Protection from the acquisition of *Staphylococcus aureus* nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase

Rebecca S. Lijek*, Santiago L. Luque*, Qian Liu*, Dan Parker†, Taeok Bae†, and Jeffrey N. Weiser*†

*Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; †Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408; and ‡Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032

Edited* by Porter W. Anderson, Harvard Medical School, Boston, MA, and approved July 16, 2012 (received for review May 16, 2012)

Nasal colonization by *Staphylococcus aureus* is the major risk factor for disease and transmission. Epidemiological studies have reported a reduced risk of *S. aureus* carriage in immunocompetent but not in immunocompromised children colonized by *Streptococcus pneumoniae*. We investigate the hypothesis that the immune response to pneumococcal colonization affects *S. aureus* colonization. We demonstrate that pneumococcal colonization in mice inhibits subsequent *S. aureus* acquisition in an antibody-dependent manner and elicits antibody that cross-reacts with *S. aureus*. We identify the staphylococcal target of cross-reactive antibody as 1-pyrroline-5-carboxyline dehydrogenase (PSCDH), and the homologous immunogen in *S. pneumoniae* as SP_1119, both of which are conserved dehydrogenases. These antigens are necessary and sufficient to inhibit the acquisition of *S. aureus* colonization in a mouse model. Our findings demonstrate that immune-mediated cross-reactivity between *S. pneumoniae* and *S. aureus* protects against *S. aureus* nasal acquisition and thus reveal a paradigm for identifying protective antigens against *S. aureus*.

pneumococcus | methicillin-resistant *S. aureus* | vaccine

The Gram-positive bacterial pathogen *Staphylococcus aureus* is responsible for significant morbidity, mortality, and excess healthcare costs worldwide. The management of *S. aureus* disease has become increasingly difficult because of the rising prevalence of methicillin-resistant *S. aureus* (MRSA), which can account for 60% of *S. aureus* infections in hospital and community settings (1, 2). Given the limited treatment options for MRSA infection, novel preventative approaches are needed to protect against *S. aureus* infection and transmission. A predominant risk factor for *S. aureus* infection and transmission is asymptomatic colonization of the anterior nares (3). Eighty percent of *S. aureus* invasive infections in humans are caused by the host’s colonizing strain (4). However, the specific host and bacterial determinants of *S. aureus* nasal carriage are not well understood (5). In children, significantly reduced *S. aureus* colonization rates have been associated with carriage of another member of the upper respiratory tract flora, *Streptococcus pneumoniae* (6–14). These large and geographically diverse cohorts have demonstrated reproducibly that colonization with *S. pneumoniae* reduces the risk of *S. aureus* carriage by approximately half. This interference phenomenon has been reported for both vaccine and nonvaccine serotypes of *S. pneumoniae* (13). Moreover, pneumococcal vaccination, which reduces *S. pneumoniae* carriage, has been associated with an increased incidence of *S. aureus*-induced otitis media in children (15).

The etiology of this interference phenomenon between *S. pneumoniae* and *S. aureus* colonization is unknown. Although in vitro studies have demonstrated that hydrogen peroxide secreted by *S. pneumoniae* is bactericidal to *S. aureus* in coculture (16–18), but neither hydrogen peroxide secretion by *S. pneumoniae* nor hydrogen peroxide sensitivity of *S. aureus* is predictive of cocolonization patterns in vivo (19–21). Moreover, any direct competitive effect in vivo is unlikely, because *S. aureus* is found primarily in the anterior nares (5), whereas *S. pneumoniae* colonizes the nasopharynx (22). Instead, we and others (21) have hypothesized that an immunological mechanism may be involved, because the antagonistic effect of pneumococcal colonization on *S. aureus* carriage is observed in HIV-negative but not immunocompromised HIV-positive individuals within the same cohort (8, 9, 23). To date, the only study that has addressed the role of the immune system measured antibody titers to 17 predetermined pneumococcal proteins and found no correlation with *S. aureus* carriage in 57 infants (24). Therefore, a comprehensive examination of this hypothesis without pre-selection of candidate antigens has not yet been performed.

Here we investigate whether the host immune response to *S. pneumoniae* carriage can influence *S. aureus* colonization in vivo. We demonstrate that antibodies elicited during pneumococcal colonization in a mouse model cross-react with *S. aureus*, leading to a reduction in *S. aureus* nasal colonization. We identify the staphylococcal target of cross-reactive antibody and the homologous immunogen in *S. pneumoniae* and confirm that these antigens are necessary and sufficient to limit the acquisition of *S. aureus* nasal colonization in vivo.

Results

Pneumococcal Colonization in Mice Reduces Subsequent *S. aureus* Carriage in an Antibody-Dependent Manner. To recapitulate the observed interference between *S. pneumoniae* and *S. aureus* colonization, we developed a mouse model of *S. aureus* nasal colonization using strain 502A, a clinical isolate known for superior nasal colonization in humans (25). Unlike previously described models of *S. aureus* nasal carriage, which are highly variable, nasal colonization by 502A is established reproducibly in naive C57BL/6 mice with higher and less variable densities than seen with other strains (Fig. S1 A and B). 502A colonization was achieved with a dose of 10^8 cfu, but levels were highest and most reproducible at day 1 postinoculation with a dose of 10^6 cfu (Fig. S1 C and D). For all further experiments, we chose to use these latter conditions, which reproducibly model the first step in colonization—nasal acquisition—but do not model the long-term human carrier state. Therefore, our studies with this model focus on the initial establishment of *S. aureus* nasal colonization rather than on persistent carriage. Under these conditions, the levels of *S. aureus* detected in our model are comparable to those recovered from experimentally colonized humans (26).

We next combined our 502A acquisition model with an established murine model of pneumococcal nasopharyngeal colonization that has colonization dynamics and immune responses similar to those observed in humans, including a robust antibody response to *S. pneumoniae* [17].

Author contributions: R.S.L. and J.N.W. designed research; R.S.L., S.L.L., Q.L., and T.B. performed research; R.S.L., D.P., and T.B. contributed new reagents/analytic tools; R.S.L. and J.N.W. analyzed data; and R.S.L. and J.N.W. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

†To whom correspondence should be addressed. E-mail: weiser@mail.med.upenn.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1208075109/-/DCSupplemental.
a diversity of pneumococcal antigens (27, 28). After colonizing mice with \textit{S. pneumoniae} and allowing 5 wk for complete pneumococcal clearance, we challenged mice intranasally with \textit{S. aureus} 502A. Compared with mock-colonized (PBS) controls, mice previously colonized with \textit{S. pneumoniae} TIGR4 had significantly reduced levels of \textit{S. aureus} 502A carriage (Fig. 1, closed circles), similar to observations made in children. The protective effect of prior pneumococcal colonization was not dependent on pneumococcal strain or serotype, because similar reductions in 502A colonization were seen following prior colonization with \textit{S. pneumoniae} P1121 (Fig. 1, closed circles).

Because the effect of prior pneumococcal colonization was observed at a time when pneumococci no longer can be detected in the nasopharynx, we hypothesized that the reduction in \textit{S. aureus} levels might be caused by the presence of anti-pneumococcal antibody. To test this hypothesis, we repeated the dual-species colonization experiment in antibody-deficient \(\mu\)MT mice and found no significant difference in 502A colonization levels between mice colonized previously with \textit{S. pneumoniae} and mock colonized controls (Fig. 1, open circles). These data suggest that antibody is necessary for the protective effect of pneumococcal colonization on \textit{S. aureus} colonization.

\textbf{Pneumococcal Colonization Elicits Antibody That Cross-Reacts with \textit{S. aureus}.} We next investigated whether the antibody response elicited by pneumococcal colonization was capable of recognizing \textit{S. aureus}. Mice colonized with \textit{S. pneumoniae} developed significantly increased levels of IgG that bound to the surface of live \textit{S. aureus}, compared with levels in precolonization sera (\(P = 0.043\) for five mice) (Fig. 2A). In Western blots of staphylococcal whole-cell lysates, sera from mice postcolonization with \textit{S. pneumoniae} cross-reacted with a single prominent band of about 55 kD (Fig. 2B, \textit{Right} two panels, arrow). In contrast, blots using sera after mock colonization with PBS resembled background levels of sera before colonization (Fig. 2B, \textit{Left} two panels). After further separation by 2D gel electrophoresis and Western blot, the staphylococcal target of antibody induced by pneumococcal colonization was isolated for mass spectrometric analysis. Only two proteins, dihydrolipoamide dehydrogenase (DLDH, YP 499592) and 1-pyrroline-5-carboxylate dehydrogenase (PSCDH, YP 501325), were present at this position in equal abundance as determined by empirical protein-abundance index scores. For each staphylococcal protein, one closely homologous protein was identified in the \textit{S. pneumoniae} TIGR4 genome by tBLASTn. The homologous loci in the TIGR4 genome are \(sp_{1161}\) (\(E\) value = \(1e^{-56}\)) and \(sp_{1119}\) (\(E\) value = \(6e^{-48}\)), respectively, and both encode putative but uncharacterized dehydrogenases which we refer to hereafter as “\(SP_{1161}\)” and “\(SP_{1119}\).”

\textbf{Candidate Antigen Is \(SP_{1119}\) in \textit{S. pneumoniae} and Its \textit{S. aureus} Homolog, PSCDH.} Each candidate antigen was cloned, recombiantly expressed, purified, and used to generate specific antisera. IgG to PSCDH and DLDH bound to the surface of live \textit{S. aureus}, indicating that these proteins are antibody accessible (Fig. 3A). In contrast, incubation of \textit{S. pneumoniae} TIGR4 with antisera specific to the pneumococcal proteins did not result in surface IgG binding (Fig. 3B). However, elimination of the antiopsonic capsular polysaccharide in TIGR4cps facilitated surface binding by anti-\(SP_{1119}\) and anti-\(SP_{1161}\) IgG, suggesting that these antigens are surface associated but masked by capsule (Fig. 3C).

We investigated whether antibodies raised against each candidate protein could cross-react with the heterologous species. When \textit{S. aureus} was incubated with antisera to the pneumococcal proteins, we observed cross-reactive binding with anti-\(SP_{1119}\) but not with anti-\(SP_{1161}\) IgG (Fig. 3A). Similarly, antisera to the staphylococcal homolog of \(SP_{1119}\), PSCDH, bound to the surface of unencapsulated \textit{S. pneumoniae}, but antisera to DLDH did not (Fig. 3C). Together, these data suggest that antisera to the homologous pair PSCDH and \(SP_{1119}\), but not to DLDH and \(SP_{1161}\), cross-react with the surface of the heterologous species.

For \(SP_{1119}\) to induce cross-reactive antibody in vivo, it must be immunogenic during pneumococcal colonization. We investigated whether pneumococcal colonization in mice elicited antibodies to \(SP_{1119}\) by Western blot and ELISA. By Western blot we observed an increase in antibody binding to both \(SP_{1119}\) and PSCDH in sera of mice after pneumococcal colonization as compared with sera from mice before pneumococcal colonization (Fig. 4A). No increase in binding was observed in mock-colonized animals (Fig. 4A). Similarly, by ELISA, mice colonized with TIGR4 had significantly elevated IgG titers to \(SP_{1119}\), whereas mock-colonized control mice did not (Fig. 4B). There was a significant intraindividual correlation between elevated IgG tiers to \(SP_{1119}\) and PSCDH, indicating that animals with a robust response to \(SP_{1119}\) mounted commensurate responses to PSCDH (Fig. 4C, solid squares).

Because the clinical negative association between pneumococcal and \textit{S. aureus} colonization appears to be independent of \textit{S. aureus} strain, we reasoned that any target of cross-reactive antibody must be well conserved. In all publically available whole \textit{S. aureus} genomes
(n > 12), the amino acid sequence for P5CDH is at least 98% identical. We confirmed this widespread conservation by Western blot using a selection of methicillin-sensitive and methicillin-resistant S. aureus strains including the epidemic clinical isolate USA300. P5CDH was detected in all the strains tested but not in the unmarked, in-frame P5CDH deletion mutant (502A), which was used as a negative control (Fig. 4D). Similarly, SP_1119 is broadly conserved across pneumococci with at least 99% amino acid identity in all the publicly available whole S. pneumoniae genomes (n > 35).

SP_1119 and P5CDH Are Necessary to Reduce S. aureus Carriage in a Mouse Model. We deleted the locus sp_1119 from S. pneumoniae TIGR4 to assess whether SP_1119 is necessary for the protective effect of pneumococcal colonization on subsequent S. aureus carriage. Although mice previously colonized with wild-type TIGR4 had significantly reduced levels of 502A carriage, mice previously colonized with TIGR4sp_1119 did not differ from mock (PBS)-colonized controls in 502A colonization density (Fig. 5A). Colonization with both the wild-type and mutant resulted in significant increases in antibody titers to whole pneumococci compared with PBS controls (Fig. S2), indicating that the lack of protection against 502A was not caused by an overall deficiency in the antibody response to the mutant. We confirmed by ELISA that animals colonized with TIGR4sp_1119 did not mount antibodies to SP_1119, and animals colonized with wild-type TIGR4 had significantly higher anti-SP_1119 titers than those seen in PBS-inoculated controls (Fig. 5B). Following colonization with TIGR4sp_1119, cross-reactive titers to P5CDH were not significantly higher than those in PBS-inoculated controls and no longer correlated with intraindividual titers to SP_1119 (Fig. 4C, open symbols). The requirement of SP_1119 for cross-reactivity was supported by flow cytometry using a TIGR4sp_1119cps double mutant, demonstrating that deletion of SP_1119 abrogates binding by P5CDH antisera (Fig. 5C). Similarly, the protective effect of previous colonization with wild-type S. pneumoniae TIGR4 was lost when animals were challenged with 502ArocA, which lacks P5CDH (Fig. 5D). These results

Fig. 3. Antisera to P5CDH and SP_1119, but not to DLDH and SP_1161, cross-react with the heterologous species. Flow cytometric detection of IgG binding to the surface of S. aureus 8325-4spa (A), S. pneumoniae TIGR4 (B), and S. pneumoniae TIGR4cps (C) after incubation with rabbit antisera raised to purified recombinant P5CDH; DLDH; SP_1119, or SP_1161 as indicated. Gray shaded area, preimmune rabbit sera; black line, immune rabbit sera.

Fig. 4. SP_1119 is immunogenic during S. pneumoniae colonization. (A) Western blot of purified recombinant SP_1119 or P5CDH incubated with mouse sera before (pre) and after (after) pneumococcal (TIGR4) or sham (PBS) colonization. (B) Quantification by ELISA of the increase in serum IgG titers to SP_1119 after pneumococcal (TIGR4) or sham (PBS) colonization. n = 10 mice per group. (C) Correlation between fold increase in serum IgG titers to SP_1119 and P5CDH in mice colonized with S. pneumoniae TIGR4 (closed squares) or S. pneumoniae TIGR4sp_1119 (open diamonds). (D) Detection of P5CDH (arrow) by specific anti-P5CDH sera in a Western blot of whole-cell lysates of the S. aureus strains indicated. MSSA, methicillin-sensitive S. aureus; MRSA, methicillin-resistant S. aureus.
provide evidence that cross-protection against *S. aureus* by *S. pneumoniae* requires SP_1119 as an immunogen and P5CDH as a target.

Intranasal Immunization with SP_1119 or P5CDH Is Sufficient to Reduce S. aureus Colonization Levels. Because SP_1119 and P5CDH were necessary for the protective effect of pneumococcal colonization on the acquisition of *S. aureus* carriage, we investigated whether immunization with these antigens alone was sufficient to recapitulate this effect. Mice were immunized intranasally with either adjuvant alone or in combination with purified recombinant SP_1119, P5CDH, or DLDH as a control protein. Mice immunized with SP_1119 had significantly lower levels of *S. aureus* colonization than those seen in controls administered adjuvant alone (Fig. 6A). Immunization with P5CDH resulted in a similar reduction in *S. aureus* colonization, but immunization with the control protein DLDH did not (Fig. 6A). As predicted, P5CDH or SP_1119 had no protective effect after challenge with 502AroA, which lacks P5CDH (Fig. 6B). Complementation of the *rocA* deletion (using strain 502AroAC::pCL55-rocA⁺) restored expression of P5CDH (Fig. S3) and the protective effect of prior immunization with SP_1119 and P5CDH (Fig. 6C). Together, these data suggest that SP_1119 and P5CDH are necessary for the pneumococcal effect on *S. aureus* nasal carriage and are sufficient as mucosal immunogens to inhibit the acquisition of *S. aureus* 502A nasal carriage.

Discussion

The concept of interspecies immune-mediated cross-reactivity is as old as vaccinology itself. Indeed, the first vaccine was based on Jenner’s observation of immune-mediated cross-reactivity between cowpox and smallpox. This seminal discovery was made by first identifying a naturally protected subset of the population. In that vein, we sought to investigate a subset of the population—healthy children colonized with *S. pneumoniae*—that was observed to be at reduced risk for *S. aureus* nasal carriage. This interspecies interference is one of the few epidemiological examples of protection against *S. aureus* acquisition, especially because exposure to *S. aureus* is not protective against future *S. aureus* carriage or infection in humans. Interspecies cross-reactive antibody is an important factor in natural immunity to other bacterial pathogens of the upper respiratory tract. For example, cross-reactivity between the capsular polysaccharides of certain enteric commensals *Escherichia coli* and *Haemophilus influenzae* type b has been implicated in the development of age-related natural immunity against this pathogen (29). Our study establishes that antibodies elicited in response to a specific protein during pneumococcal colonization cross-react with and inhibit *S. aureus* in vivo and thereby demonstrates the use of interspecies cross-reactivity to identify protective antigens.

Our findings implicate the antibody response to a homologous pair of putative dehydrogenases, P5CDH and SP_1119, in mediating cross-protection against *S. aureus*. SP_1119 elicits antibody to which the pneumococcus is resistant, whereas P5CDH may have limited immunogenicity during *S. aureus* colonization but still can be targeted by preexisting cross-reactive antibody. In humans, experimental colonization with *S. aureus* does not elicit antibody to P5CDH (30), although some antibody can be detected after invasive infection (31), indicating P5CDH is expressed in vivo. In addition to the identification of SP_1119 by *in silico* analysis, three lines of experimental evidence support the specific role of SP_1119 in inducing cross-protection: (i) antisera raised to SP_1119 cross-reacts with the surface of *S. aureus* in vitro; (ii) loss of SP_1119 in *S. pneumoniae* abolishes the protective effect of prior pneumococcal carriage on *S. aureus* colonization; and (iii) immunization with purified SP_1119 inhibits the establishment of *S. aureus* nasal carriage. The fact that SP_1119, like other protein antigens of *S. pneumoniae*, can be hidden from antibody by the antipsonic

![Fig. 5](image_url)

Fig. 5. Deletion of SP_1119 or P5CDH from whole bacteria abrogates protective effect of prior pneumococcal colonization on *S. aureus* 502A carriage. (A) Colonization density of *S. aureus* 502A in C57BL/6 wild-type mice 5 wk after prior colonization with *S. pneumoniae* TIGR4, *S. pneumoniae* TIGR4sp_1119 or sham treatment (PBS). 502A carriage levels were assessed in upper respiratory tract lavages at day 1 postchallenge. Horizontal lines indicate median values. N. S., not significant. (B) Detection of SP_1119-specific IgG titers in mouse sera before (pre, gray bar) and after (post, black bars) colonization with *S. pneumoniae* TIGR4, *S. pneumoniae* TIGR4sp_1119 or sham treatment (PBS). (C) Flow cytometric detection of antibody binding to the surface of *S. pneumoniae* TIGR4sp_1119 following incubation with rabbit antisera specific to SP_1119, SP_1161, and P5CDH as indicated. Gray shaded area, preimmune rabbit sera; black line, immune rabbit sera. (D) Colonization density of *S. aureus* 502AroA in C57BL/6 mice 5 wk after prior colonization with *S. pneumoniae* TIGR4 or sham (PBS) inoculation. 502AroA carriage levels were assessed in lavages of the upper respiratory tract at day 1 postchallenge. Horizontal solid lines indicate median values; dotted line indicates limit of detection. N.S., not significant.
Capsular polysaccharide may explain the directional negative effect of pneumococcal colonization on *S. aureus* colonization and not vice versa. Preliminary data suggest that *SP_1119* is immunogenic during childhood colonization with *S. pneumoniae*, and future studies will address whether these elevated antibody titers in childhood correlate with a reduced risk of nasal carriage of *S. aureus*. *SP_1119* shares extensive overall homology with P5CDH as well as a functional classification in the aldehyde dehydrogenase superfamily (32). Both proteins are highly conserved and can be detected on the bacterial surface, adding to the growing list of anchorless surface-exposed enzymes in Gram-positive bacteria (33). We predict that cross-reactivity between these two proteins is mediated by a region(s) of conformational similarity on a surface-exposed domain(s), given the lack of an identical stretch of amino acids indicative of a common linear epitope (Fig. S4). Further investigation will be needed to define the precise region(s) responsible for inducing cross-reactivity. It would be beneficial for future studies to identify the minimal epitope(s) required for protection to minimize any undesired impact on other members of the flora or cross-reactivity with human proteins. The biological function of the proteins *SP_1119* and P5CDH has not been characterized in the context of *S. pneumoniae* or *S. aureus*, respectively, and our data indicate that these proteins are not essential during in vitro growth or murine colonization. Whether these proteins affect fitness during human nasal carriage remains to be tested. However, there appears to be selective pressure for these proteins to be maintained in vivo, given their extensive conservation among genome-sequenced strains. This conservation could account for the strain-independent interference between these two species observed in children (20).

Our study required a small animal model of *S. pneumoniae* and *S. aureus* nasal colonization to evaluate our hypothesis in vivo. Preliminary data suggest that *SP_1119* is immunogenic during childhood colonization with *S. pneumoniae*, and future studies will address whether these elevated antibody titers in childhood correlate with a reduced risk of nasal carriage of *S. aureus*. *SP_1119* shares extensive overall homology with P5CDH as well as a functional classification in the aldehyde dehydrogenase superfamily (32). Both proteins are highly conserved and can be detected on the bacterial surface, adding to the growing list of anchorless surface-exposed enzymes in Gram-positive bacteria (33). We predict that cross-reactivity between these two proteins is mediated by a region(s) of conformational similarity on a surface-exposed domain(s), given the lack of an identical stretch of amino acids indicative of a common linear epitope (Fig. S4). Further investigation will be needed to define the precise region(s) responsible for inducing cross-reactivity. It would be beneficial for future studies to identify the minimal epitope(s) required for protection to minimize any undesired impact on other members of the flora or cross-reactivity with human proteins. The biological function of the proteins *SP_1119* and P5CDH has not been characterized in the context of *S. pneumoniae* or *S. aureus*, respectively, and our data indicate that these proteins are not essential during in vitro growth or murine colonization. Whether these proteins affect fitness during human nasal carriage remains to be tested. However, there appears to be selective pressure for these proteins to be maintained in vivo, given their extensive conservation among genome-sequenced strains. This conservation could account for the strain-independent interference between these two species observed in children (20).

Our study required a small animal model of *S. pneumoniae* and *S. aureus* nasal colonization to evaluate this hypothesis in vivo. However, models of *S. aureus* carriage have been limited by a lack of *S. aureus* strains capable of establishing reproducible colonization. *S. aureus* 502A was used throughout the 1960s to colonize adults with furunculosis and healthy newborns deliberately to prevent acquisition of other, more virulent *S. aureus* strains during nosocomial outbreaks (25). We reasoned that 502A might be more proficient than other *S. aureus* strains at establishing colonization in mice, as appeared to be the case in humans. Indeed, the reproducibility of *S. aureus* 502A nasal acquisition in mice at day 1 postinoculation enabled the current study of *S. aureus* colonization and may be a useful tool for studying other host and bacterial determinants of the acquisition of *S. aureus* nasal carriage. Because the protective effects of our antigens were observed during the establishment of carriage, we did not test them in other animal models where disease is created artificially by circumventing the carrier state.

For many bacterial pathogens of the upper respiratory tract, antibody functions to prevent the natural acquisition of carriage (34). In humans, pneumococcal conjugate vaccine is known to induce antigen-specific serum IgG, which is transported by transcytosis across epithelial barriers where it can be detected on the mucosa and is correlated with protection from the acquisition of colonization (35). However, the role of antibody in protection against *S. aureus* has been questioned, because *S. aureus* expresses protein A (Spa) which binds Ig nonspecifically. A Spa mutant often is used in vitro, especially whenever secondary antibody-detection methods are used. It has been assumed that the effect(s) of antibody in vivo would be negated similarly by Spa, but antibody-mediated protection has been demonstrated against nasal colonization with Spa-sufficient strains (31, 36). Passive i.p. immunization with a monoclonal antibody against clumping factor B resulted in reduced nasal carriage of *S. aureus* in mice (36), indicating that systemic antibody can protect against *S. aureus* colonization regardless of Spa. Our study provides another example of antibody-dependent inhibition of nasal carriage of a Spa-sufficient strain, suggesting that the immune-escape effect ascribed to Spa may be of limited importance during colonization.

Much of the public health benefit of vaccines that target mucosal pathogens of the upper respiratory tract—including *S. pneumoniae*, *Neisseria meningitidis*, and *H. influenzae* type b—is the result of herd protection based on the inhibition of carriage in children and thus reduced transmission to unvaccinated members of the population (37). Clinical studies have demonstrated repeatedly that even modest (e.g., 50%) reductions in pathogen carriage following vaccination significantly reduce the risk of transmission, so that full protection (≥90%) from invasive disease is afforded to both vaccinated and unvaccinated individuals (37). Indeed, it has been calculated that pneumococcal conjugate vaccine prevented many more cases of invasive pneumococcal disease in unvaccinated individuals than in vaccinated children (37). These findings illustrate how nonsterilizing decreases in pathogen colonization can have vast ramifications on disease incidence and population-wide protection. In our mouse model, we observed a relative reduction in *S. aureus* carriage and hypothesize that, if similar reductions in carriage were observed in humans, significant morbidity and mortality caused by *S. aureus* invasive disease could be prevented by herd immunity. Moreover, the success of our current pediatric conjugate vaccines reveals the importance of childhood colonization as a reservoir for bacterial pathogens within the population and thus the importance of designing immunizations that inhibit carriage in children. We posit that a successful vaccine against *S. aureus* may benefit from the inclusion of antigens directed at reducing the acquisition of nasal carriage, such as *SP_1119* and P5CDH. Future studies will be needed to address whether these antigens can protect against *S. aureus* in humans.

Materials and Methods

Bacterial Strains and Mutants. *S. pneumoniae* was grown in tryptic soy (TS) broth at 37 °C in a nonshaking water bath. TIG4 (a serotype 4 clinical isolate and genome-sequenced strain) and P1121 (a serotype 23F clinical isolate) were used because they colonize the murine nasopharynx efficiently (28). A TIG4 mutant lacking sp_1119 was constructed using overlap extension PCR (see SI Materials and Methods for details). *S. aureus* was grown in TS or brain-heart infusion broth at 37 °C with shaking (strains and sources are identified in SI Materials and Methods). An unmarked, in-frame deletion mutant of rocA, which encodes P5CDH, was constructed in strain 502A using
pKOR1-rocA and was complemented using pCL55 (see SI Materials and Methods for details).

Mouse Model of Nasopharyngeal Colonization and Challenge. The murine model of pneumococcal nasopharyngeal colonization has been described previously (28) and is described in full in SI Materials and Methods. Mice received an intranasal dose of 10⁷ cfu of S. pneumoniae at weeks 0 and 2 and were challenged at week 7, at which time no pneumococci remained in the nasopharynx (28). Control animals were subjected to the same protocol but were sham immunized. Intrapulmonary challenge of S. aureus consisted of 10⁷ cfu. Colonization densities from nasal lavages were quantified on BBL CHROMagar Staph aureus (BD Diagnostics) 24 h postchallenge.

Identification of Candidate Antigens. The targets of cross-reactive pneumococcal antibody were identified by Western blot analysis and mass spectrometry. See SI Materials and Methods for further details.

Measurement of Serum Antibody Binding. Binding of total serum IgG to whole bacteria was detected by flow cytometry using a FITC-conjugated anti-mouse IgG secondary antibody. Antigen-specific serum IgG titers were quantified by ELISA. Both methods are detailed in SI Materials and Methods.

Recombinant Antigen Purification and Generation of Specific Antisera. The coding sequences for each of the four candidate antigens were amplified from the appropriate chromosomal DNA using primers listed in SI Materials and Methods.

cquisition and high nasopharyngeal co-colonisation by Streptococcus pneumoniae and three respiratory pathogens amongst Gambian new-borns and infants. BMC Infect Dis 11:175–183.
spiratory tract bacterial carriage in Aboriginal and non-Aboriginal children in a semi-
13. Park B, Nizet V, Liu GY (2008) Role of Streptococcus aureus catalase in niche com-
15. Johnson HS, et al. (2009) The role of nasal carriage of S. aureus in S. aureus nasal coloni-

Statistical Analysis. Colonization density was expressed as the log10 cfu/mL and analyzed for statistical significance using the Mann–Whitney U test. Paired t tests were used to compare pre–vs. posttreatment groups, and linear regressions were used to assess correlations. All other comparisons were made using the unpaired t test, as appropriate. A P value of less than 0.05 was considered significant. Statistical analyses were performed using Prism 4 (GraphPad).

ACKNOWLEDGMENTS. This work was supported by a Commonwealth Uni-
versal Research Enhancement Grant from the Pennsylvania Department of Health and by US Public Health Service Grant AI-055400.
Supporting Information

Lijek et al. 10.1073/pnas.1208075109

SI Materials and Methods

Bacterial Strains and Mutants. A Streptococcus pneumoniae TIGR4 mutant lacking sp_1119 was constructed by using overlap extension PCR. Primers koSP19-F3 (5′-GAC AAA AAT GGA GTA ATT ACA TGA-3′) and koSP19-R2 (5′-GTT TTA CAC GAT TAT TTC TTC CCG TTA AAT AG-3′) were used to amplify the erythromycin erm cassette from shuttle vector pMU1328 (1); nucleotides complementary to the sp_1119-flanking regions were added at the beginning and end of the cassette. Primer pairs koSP19-F1 (5′-GAC ATT AGT GCT AGT TTT G-3′)/R1.2 (5′-CAC TGG TTC ATT TTG GTC CTC CCG AAA ATG-3′) and koSP19-F4 (5′-AGG AAA TAA TCG TGT AAA ACC AGG AAA TTC-3′)/R4.2 (5′-CCG AGA CGA GGT CCT TGC CCA-3′) were used to amplify up- and downstream flanking regions of sp_1119 from TIGR4, deleting all of the gene and adding nucleotides complementary to the erm cassette. The three fragments were pieced together using the primers koSP19-F2 (5′-TGG GAT GTT GAA GAA GAT G TG-3′) and koSP19-R3.2 (5′-CCC TTA CGAATA AAG GAA AGA ACA CT-3′). This PCR construct, with the erm cassette replacing the sp_1119 locus, was transformed into TIGR4 with selection for erythromycin resistance (1 μg/mL), creating strain TIGR4sp_1119. An unencapsulated TIGR4sp_1119 mutant was created by transforming TIGR4sp_1119 (2) with genomic DNA from TIGR4 encoding TIGR4sp_1119 selecting for erythromycin and kanamycin (200 μg/mL) resistance. All mutants were back-transformed and confirmed by PCR.

Staphylococcus aureus strains used in this study include 8325–4, 8325–4spa (a mutant lacking protein A), provided by Tim Foster, Trinity College, Dublin, 502A, Newman, MW2, SH1000, USA200, Reynolds, and COL (provided by Barry Kreiswirth, University of Medicine and Dentistry of New Jersey, Newark, NJ). An unmarked, in-frame deletion mutant of rocA, which encodes Pseudomonas aeruginosa desF gene, was constructed in strain 502A using methods previously described by Bae and Schneewind (3) using pKOR1-rocA. The resulting strain, 502ArocA, was complemented with the single copy integration plasmid pCL55 using methods previously described by Lee et al. (4). The coding sequence and presumptive native promoter of rocA were amplified from the 502A chromosomal DNA for cloning into pCL55 using primer pairs 1845rocA-F (TAC TTC CAA TTC CAA ATG GGA TAA TGA CCT ATC CGA AAC) /1846rocA-R (TTA TTC ACT TCC AAT GTA GAT GAG AAA CTC ATG AGC). This construct then was used to create strain 502ArocA::pCL55-rocA′ using the pCL55-specific protocol (4). Deletion and complementation were confirmed by PCR and Western blot.

Mouse Model of Nasopharyngeal Colonization. Six-to-eight-week-old female C57BL/6 and B6.129-S2-Igh-6tm1Cgn (IgM; Jackson Laboratories) mice were housed in accordance with University of Pennsylvania Institutional Animal Care and Use Committee protocols. μMT mice do not produce specific antibody because of a targeted mutation in the heavy-chain locus of IgM (5). The murine model of pneumococcal nasopharyngeal colonization has been described previously (6). Mice were inoculated intranasally (i.n.) without anesthesia with 10 μL of PBS containing 105 cfu of PBS-washed, midlog-phase bacteria. Inocula were plated to confirm the dose. Where indicated, mice received a second inoculation at week 2 following the initial inoculation and were challenged at week 7, at which time no pneumococci remain in the nasopharynx (6). Control animals were subjected to the same protocol but were mock-colonized with 10 μL of PBS.

Intranasal challenge of S. aureus 502A consisted of 106 cfu of PBS-washed, midlog-phase bacteria in 10 μL PBS. Twenty-four hours after inoculation, animals were killed, sera were collected from cardiac punctures, and nasal lavages were obtained as previously described (6) for quantitative culture on BBL CHROMagar Staph aureus (BD Diagnostics). The lower limit of detection for bacteria in lavages was 10 cfu/mL. Where indicated, preimmune sera were collected by tail bleed before bacterial colonization.

Western Blot Analysis. Cell lysates of S. aureus were prepared by incubation with lysozyme (0.1 mg/mL) (Sigma) for 20 min at 37 °C, followed by boiling at 100 °C for 10 min in Laemmli sample buffer. Equal loading was confirmed by measurement of total protein with the Micro BCA protein assay (Pierce Chemical Co.) and staining by Ponceau S (0.2%, Sigma). Proteins were separated by 1D SDS/PAGE on a 10% Tris-glycine gel (Bio-Rad) at 18 V. For 2D SDS/PAGE, isoelectric focusing (pI 4.7–5.9) was carried out first in a Protean IEF cell (Bio-Rad), using 7-mm ReadyStrips, according to the manufacturer’s instructions. Gels from 2D SDS/PAGE were partially transferred (18 V for 18 min, compared with 36 min for 1D SDS/PAGE), and after transfer the remaining gel was stained using Coomassie brilliant blue R-250 (Fisher Scientific) to obtain a stained gel and membrane pair. Membranes were blocked with either 1% BSA (Sigma) or 0.5% goat serum (Sigma) before incubation with primary antibody, either mouse sera (1:500 dilution) or rabbit antiserum (1:30,000 dilution), as indicated. Bound antibody was detected by using anti-mouse or anti-rabbit secondary antibody conjugated to alkaline phosphatase (Sigma) and 5-bromo-4-chloro-3-indolylphosphate-nitroblue tetrazolium (Fisher development).

Mass Spectrometry. Cross-reactive spots identified by Western blot analysis were excised from the corresponding Coomassie-stained gel for mass spectrometry. Following digestion with trypsin, sample peptides were separated using an HPLC C18 column and a linear trap quadrupole ion-trap mass spectrometer (Thermo Scientific). Mascot software was used to search bacterial databases for sequence similarities. Cutoffs were assigned as a protein score of >70 with a unique peptide value of >2.

Measurement of Serum Antibody Binding by Flow Cytometry. Similar to previously described assays (7), 200 μL of midlog-phase bacteria were pelleted and washed in Hanks buffer (Invitrogen) supplemented with 5% (vol/vol) FCS (HFC; HyClone). For S. aureus, a protein A mutant, 8325–4spa, was used to prevent nonspecific antibody binding by protein A. Primary antibodies (diluted 1:20 for sera from S. pneumoniae-colonized mice or 1:200 for rabbit-specific antisera) were added to the reaction mixtures and incubated at 37 °C for 60 min with rotation. After washing in HFCs, the cells were incubated with FITC-conjugated secondary antibody against either mouse or rabbit IgG (Sigma) for 60 min at 4 °C in the dark at a dilution of 1:200. After washing, the cells were fixed in 200 μL of 1% paraformaldehyde for flow cytometric analysis. A total of 50,000 bacterial cells per sample were analyzed on a BD FACS Calibur flow cytometer (BD Biosciences), and groups were compared using FlowJo software (Tree Star). The percentage of FITC-positive cells was calculated by subtracting background from a no-primary antibody control.
Detection of Antigen-Specific Serum IgG by ELISA. Immulon 2HB 96-well plates (Thermo Scientific) were coated in buffer containing 0.015 M Na$_2$CO$_3$ and 0.035 M NaHCO$_3$ overnight at 4 °C with either midlog phase *S. pneumoniae* TIGR4 at OD$_{620\text{nm}}$ = 0.1 or purified protein antigens at 0.5 μg/mL. Plates were blocked with 1% BSA (Sigma-Aldrich) in PBS and washed between steps with PBS containing Brij-35 (0.05%). Serum samples were added in doubling serial dilutions and incubated overnight at 4 °C. Bound antibody was detected by anti-mouse IgG alkaline phosphatase-conjugated secondary antibody and *p*-nitrophenyl phosphatase (Sigma-Aldrich) development. The absorbance was read at 415 nm, and geometric mean titers were calculated based on the sample dilution at which $A_{415\text{nm}} = 0.1$.

Recombinant Antigen Purification and Generation of Specific Antisera. The coding sequences for each of the four candidate antigens were amplified from the chromosomal DNA of *S. aureus* 8325–4 or *S. pneumoniae* TIGR4, as appropriate, using the following primer pairs:

P5CDH-F (5′-TAT ACA TAT GGT AGT AGA ATT TAA AAA TGA ACC TGG-3′) and P5CDH-R (5′-TAT AGG TAC CTT TCA CAT CAA AAA CAA TGG ATT TGA CAT TTG TCA TC-3′)

DLDH-F (5′-TAT ACA TAT GGT AGT AGA ATT TAA AAA TGA ACC TGG-3′) and DLDH-R (5′-TAT AGG TAC CCA TTG TAT GGA TTG GGT ATC CGA TAG C-3′)

SP19-F (5′-TAT ACA TAT GGT CAA ATG AGT AAT TAT GCC AAA AGC-3′) and SP19-R (5′-TAT AGG TAC CTT TCA CAT CAA AAA CAA TGG ATT TGA CAT TTG TCA TC-3′)

SP61-F (5′-TAT ACA TAT GGT AGT AGA ATT TAA AAA TGA ACC TGG-3′) and SP61-R (5′-TAT AGG TAC CTT TCA CAT CAA AAA CAA TGG ATT TGA CAT TTG TCA TC-3′)

Gel-purified PCR fragments were ligated into the pET29b expression vector (Novagen). Recombinant antigens then were expressed in *E. coli* BL21(DE3) and purified under native conditions through Ni$^{2+}$ affinity chromatography as described by the manufacturer (Qiagen). As appropriate, his-tags were removed by a thrombin cleavage capture system (Novagen) and dialysis. Polyclonal rabbit sera to each purified recombinant antigen were prepared commercially (Cocalico Biologicals).

S. aureus strain	Median (CFU/mL)	Approx. Range (log_{10})	Percent colonized
Newman | 205 | 2 | 75%
SH1000 | 10 | 1 | 33%
502A | 2100 | 1 | 100%
COL | 10 | 1 | 40%
USA300 | 650 | 1.5 | 100%
MW2 | 580 | 2 | 100%

Fig. S1. Optimization of the *S. aureus* 502A colonization model in C57BL/6 mice. (A) Colonization density of the *S. aureus* strains indicated at day 1 after intranasal inoculation with 10^8 cfu in 10 μL PBS. Closed circles represent methicillin-sensitive strains. Open circles represent methicillin-resistant strains. Solid horizontal lines indicate medians. The dotted horizontal line indicates the lower limit of detection. (B) Table of column statistics for each *S. aureus* strain shown in (A). (C) Optimization of inoculum dose (indicated in cfu) of *S. aureus* 502A nasal colonization in naive C57BL/6 mice assessed in lavages of the upper respiratory tract 1 d after inoculation. (D) Time course of *S. aureus* 502A nasal colonization after inoculation with 10^8 cfu. In C and D box and whiskers plots are for $n \geq 5$ mice per condition, and the horizontal black dotted line indicates the limit of detection.

Fig. S2. Box and whiskers plot showing increased anti-pneumococcal antibody titers following colonization with TIGR4 and TIGR4sp_{1119}. Detection of IgG titers (GMT) to whole-cell *S. pneumoniae* TIGR4 in mouse sera after colonization with *S. pneumoniae* TIGR4, *S. pneumoniae* TIGR4sp_{1119}, or sham colonization (PBS), as indicated; $n = 10$ mice per group.
Fig. S3. Deletion and complementation of 1-pyrroline-5-carboxylate dehydrogenase (P5CDH) in *S. aureus* 502A. Detection of P5CDH (arrow) by specific anti-P5CDH sera in a Western blot of whole-cell lysates of the indicated *S. aureus* strains. The wild-type (502A) and complemented strains (502A*rocA::pCL55-rocA*) express approximately the same level of P5CDH, but the deletion mutant (502A*rocA*) does not express P5CDH.

Fig. S4. Amino acid alignments of P5CDH with SP_1119 and DLDH with SP_1161. Amino acid alignments of *S. aureus* P5CDH with *S. pneumoniae* SP_1119 (A) and *S. aureus* DLDH with *S. pneumoniae* SP_1161 (B), by ClustalW2 (http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalw2). Amino acid color code from ClustalW2 is as follows: red, small; blue, acidic; magenta, basic; green, hydroxyl or sulfhydryl or amine; gray, unusual. (C and D) Dot matrix amino acid alignments of *S. aureus* P5CDH with *S. pneumoniae* SP_1119 (C) and *S. aureus* DLDH with *S. pneumoniae* SP_1161 (D) compiled using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi).