indicates that the position of the peripheral stalk in the bovine crystal structure (2WSS) is different from that in yeast ATP synthase dimers. To account for a small volume above *F*₁, we extended the 2CLY fragment to include the C-terminal residues of the *b* subunit from the 2WSS structure. Finally, we fitted the N-terminal part of the OSCP subunit to the map region immediately above an α subunit, with which it is known to interact (15, 25). The fit as shown in Fig. 2 was now excellent overall, with the *b*-subunit (homologous to subunit 4 in yeast) extending from the membrane to the top of the *F*₁ subcomplex. Note that the twist of the peripheral stalk seen in the crystal structure (2CLY) is also evident in the subtomogram average.

Mutants Lacking Specific ATP Synthase Subunits Do Not Have Dimers or Lamellar Cristae. The ATP synthase components that have been proposed to be involved in dimer formation include subunits h, i, 6, e, g, and 4 (16, 19–21, 26, 27). Our map indicates that the interface between protomers is located in the membrane between the peripheral stalks. Subunit h is positioned at the top of the
Membrane Deformation Drives Assembly of Dimer Rows. The assembly of ATP synthase dimers into rows has been implied to result from two different dimer geometries, one with an angle of approximately 90° (32) between monomers. It has been postulated that these two different dimers are formed by interaction of either subunits e, g, or su4TM1 can be deleted without affecting the assembly or function of the monomeric enzyme (3, 16). To assess whether these subunits are involved in dimer formation, we imaged mitochondria from mutant yeast strains lacking either subunit e, g, or su4TM1 by electron cryotomography.

The ATP synthase in the mutant mitochondria appeared monomeric and the mitochondria lacked the flat lamellar cristae with tightly curved ridges that are typical of wild type. Instead the inner mitochondrial membrane formed a number of separate vesicles with few or no cristae (Fig. 3 and Fig. S4). When cristae were present, they tended to be balloon-shaped with smooth, gently curving surfaces. Isolated membranes obtained from these mutant mitochondria were likewise spherical, with randomly distributed ATP synthase monomers (Fig. 4A), instead of being tubular or disk-shaped with rows of dimers as in wild type (Fig. 4C and D). Some of the mutant membrane vesicles were accidentally flattened on the EM grid, resulting in highly curved edges. However, these edges were always devoid of ATP synthase particles (Fig. 4B).

We also imaged mitochondria from a yeast strain lacking subunit k, which is believed to stabilize the ATP synthase dimers (31). Tomograms of mitochondria and subtomogram averages of ATP synthase dimers from this mutant were indistinguishable from wild type (Fig. S5). We therefore conclude that (i) subunits e, g, and 4, but not k, are essential for the formation of the yeast ATP synthase dimer; (ii) monomeric ATP synthase does not by itself converge on highly curved membrane regions; (iii) rows of dimers are a prerequisite for the formation of lamellar cristae with tightly curved ridges that are typical of normal, wild-type yeast mitochondria.

Membrane Deformation Drives Assembly of Dimer Rows. The assembly of ATP synthase dimers into rows has been implied to result from two different dimer geometries, one with an angle of approximately 35° and the other with an angle of approximately 90° between monomers. It has been postulated that these two different dimers are formed by interaction of either subunits e and g or of subunits 4, i, a, and h (18–22). We show here that subunits e, g, and 4 are each essential for dimer formation. However, we only find one type of dimer in our tomograms. The distances and angles between dimers in a row are largely variable (Fig. 4C and D), indicating that the organization of ATP synthase dimers into rows is not due to direct dimer-dimer contacts mediated by interstitial proteins.

The self-assembly of ATP synthase dimers into rows might instead be due to the deformation imposed by individual dimers on the surrounding lipid bilayer. To examine this perturbation and its potential role in the formation of dimer rows, we carried out a series of coarse-grained molecular dynamics simulations of single and multiple ATP synthase dimers in a model phospholipid membrane. We found that an individual dimer causes a pronounced convex curvature (as seen from Ff) along the direction connecting the two Fo domains, which persists over a distance of 15–20 nm from the dimer x-axis (Fig. 5A and B and Fig. S6A). However, the dimer also enforces a concave, or negative membrane curvature along the perpendicular y-axis, which persists over a similar distance (Fig. 5A and C, and Fig. S6B). We considered that if two ATP synthase dimers approached one another by random lateral diffusion in the membrane, the curvature deformation in the y direction would be partially relieved if their x-axes became aligned to be parallel, thus stabilizing the arrangement observed in our tomograms. To quantify this effect, we carried out additional simulations of a membrane containing a dimer of dimers, and a tetramer of dimers (Fig. 5D–F), and compared the overall curvature deformation of these membranes with that of the single-dimer system (Fig. S6). These calculations indeed indicate that a side-by-side association of ATP synthase dimers, as seen in wild type mitochondria, reduces the elastic energy of the surrounding membrane to the order of several kBT for each dimer-dimer interface (Fig. S6). This energy reduction occurs because the curvature of the membrane along the direction of the row (y-axis) is significantly reduced between adjacent dimers (Fig. S6E), while that in the perpendicular direction (x-axis) is largely unchanged. Although other factors may also contribute, we propose that this net gain in membrane elastic energy is a major driving force for the self-assembly of ATP synthase dimers into rows.
Mitochondria are the powerhouse of eukaryotic cells and the main site of ATP synthesis by aerobic respiration. The inner membrane of a typical mitochondrion has numerous deep invaginations called cristae. The cristae are generally presumed to increase the membrane area available for oxidative phosphorylation, and have been proposed to play an important role in optimizing ATP synthesis (5, 6). The formation of cristae results in extreme local membrane curvature, which, as seen from the matrix, is either concave (negative) at the point of membrane invagination or convex (positive) at the cristae ridges. In our previous work we have shown that the ATP synthase dimers are located along the highly curved ridges of lamellar cristae in mitochondria from six different species (5). In this work, we present the structure of the yeast ATP synthase dimer in cristae membranes and examine the formation of both the ATP synthase dimer and the dimer rows, and ask how they affect mitochondrial morphology.

The Yeast ATP Synthase Dimer. Up to now, all structural studies of the yeast or mammalian F$_1$F$_0$ ATP synthase dimers have been carried out with complexes extracted from the membrane by detergent (8, 9, 32–34). Attempts to determine the detailed structure of isolated ATP synthase dimers have been hindered by the instability of the dimeric complex outside the membrane. Dudkina et al. reported two types of detergent-solubilized yeast ATP synthase dimers with angles of 35° or 90° (32). Others found that the detergent-extracted dimers were heterogenous, with angles ranging from 55° to 140° (33, 34). In one study (33), the predominant dimer angle was consistent with ours, whereas another reported a predominant angle of 36–48° (34). A 3D map (34) showed the peripheral stalks to be offset from the dimer interface by an angle of 30°. Our extensive analysis of tomographic volumes of cristae membranes revealed no evidence of ATP synthase dimers with angles other than approximately 90°. Therefore dimers with more acute angles (34) are most likely the result of nonspecific, hydrophobic interaction of the F$_0$ domains upon detergent solubilization. Evidently, the membrane environment is essential for the stability of the native yeast ATP synthase dimer.

ATP synthase dimers from some organisms other than yeast or vertebrates appear to be more stable when extracted from the membrane. One such example is the mitochondrial F$_1$F$_0$ ATP synthase dimer from *Polytomella*, a chlorophyll-less green alga. The *Polytomella* dimer has been examined by single-particle analysis (35) and subtomogram averaging (36). The two reported structures differ in terms of dimer angle (50° or 70°) and the proposed interaction of peripheral stalks at the dimer interface. The yeast ATP synthase dimer is clearly different from both. The yeast dimer angle is wider, the peripheral stalk less thick, and the monomers interact only in the membrane. Above all, the organization of dimers into rows is different. In *Polytomella*, subtomogram averaging revealed a constant offset of +9° between successive dimers (36). This offset would lead to a helical arrangement of the rows spiralling around tubular cristae, as observed in *Polytomella* (32) and *Paramecium* (4), a protist. By contrast, dimer rows in yeast and vertebrates run along ridges of lamellar cristae (5, 6) and are never helical. This pronounced structural dissimilarity most likely reflects substantial differences in F$_1$F$_0$ ATP synthase subunit composition (37, 38).

Dimer Interactions and Row Formation. The formation of ATP synthase dimer rows has been assumed to be protein-driven and considerable effort has been invested into finding the proteins responsible (16, 18–21, 26, 27). Subunits e and g have been widely assumed to provide the protein contacts between dimers (19–22). We demonstrate here that mutants lacking subunits e or g do not have ATP synthase dimers in situ, and that subunits e, g, and su4TM1 are all essential for dimer formation in the membrane. Deletion of either subunit e or su4TM1 results in the loss of subunit g (3, 16), which suggests that all three subunits are in close proximity at the dimer interface. As mitochondrial membranes contain only one type of dimer, there is also only one dimer interface. Subunits e and g are therefore unlikely to be involved both in dimer formation and in contacts between dimers along rows. Rather, the variable distance between neighboring dimers suggests a more general, protein-independent mechanism of row formation.

Dimer Rows and Membrane Curvature. Although lipids can form curved bilayers by themselves, biological membranes are mostly shaped by proteins e.g., BAR (Bin1/amphiphysin/Rvs167) domain proteins, clathrins, and epsins (39). In mitochondria, the ATP synthase dimer has been shown to play a major role in shaping the cristae (40). On the basis of our computer simulations we propose that the curvature induced by the ATP synthase dimer in...
a simple lipid membrane is sufficient to drive the formation of long dimer rows, which would then give rise to highly curved membrane ridges and lamellar cristae. Although the lipid composition of the membrane may also play a role (41), the fact that a tetramer of dimers can bend a lipid bilayer composed of only POPC (1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine) into a ridge suggests that the dimer alone is perfectly adequate to drive its own self-association without the need for additional protein-protein or protein-lipid interactions.

Considering that the rows of ATP synthase dimers are a highly conserved, fundamental feature of all normal mitochondria, the advantage of a membrane-driven self-assembly over a protein-mediated interaction becomes clear when the energy balance for remodelling is considered. The energetic cost of remodelling the dimer rows, according to our calculations, requires only a few \(k_B T \) per dimer. However, if the interaction between dimers were mediated by protein, much more energy would be needed to disrupt each interaction, as can be deduced for example from the measured free energy of association for a glycopyrophorin A homodimer, which is 15 \(k_B T \) (42). The mitochondrial is a highly dynamic organelle, which undergoes constant changes in its shape in the course of fusion and fission events, organelle migration, or large-scale changes in cell morphology during division or contraction. As the mitochondria provide the energy for these processes, it is essential that they can remodel their inner membrane quickly without unnecessary energy consumption, or the need for additional, costly protein factors. The self-organization of ATP synthase dimers into rows by means of random diffusion and minimization of the elastic membrane energy meets these requirements exactly.

Conclusion

We used electron cryotomography and subtomogram averaging to determine the structure of the mitochondrial \(\text{F}_1\text{Fo} \) ATP synthase dimer in situ at an estimated resolution of 3.7 nm, and examined the formation of dimers and dimer rows in mitochondrial membranes by molecular dynamics simulations. We conclude that: (i) two ATP synthase monomers interact at the base of the peripheral stalks in the membrane, thereby forming a symmetrical V-shaped dimer with the central stalks including an angle of 86°. (ii) Subunits e, g, and 4 are part of this dimer interface, and are each essential for dimer formation. (iii) Only one type of ATP synthase dimer exists in the cristae membranes of yeast mitochondria. This dimer is similar to that in other fungi and in vertebrates, but different from that in \(\text{Polyomella} \) and \(\text{Paramecium} \). (iv) Molecular dynamics simulations indicate that an individual ATP synthase dimer causes a marked deformation of the surrounding lipid bilayer, inducing a positive, convex curve in one direction and a concave curve in the perpendicular direction. (v) The side-by-side association of multiple dimers into a row reduces the overall cost in elastic energy of membrane deformation. We propose that this effect is sufficient to drive the formation of rows of ATP synthase dimers in mitochondria, without the need for specific protein or lipid-mediated interactions between dimers. The dimers are thus themselves responsible for the formation of the highly curved cristae ridges, and an essential element of normal mitochondrial morphology.

Methods

Saccharomyces cerevisiae Strains. Yeast strains W303, BY4742, \(\Delta e \) in W303, \(\Delta e \) in BY4742, \(\Delta g \) in W303, \(\Delta g \) in BY4742, \(\Delta k \) in W303 and 4.4T1M in D273-10B [EUROSCAF(3, 16)] were grown under nonfermentable conditions as described (43). Mitochondria were isolated by enzymatic digestion of the cell wall, followed by differential centrifugation as described (44). Whole mitochondria were fragmented by successive freeze-thaw cycles at \(-20^\circ \text{C}\).

Electron Cryotomography. Mitochondria samples were washed with trehalose buffer (250 mM trehalose, 10 mM Tris-HCl pH 7.4) and mixed 1:1 with fiducial gold markers (6 nm gold particles conjugated to protein A, Aurion) immediately before plunge-freezing in liquid ethane. Both single and dual tilt image series (\(\pm 60^\circ \), step size 1.5°) were collected on an FEI Polara microscope operating at 300 kV equipped with a post-column energy filter and a 2 x 2 K CCD camera (GIF Tridem B63, Gatan). Images were recorded at a nominal magnification of 41,000 x, corresponding to a pixel size of 0.576 nm. The defocus was 7 μm. Tomograms were aligned using the gold fiducials and tomographic volumes were reconstructed using the IMOD package (45). Tomograms were filtered by nonlinear anisotropic diffusion to increase contrast (46), and manually segmented with the program AMIRA (Mercury Systems).

Subtomogram Averaging and Fitting of X-Ray Structures. Subvolumes containing an ATP synthase dimer were extracted from single-tilt tomograms prior to contrast enhancement, prealigned according to the position of the \(\text{F}_1 \) subcomplex to the membrane and averaged in IMOD (45). The initial alignment was optimized in PEET (47) using the preliminary average as a reference. The final volume was twofold averaged and filtered to 30 Å using a Feni filter. A total of 121 out of an initial 138 subvolumes were used to calculate the final map. All features described were present after filtering to 50 Å. Fourier shell correlations were performed in PEET. Atomic models were docked in CHIMERA using the sequential fit routine (48). Replacement of the subvolumes into the original tomograms was carried out with the AMIRA EM toolbox (49).

Molecular Simulations. Molecular dynamics simulations were carried out with GROMACS 4.5.3 (50) and the coarse-grained (CG) MARTINI 2.1 forcefield (51) at constant temperature (298 K) and pressure (1 bar). The simulation system with a single \(\text{F}_1\text{Fo} \) dimer comprised approximately 1,728,000 CG particles (protein, POPC lipids, water, Na\(^+\) and Cl\(^-\) ions), enclosed in a periodic box of dimensions 85.3 \times 85.3 \times 27.8 nm. The two-dimer simulation system was a duplicate of the single-dimer system, and thus included approximately 3,456,000 CG pseudoatoms in a box of 85.0 \times 170.0 \times 27.9 nm. Lastly, the tetramer-of-dimers system was 84.8 \times 159.6 \times 27.9 nm in size, and comprised approximately 3,260,000 CG particles. Each system was simulated for 850 ns, split in two trajectories of 750 and 100 ns. The compute-hours used by these simulations were approximately 200,000 (single-dimer), approximately 450,000 (dimer-of-dimers) and approximately 550,000 (tetramer-of-dimers). Further details are provided in **SI Methods.**

Acknowledgments. We thank Marie-France Giraud and Rosemary A. Stuart for the kind gift of the \(\Delta e\DeltaAT1M1 \) and \(\Delta e\Deltag \) and \(\Delta e\Deltak \) yeast strains respectively, Deryck Mills for maintenance of the electron microscopy facility, and Maximilian Mattil for excellent technical assistance. This work was supported by the Max Planck Society (K.M.D., C.A., J.D.F-G, and W.K.) and the Cluster of Excellence Frankfurt “Macromolecular Complexes” (W.K., and J.D.F-G) and Project Z1 of the SFB 815 "Redox Proteomics" (I.W.) funded by the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung BMBF 01G1113B; mitoNET—Deutsches Netzwerk für mitochondrialle Erkrankungen (I.W.).
16. Soubannier V, et al. (2002) In the absence of the first membrane-spanning segment of
subunit 4(b), the yeast ATP synthase is functional but does not dimerize or oligomerize. J Biol Chem 277:10729–10745.
19. Paumard P, et al. (2002) Two ATP synthases can be linked through subunits i in
the inner mitochondrial membrane of Saccharomyces cerevisiae. Biochemistry 41:10390–10396.
proximity of ATP synthase complexes in yeast inner mitochondrial membrane. Biochim
participates in the yeast ATP synthase dimerization independently of e and g subunits.
Biochemistry 45:6715–6723.
can occur in the absence of the dimer specific subunit e. J Bioenerg Biomembr 37:55–66.
25. Carbayo RJ, et al. (2005) Structure of the F1 binding domain of the stator of bovine
27. Velours J, et al. (2011) Evidence of the proximity of ATP synthase subunits 6(a) in the
inner mitochondrial membrane and in the supramolecular forms of Saccharomyces
g of yeast mitochondrial F1F0-ATP synthase, a protein required for maximal activity of
(1)F(0)-ATP synthase in mitochondria involves the small F(0)-subunits k and i. Mol Biol
The crystal structure of the F subtomogram averages clearly shows that the peripheral stalks to the ring. The available structure of the F to be influenced by crystal contacts (1), so that the axes of the complex for which no high-resolution structures are available; i.e., all of the Fo subcomplex except for the Fo sector would have been more internally consistent, but the density volume between the c-rings is likely to be in a lattice of CG pseudoatoms, whose shape and volume corresponded to that region in the subtomogram average map.

In the simulations we used the structure of the F1/c subcomplex from bovine mitochondria (1) rather than the F1/c10 complex from yeast mitochondria (5), for the following reasons: (i) The crystal structure of the F1/c9 complex is likely to be a better representation of the native relative orientation of F1 and the rotor ring. The available structure of the F1/c9 complex is thought to be influenced by crystal contacts (1), so that the axes of the c-ring and the F1 headpiece are misaligned (see figure S4 in ref. 1). The resulting uncertainty in the relative position of the F1 and c10 ring is in fact much larger than the difference between the c9 and c10 rings (see figure 3 in ref. 1). For the purpose of our simulations, these considerations are more important than the actual ring size, given the magnitude of the membrane perturbation (see below). (ii) Tomographic data show that the ATP synthase dimers and dimer rows are very similar in yeast and bovine-heart mitochondria. (iii) The structure of the dimer from subtomogram averages clearly shows that the peripheral stalks in the dimer face each other. Because the subunit composition of the Fo sector in yeast and bovine mitochondria is very similar, the density volume between the c-rings is likely to be nearly identical. (iv) The extent of the perturbation in the membrane induced by the dimer is likely to be much larger than the difference between the c-rings. Indeed, in our simulations the elastic deformation of the membrane affects an area of 2,000 nm^2. By contrast, the difference in the cross-section area of the c9 and c10 ring is only 3.7 nm^2. It is unlikely that such a small difference would alter our conclusions significantly. In summary, to a c10 ring in the Fo sector would have been more internally consistent, but there are good reasons to use the structure of the F1-c9 complex instead.

Simulation specifications. Molecular dynamics simulations were carried out with GROMACS version 4.5.3 (6, 7), and the MARTINI coarse-grained force field, version 2.1 (4). In all simulations the temperature and pressure were kept constant at 298 K and 1 atm, using the algorithm of Berendsen, et al. (8), with relaxation times of 0.3 ps and 3 ps, respectively. Pressure responses in the plane of the membrane and in the orthogonal direction were considered independently. Periodic boundary conditions were used in all directions. Nonbonded, nonionic interactions were computed using a shifted Lennard-Jones potential cut-off at 1.2 nm. Ionic interactions were calculated according to Coulomb’s law, with a dielectric constant ε0 = 15. An elastic network was introduced to preserve the secondary and tertiary structure of the protein complex; harmonic bonds were thus applied to pairs of backbone CG atoms at distances between 0.5 and 0.9 nm (k = 500 kJ mol^{-1} nm^{-2}). When additional constraints were required (see next section), these were applied using the PLUMED plug-in for GROMACS (9).

Simulation strategy. Single F1Fo dimer. To simulate the deformation of the membrane induced by a single dimer, we first inserted two c-rings into a flat lipid bilayer, parallel to each other and at a distance of 11.4 nm. Altogether, this system included approximately 23,000 POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) lipids, 867,000 CG water molecules and 6,250 Na^+ and Cl^- ions (100 mM), enclosed in a box of dimensions 85.2 × 85.2 × 18.9 nm (roughly 1,180,000 CG particles). After a standard energy minimization, the system was simulated for 36 ns. During this phase the angle between the two c-rings was progressively increased from 0 to 83 degrees while keeping the distance between them constant by using a set of suitable distance constraints between atoms in each ring. Once the target angle was reached, this system was simulated for 750 ns, using a time-step of 30 fs. The complete F1Fo complex, with a dimer angle of 86 degrees, was then inserted into the membrane, replacing the two c-rings. Overlapping lipid and water molecules were removed. The simulation box was expanded to 85.3 × 85.3 × 27.8 nm, to accommodate the F1 domains, adding water molecules and ions as needed. The final single F1Fo dimer system comprised approximately 1,728,000 CG atoms. After standard energy minimization, the system was simulated for 100 ns, using a time-step of 10 fs.

Dimer and tetramer of F1Fo dimers. In analogy with the single-dimer system, the membrane deformation caused by the dimer-of-dimers and the tetramer-of-dimers was analyzed first by a 750 ns simulation with only the c-rings, followed by a 100 ns simulation in which the complete F1Fo complex was included. The initial model of the c-ring dimer-of-dimers was produced by replicating a snapshot of the single-dimer system, resulting in a box of 83.8 × 168.7 × 19.0 nm with approximately 2,317,000 CG atoms. Similarly the initial model of the tetramer of c-ring dimers was obtained from the dimer-of-dimers, resulting in a system of approximately 4,635,000 particles in a box of 83.9 × 335.6 × 19.0 nm. The dimer and tetramer of the complete F1Fo dimers were constructed analogously, based on the single dimer. These systems consisted of approximately 3,456,000 and approximately 3,260,000 CG atoms, respectively, and the simulation boxes had dimensions of 85.0 × 170.0 × 27.9 nm and 84.8 × 159.6 × 27.9 nm, respectively. In these simulations the dimers were kept at a constant distance of 13 nm, and approximately parallel.

Curvature analysis. The energy of the elastic deformation of the membrane was assumed to be a quadratic function of its curvature in the x and y directions, at every position in the membrane (10). To evaluate the membrane curvature at a given position and a given simulation snapshot, we calculated the radius of the circle that best fitted the curved membrane at that position, either in the x or y direction; the reciprocal of its radius is the mean curvature. To calculate the membrane curvature for each snapshot of the simulation, lipid molecules were mapped on a 2D grid in the xy plane (0.5 nm grid-point spacing), based on the proximity of the phosphate groups to each grid point (cut-off distance of 1.2 nm). For each grid-point, the z coordinate of the assigned phosphate groups was then averaged. The circular fitting was then carried out at each grid point following the method of Forbes (11). The curvature maps obtained for each simulation snapshot were then averaged and symmetrized.

Fig. S1. Resolution estimation of the ATP synthase dimer average. Fourier shell correlation of dimer maps calculated from two random halves of the data set. Using the FSC 0.5 criterion (crosshairs), the ATP synthase dimer average has a resolution of 3.7 nm.

Fig. S2. Comparison of yeast ATP synthase density maps calculated from single-particle analysis and subtomogram averaging. (A) Overlay of the single-particle map (green mesh) with a monomer of the dimer subtomogram average (black mesh). Both maps have the same overall shape. (B) Difference map. The subtomogram average (black mesh) contains stronger density (red mesh—positive difference) for the peripheral stalk and soluble regions than the single-particle map but less density in the membrane region (yellow mesh—negative difference). The former may reflect the better preorientation of the ATP synthase in the membrane. The latter is largely due to contrast matching between the membrane lipid and membrane protein, which have similar scattering densities.

Davies et al. www.pnas.org/cgi/doi/10.1073/pnas.1204593109
Fig. S3. Comparison of peripheral stalk fit with X-ray structures of the F\textsubscript{1}/peripheral stalk structure or the bovine peripheral stalk fragment. The F\textsubscript{1}/peripheral stalk complex [2WSS (1)] (A, C) or F\textsubscript{1}/rotor ring complex [2WPD (2)] with the bovine peripheral stalk fragment [2CLY (3)] extended by the C-terminal b subunit residues present in the 2WSS structure (B, D) were positioned into the dimer density using the automatic fitting function in CHIMERA (4). The peripheral stalk structure of the 2WSS model is partly outside the peripheral stalk density (C), whereas the extended 2CLY model (D) fits the map perfectly and follows the curvature of the density from the top of the F\textsubscript{1} subcomplex to the membrane surface. (A, B) Top views; (C, D) side view of a monomer seen from the dimer interface. Gold shading—density of peripheral stalk filtered to 12 Å generated from 2WSS (A, C) or the extended 2CLY atomic model (B, D).

Fig. S4. Selection of mitochondrial morphologies from yeast strains lacking ATP synthase subunits e or g. Tomographic slice and segmented volume of a mitochondrion from Δe (A, B) and Δg (C) yeast strains. Mitochondria from these mutants and su4ΔTM1 have separate inner membrane vesicles that lack the highly curved membrane ridges characteristic of lamellar cristae in wild-type mitochondria. When cristae were present, they tended to be balloon-shaped with smooth, gently curving surfaces. Mitochondrial morphologies of Δe, Δg, and su4ΔTM1 strains are indistinguishable. The boxed volume in (C) is a cross section at the red dashed line. Light grey—outer membrane; sky blue—inner membrane. (Scale bar, 200 nm). See also Fig. 3.
Fig. S5. Mitochondrion and ATP synthase dimer from Δk yeast strain. (A) Mitochondria isolated from a yeast strain lacking subunit k are indistinguishable from wild type. Mitochondria from both strains have discrete lamellar cristae with highly curved membrane ridges. (B) Subtomogram average of ATP synthase dimer calculated from isolated Δk membranes. ATP synthase dimers from this strain look identical to wild-type dimers. Light grey—outer membrane, sky blue—inner membrane. (Scale bar, 200 nm).
Fig. S6. Elastic energy gain upon association of two ATP synthase dimers. Membrane curvature profiles in the x and y direction induced by one (A), two (B), and four (C) ATP synthase dimers. In each case, the curvature maps derive from 850 ns of molecular dynamics simulation (see SI Methods); that is, from simulations of the c-rings only (750 ns) and from simulations of the complete F1Fo complexes (100 ns). The energy associated with the elastic deformation of each membrane (E1 and E2, respectively) can be expressed as

\[
E_U = \frac{1}{2k_c} \int \left(c_x(x,y) + c_y(x,y) \right)^2 dx \, dy
\]

(1), where \(c_x\) and \(c_y\) denote the curvature along the x and y dimensions (in \(\text{rad nm}^{-1}\)), \(k_c = 1 \times 10^{-19} \text{J}\) is the bending modulus of the membrane (2, 3), and \(N\) denotes the number of dimers in a membrane patch. According to this model, the reduction in elastic energy upon association of two individual dimers, \(E_2 - 2E_1\), is \(6.0 \, k_B T\). The energy reduction upon assembly of a tetramer from two dimer-of-dimers, \(E_4 - 2E_2\), is \(5.9 \, k_B T\); from four individual dimers, \(E_4 - 4E_1\), the value is \(18 \, k_B T\). For comparison, the measured free energy of association of a glycophorin A homodimer, mediated by direct protein-protein contacts, is \(-15 \, k_B T\) (4).

Movie S1. Subtomogram average of yeast ATP synthase dimer from mitochondria with fitted atomic structures. The density map is shown at three contour levels: 1σ—mesh, 2σ—light grey, and 3σ—dark grey. Atomic structures: Blue-purple: F1/rotor ring complex [PDB: 2WPD (1)], green: OSCP [PDB:2BOS (2)], yellow-red: peripheral stalk subcomplex [PDB: 2CLY (3)] with additional residues from [PDB: 2WSS (4)].

Movie S1 (MOV)