Mutation of plasma membrane Ca\(^{2+}\) ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca\(^{2+}\) homeostasis

Ginevra Zannii\(^1\), Tito Cali\(^1\), Vera M. Kalscheueri\(^2\), Denis Ottolini\(^2\), Sabina Barresi\(^\ast\), Nicolas Lebrune\(^\ast\), Luisa Montechi-Palazzifi\(^1\), Hao Huc\(^\ast\), Jamel Chelly\(^\ast\), Enrico Bertinib\(^2\), Marisa Brinia\(^2\), and Ernesto Carafolig\(^2\)

\(^1\)Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy; \(^2\)Department of Comparative Biomedicine and Food Science, University of Padova, 35131 Padua, Italy; \(^3\)Max Planck Institute for Molecular Genetics, Department of Human Molecular Genetics, D-14195 Berlin, Germany; \(^4\)Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; \(^5\)Department of Genetic and Development, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, 75014 Paris, France; \(^6\)European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom; and \(^7\)Venetian Institute for Molecular Medicine, 35129 Padua, Italy

Edited by Gottfried Schatz, University of Basel, Reinach, Switzerland, and approved July 24, 2012 (received for review May 3, 2012)

Ca\(^{2+}\) in neurons is vital to processes such as neurotransmission, neurotoxicity, synaptic development, and gene expression. Disruption of Ca\(^{2+}\) homeostasis occurs in brain aging and in neurodegenerative disorders. Membrane transporters, among them the calmodulin (CaM)-activated plasma membrane Ca\(^{2+}\) ATPases (PMCA) that extrude Ca\(^{2+}\) from the cell, play a key role in neuronal Ca\(^{2+}\) homeostasis. Using X-exome sequencing we have identified a missense mutation (G1107D) in the CaM-binding domain of isoform 3 of the (CaM)-activated plasma membrane Ca\(^{2+}\) ATPases (PMCA) that extrudes Ca\(^{2+}\) from the cell, play a key role in neuronal Ca\(^{2+}\) homeostasis. It significantly slowed the return to baseline of the Ca\(^{2+}\) transient induced by an inositol-trisphosphate (InsP3)-linked plasma membrane agonist. It also compromised the ability of the pump to oppose the influx of Ca\(^{2+}\) through the plasma membrane capacitative channels.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207488109/-/DCSupplemental.

CA2+ in neurons is vital to processes such as neurotransmission, neurotoxicity, synaptic development, and gene expression. Disruption of Ca\(^{2+}\) homeostasis occurs in brain aging and in neurodegenerative disorders. Membrane transporters, among them the calmodulin (CaM)-activated plasma membrane Ca\(^{2+}\) ATPases (PMCA) that extrude Ca\(^{2+}\) from the cell, play a key role in neuronal Ca\(^{2+}\) homeostasis. It significantly slowed the return to baseline of the Ca\(^{2+}\) transient induced by an inositol-trisphosphate (InsP3)-linked plasma membrane agonist. It also compromised the ability of the pump to oppose the influx of Ca\(^{2+}\) through the plasma membrane capacitative channels.

To study the effects of the mutation on Ca\(^{2+}\) extrusion by the pump, model cells (HeLa) were cotransfected with expression plasmids encoding its mutant or wild-type (wt) variants and with the Ca\(^{2+}\)-sensing probe aequorin. The mutation reduced the ability of the PMCA3 pump to control the cellular homeostasis of Ca\(^{2+}\). It significantly slowed the return to baseline of the Ca\(^{2+}\) transient induced by an inositol-trisphosphate (InsP3)-linked plasma membrane agonist. It also compromised the ability of the pump to oppose the influx of Ca\(^{2+}\) through the plasma membrane capacitative channels.

calcium dysregulation | plasma membrane calcium pumps | isoforms | X-linked ataxia | cerebellar atrophy

The tight regulation of cell Ca\(^{2+}\) is crucial for neuronal development, function, and survival. The free Ca\(^{2+}\) level of neurons at rest is four orders of magnitude lower than in the extracellular space. Ca\(^{2+}\) coming from outside or from cellular stores regulates neuronal processes like excitability, neurotransmitter release, synaptic efficacy, and gene expression. The plasma membrane Ca\(^{2+}\)-ATPases (PMCA) cooperate with the Na\(^{+}\)-Ca\(^{2+}\)

exchangers of the plasma membrane (NCX), the endoplasmic reticulum (ER) Ca\(^{2+}\)-ATPases (SERCA pumps), and the mitochondrial Ca\(^{2+}\) uptake system in counteracting the transient Ca\(^{2+}\) increases produced by neuronal stimulation by the influx of Ca\(^{2+}\) through voltage- and ligand-gated plasma membrane channels, the ER inositol-trisphosphate receptor (InsP3R), and the ryanodine receptor (RyR) channels, and through the mitochondrial Ca\(^{2+}\) release system(s) (1). PMCA isoforms in mammals are the products of 4 separate genes, and the number of variants is increased to over 30 by alternative splicing of mRNAs, which affects the first cytosolic loop of the pump (site C) and its C-terminal tail (site C). The splicing variants are cell-specific and undergo regulation during cell development and differentiation. PMCA isoforms consist of 10 transmembrane domains, 2 large intracellular loops, and N- and C-terminal cytoplasmic tails. The C-terminal tail contains the regulatory calmodulin (CaM)-binding domain, which interacts with two sites in the two cytosolic loops of the pump autoinhibiting the pump at rest: CaM displaces the domain from the two sites restoring full pump activity (2, 3). PMCA1 and PMCA4 are expressed in most tissues, and PMCA2 and PMCA3 are expressed predominantly (but not exclusively) in the brain: most neurons express the four basic PMCA isoforms and multiple splice variants. In the molecular cell layer of the cerebellum, PMCA2 and PMCA3 concentrate in synaptic regions [parallel excitatory fiber (PF–Purkinje neuron (PN) synapse)] with a complementary distribution: high levels of PMCA3 are associated with the axon terminals of granule cells (PF terminals/presynaptic side), whereas PMCA2 is most abundant in PN dendrites (PN-postsynaptic side). During development, the up-regulation of PMCA2 and -3 in dendrites and dendritic spines coincides with their maturation, reflecting the importance of the proper spatial organization of Ca\(^{2+}\)-extrusion systems for synaptic formation (4, 5). Studies on PMCA3 are much scarcer than those on the other three basic isoforms. Its gene, for instance, has never been knocked out, suggesting that the isoform might be essential to the early development of the embryo. Six alternatively mRNAs have been described for PMCA3 at splice site C, but only the a variant, which is C-terminally truncated as a result of the loss of the ORF caused by the insert, and the b unspliced variant were found in significant levels in rat brain (6). Genetic defects of neuronal Ca\(^{2+}\) homeostasis have been associated with diverse disease phenotype. For instance, defective Ca\(^{2+}\) influx in PNs has been linked to the overt ataxia of tottering mouse (7, 8). To date, genetic defects of PMCA3 have been demonstrated only for PMCA2 [refs. 9, 10; for a review, see ref. 1]: they generate deafness, which, however, is not the only disease phenotype caused by a PMCA2 pump defect. The Wriggle Sagami ataxic mouse, in which the development of the PN dendritic tree is impaired, and synaptic connections of PF on PN dendrites are decreased with malformed synaptic boutons, also had a defective PMCA2 gene (11). Deafness in the pmca2 KO mice has also been associated with an ataxic phenotype in which PNs show shrunken dendrites and reduced firing frequency attributable to a K\(^+\) current driven by extrasynaptic Ca\(^{2+}\), which prevents the regeneration of the action potential. Basal Ca\(^{2+}\) levels in these neurons are high, and the Ca\(^{2+}\) recovery kinetics slow: reduced Ca\(^{2+}\) clearance attributable to a PMCA pump defect perturbs Ca\(^{2+}\) dynamics in PN dendrites and disrupts the accuracy of cerebellar processing and motor coordination (12). Next-generation sequencing (NGS) has revealed a missense mutation of the X-linked PMCA3 pump gene ATP2B3 (GenBank accession no. NM_001001344) in a family with congenital cerebellar atrophy and normal cognitive development (13). The...
mutation affects a conserved residue in the CaM-binding domain. We have analyzed the consequences of the mutation on the function of the pump by overexpressing constructs encoding its mutated full-length (b) and C-terminally truncated variants (a) in model cells. The results have shown that the mutated pump has a reduced ability to extrude Ca\(^{2+}\) from the cell.

Results

Identification of the ATP2B3/PMCA3 Mutation by X-Exome Sequencing. To identify the disease-causing mutation in the family with X-linked cerebellar ataxia (Fig. L4) (13), we have performed massive parallel sequencing of the X-chromosome-specific exons using DNA of the index patient (III:1). After sequence analysis using in-house-developed tools and filtering against public databases (dbSNP, 185 genes from the 1000 Genome Project), 200 Danish control individuals (14) and our database, 4 nonsynonymous variants remained: chrX:85169199A > G; chrX:111909355C > T; chrX:135781252A > G, and chrX:152483733G > A [base pair positions according to the National Center for Biotechnology Information (NCBI) 36/hg18 assembly of the human genome]. Subsequent Sanger sequencing in all family members indicated that only one of the changes, chrX:152483733G > A, cosegregated with the disease. Fig. 1B shows the sequencing results for a control, the index patient (III:1) and his mother (II:2). The mutation, c.3321G > A, is located in exon 20 of the ATP2B3/PMCA3 gene (GenBank accession no. NM_001001344) and replaces a conserved Gly by Asp (p.G1107D) in the CaM-binding domain.

Comparative Analysis of Ca\(^{2+}\) Transport of the Overexpressed Full-Length and Truncated Wild-Type and Mutant Pump. Ca\(^{2+}\) transport by the PMCA3 pump was first monitored in control and patient-derived fibroblasts transfected with the plasmid encoding the Ca\(^{2+}\)-sensing probe aquorin targeted to the cytoplasm [cytAEQ (15)]. Even if fibroblasts express very small amounts of the full-length pump, and nearly undetectable levels of its C-terminally truncated version, experiments were still performed to observe possible effects of the PMCA3 mutation on Ca\(^{2+}\) homeostasis. As expected, the analysis failed to reveal differences (Fig. S1; see SI Materials and Methods for details). Thus, to explore the effect of the G1107D replacement on Ca\(^{2+}\) export by the PMCA3 pump, we generated the mutation in the human full-length (b) and in the splice (a) truncated variants of PMCA3 by site-directed mutagenesis (the splicing insert replaces the C-terminal 10 residues of the CaM-binding domain) (Fig. 2A). The occurrence of the G1107D mutation was verified by sequencing. The expression vectors were transfected in HeLa cells, and the cellular localization of the overexpressed pumps was assessed by immunocytochemistry. Fig. 2B shows that all pump variants were correctly targeted to the plasma membrane: the mutation, at least in model cells (most likely in the cerebellar neurons as well), did not affect their membrane sorting. Western blot analysis showed bands at the expected molecular mass of 135 kDa for the b and of 129 kDa for the a variant (Fig. 2C). The 250-kDa PMCA3 pump dimer was also visible (a total cell lysate from mock-transfected cells was loaded for comparison). A PMCA3 isoform-specific antibody that recognizes all isoforms revealed similar expression levels for the wild-type (wt) and the G1107D variants. HeLa cells were then cotransfected with expression plasmids for the pumps and for the cytosolic Ca\(^{2+}\)-sensing photoprotein aquorin (cytAEQ) and were stimulated with the InsP\(_3\)-linked agonist histamine, to induce Ca\(^{2+}\) release from the ER and to study the Ca\(^{2+}\) influx from the extracellular ambient. In agreement with previous findings (16), Fig. 3 A and B shows that cells overexpressing the PMCA3 pump had enhanced ability to clear the stimulation-induced Ca\(^{2+}\) transient: its height, both in the truncated (Fig. 3C) or full-length (Fig. 3D) variant, was lower than in control cells transfected only with cytAEQ. The micromolar cytosolic Ca\(^{2+}\) peaks values were: 3.57 ± 0.06 (n = 14) for cytAEQ; 2.64 ± 0.1 (n = 12) for wt PMCA3b; and 2.69 ± 0.05 (n = 12) for wt PMCA3a. No differences in the peak height were found in the cells overexpressing the mutant pump with respect to those overexpressing the wt PMCA3 (2.77 ± 0.05 (n = 12) for the PMCA3a; 2.80 ± 0.06 (n = 12) for the corresponding PMCA3b PMCA3d); i.e., the G1107D mutation failed to affect the ability of PMCA3 to control the amplitude of the transients. The kinetics of the posttransient declining phase, which is an important property of the longer-term Ca\(^{2+}\) extrusion ability of the overexpressed PMCA pump, would, in principle, also be shaped by the activity of the SERCA pump, but separate experiments and previous work with SERCA pump inhibitors had shown that under the PMCA pump overexpression conditions used, the SERCA pump contribution was essentially irrelevant. At variance with what observed on the peak amplitude, the kinetics of the declining of the Ca\(^{2+}\) curves showed a delay for the mutant pump (Fig. 3A and B, light and dark gray traces): these differences were quantified by calculating the mean slope of the tangent at the time of the half-decay peak (Fig. 3 E and F). The Ca\(^{2+}\) extrusion by the mutated pump was evidently decreased more prominently in the truncated form (Fig. 3E). The insets show mean values of the half-peak decay in seconds ± SEM: 14.17 ± 0.72 (n = 18) for cytAEQ; 11.79 ± 0.34 (n = 19) for the wt PMCA3a, 16.55 ± 0.48 (n = 20) for the G1107D PMCA3a (P < 0.001) and 13.89 ± 0.34 (n = 19) for the wt PMCA3b and 15.85 ± 0.48 (n = 20) for the G1107D PMCA3b (P < 0.01). Thus, the G1107D mutation induced a more prolonged retention of Ca\(^{2+}\) within the cytoplasm.

Effect of the G1107D Mutation on the Response of PMCA3 to Ca\(^{2+}\) Entering Through the Capacitative Channels. The Ca\(^{2+}\) transients generated by the histamine stimulation under physiological concentrations of extracellular Ca\(^{2+}\) (1 mM CaCl\(_2\)) were the combined result of the Ca\(^{2+}\) released from the cellular stores (ER and Golgi) and of the Ca\(^{2+}\) influx from the external medium through the store-operated Ca\(^{2+}\) channels activated by their emptying (SOCE). To separately visualize the two components and to assess the effects of the overexpressed pumps on them, Ca\(^{2+}\) was first monitored in cells exposed to histamine in the absence of Ca\(^{2+}\) (i.e., in a medium containing 100 μM EGTA); the Ca\(^{2+}\) transient under these conditions was only shaped by the release of Ca\(^{2+}\) from the stores (first peak). The subsequent addition of 2 mM CaCl\(_2\) induced a second transient, which represented the influx of the cation from the extracellular medium (second peak). A typical experiment with this protocol is reported in Fig. 4, in which the effect of the overexpression of the G1107D mutation in the a (Fig. 4A and B) and in the b (Fig. 4C and D) variants of the pump on the transients was analyzed. In agreement with the results in Fig. 3, the truncated and the full-length wt and G1107D pumps reduced the height of the first peak transient in a similar way (first peak values in μM ± SEM were: 2.11 ± 0.09 (n = 9) for cytAEQ; 1.53 ± 0.15 (n = 9) for the wt PMCA3a; 1.71 ± 0.11 (n = 9) for G1107D PMCA3a; 1.52 ± 0.1 (n = 10) for wt PMCA3b; 1.49 ± 0.08 (n = 9) for the G1107D PMCA3b). Possibly, this was attributable to the
reduced ER Ca\(^{2+}\) content upon PMCA3 pump overexpression, an effect previously documented for the PMCA4 (17) and PMCA2 (18) isoforms and as confirmed in Fig. S2. Interestingly, however, the height of the peak generated by \(\text{Ca}^{2+}\) influx through the SOCE channels (second peak) was clearly reduced in the cells overexpressing the \(a\) (Fig. 4B) and the \(b\) (Fig. 4D) wt pump with respect to control cells but not in those overexpressing the mutant variants [in Fig. 4B, second peak values in \(\mu\text{M} \pm \text{SEM}\) were: 2.00 \(\pm\) 0.29 \((n = 8)\) for wt PMCA3a; 1.48 \(\pm\) 0.09 \((n = 8)\) for the wt PMCA3a1, 1.98 \(\pm\) 0.11 \((n = 8)\) for the G1107D PMCA3a \((P < 0.01)\); and in Fig. 4D, the second peak values in \(\mu\text{M} \pm \text{SEM}\) were: 1.65 \(\pm\) 0.07 \((n = 7)\) for the wt PMCA3b, 2.00 \(\pm\) 0.17 \((n = 6)\) for the G1107D PMCA3b \((P = 0.055)\)]. The \(\text{Ca}^{2+}\) measurements confirmed that the \(a\) variant was more severely affected by the mutation than the \(b\) variant. The rate of the declining phase from the second (SOCE) transient was calculated at the mean half-decay time from the peak. No differences were detected between the mutant and wt forms [time for half-peak: 43.89 \(\pm\) 4.6 s \((n = 9)\) for wt PMCA3a; 41.88 \(\pm\) 3.84 \((n = 8)\) for G1107D PMCA3a; 32.57 \(\pm\) 3.19 \((n = 7)\) for wt PMCA3b; and 39.14 \(\pm\) 2.58 \((n = 7)\) for the G1107D PMCA3b]. However, the calculation of the average \(\text{Ca}^{2+}\) values after 55 s (at the end of the trace) revealed higher values for the mutant variants [basal values in \(\mu\text{M} \pm \text{SEM}\) were: 0.92 \(\pm\) 0.05 \((n = 8)\) for cytAEQ, 0.71 \(\pm\) 0.05 \((n = 7)\) for the wt PMCA3a; 0.95 \(\pm\) 0.06 \((n = 8)\) for G1107D PMCA3a; and 0.84 \(\pm\) 0.04 \((n = 7)\) for the G1107D PMCA3b and wt PMCA3b and 0.84 \(\pm\) 0.04 \((n = 7)\) for the G1107D PMCA3b \((P < 0.005)\)].

Bioinformatics Analysis and Protein Modeling

An impairing effect of the G1107D mutation on the interplay between CaM and its binding domain was predicted by all algorithms used [PolyPhen2, HumMut, and sort intolerant from tolerant (SIFT)]. Alignment of orthologous protein sequences by ClustalW2 revealed that the G1107 residue is fully conserved across species, from worms to humans (Fig. S4). Molecular modeling of the CaM-binding domain of the wt (Fig. 5B) and mutated PMCA3 (Fig. 5C) shows that in all of the possible rotamers explored, the mutation determined atomic clashes, e.g., in the interaction of the D of mutated PMCA3 with L112 and E114 residues previously documented for the PMCA4 (17) and PMCA2 (18) isoforms and as confirmed in Fig. S2. Interestingly, however, the height of the peak generated by \(\text{Ca}^{2+}\) influx through the SOCE channels (second peak) was clearly reduced in the cells overexpressing the \(a\) (Fig. 4B) and the \(b\) (Fig. 4D) wt pump with respect to control cells but not in those overexpressing the mutant variants [in Fig. 4B, second peak values in \(\mu\text{M} \pm \text{SEM}\) were: 2.00 \(\pm\) 0.29 \((n = 8)\) for wt PMCA3a; 1.48 \(\pm\) 0.09 \((n = 8)\) for the wt PMCA3a1, 1.98 \(\pm\) 0.11 \((n = 8)\) for the G1107D PMCA3a \((P < 0.01)\); and in Fig. 4D, the second peak values in \(\mu\text{M} \pm \text{SEM}\) were: 1.65 \(\pm\) 0.07 \((n = 7)\) for the wt PMCA3b, 2.00 \(\pm\) 0.17 \((n = 6)\) for the G1107D PMCA3b \((P = 0.055)\)]. The \(\text{Ca}^{2+}\) measurements confirmed that the \(a\) variant was more severely affected by the mutation than the \(b\) variant. The rate of the declining phase from the second (SOCE) transient was calculated at the mean half-decay time from the peak. No differences were detected between the mutant and wt forms [time for half-peak: 43.89 \(\pm\) 4.6 s \((n = 9)\) for wt PMCA3a; 41.88 \(\pm\) 3.84 \((n = 8)\) for G1107D PMCA3a; 32.57 \(\pm\) 3.19 \((n = 7)\) for wt PMCA3b; and 39.14 \(\pm\) 2.58 \((n = 7)\) for the G1107D PMCA3b]. However, the calculation of the average \(\text{Ca}^{2+}\) values after 55 s (at the end of the trace) revealed higher values for the mutant variants [basal values in \(\mu\text{M} \pm \text{SEM}\) were: 0.92 \(\pm\) 0.05 \((n = 8)\) for cytAEQ, 0.71 \(\pm\) 0.05 \((n = 7)\) for the wt PMCA3a; 0.95 \(\pm\) 0.06 \((n = 8)\) for G1107D PMCA3a; and 0.84 \(\pm\) 0.04 \((n = 7)\) for the G1107D PMCA3b and wt PMCA3b and 0.84 \(\pm\) 0.04 \((n = 7)\) for the G1107D PMCA3b \((P < 0.005)\)].

Discussion

Congenital ataxias (CAs) account for about 10% of non-progressive infantile encephalopathies (19, 20). They are characterized by severe neonatal hypotonia and motor delay, followed by cerebellar ataxia in the first years of life. They are generally classified into pure cerebellar and syndromic forms (21), and their inheritance can be autosomal recessive (22), autosomal dominant (23, 24), or X-linked recessive (25, 26). Except for Joubert and related syndromes, which are caused by dysfunction in ciliary and centrosomal proteins (reviewed in ref. 27), the physiopathological mechanisms responsible for CAs are elusive. The genetic defect in PMCA3 described here extends the disease phenotypes caused by PMCA defects to the area of X-linked cerebellar congenital ataxias. Both the unspliced variant \(a\) and the C-terminally truncated \(c\) variant of PMCA3 are abundant in human cerebellum (and brain), where they are widely expressed in the main (PF-PN) cerebellar synapse and where they play a critical role in PN and granular neurons Ca\(^{2+}\) homeostasis (28). As mentioned above, reduced Ca\(^{2+}\) influx has been reported in the PNs of an ataxic mouse (7, 8) and has been claimed to exacerbate the severity of other ataxic models (29). An ataxic phenotype (see above) has also been induced by the ablation of the PMCA2 gene in mice (12). However, no gene defects of Ca\(^{2+}\) ATPases (or of other Ca\(^{2+}\) transporters) had been reported to date in human ataxias. The results described here have documented decreased Ca\(^{2+}\) extrusion by the mutated PMCA3 pump expressed in model cell, particularly

![Fig. 2. Alternative splicing mechanism of PMCA3 at site C and analysis of the expression of exogenous PMCA3 variants in HeLa cells. (A) The numbers 1 and 2 indicate the splicing positions. The insertion of an exon generates a premature stop codon, leading to the formation of truncated isoform a. In 2, the pale blue exon is removed originating the full-length b isoform. The sequences of the two alternative C-terminal CaM binding domains generated by the splicing are shown in the right inbox of A. (B and C) Immunocytochemistry (B) and Western blot (C) analysis of PMCA3 distribution and expression level in HeLa cells expressing wt and mutant PMCA3 constructs. The PMCA3 was revealed by the 5F10 and the anti-PMCA3-specific antibody.]
in its truncated version. The mutant pumps had the same ability of the wt pump to dispose of a suddenly incoming large Ca\(^{2+}\) pulse generated by the opening of the InsP\(_3\) channels, but the defect became evident when the concentration of Ca\(^{2+}\) in the environment declined: at this point, the mutant pumps became clearly inadequate. A pattern of defect was also detected in the control of Ca\(^{2+}\) entering the cell from the external medium via the SOCE channels. In this case, a difference between the wt and the mutated PMCA pump was detected in the peak height of the Ca\(^{2+}\) transient and not in the decay phase from it. The difference in the peak height could have been attributable to the fact that the rate of Ca\(^{2+}\) entering through the SOCE channels was slower than that of the release of Ca\(^{2+}\) from the ER, making differences in the mutants visible. Alternatively, the handling of the Ca\(^{2+}\) that had entered through the plasma membrane could have been preferentially affected by PMCA pump close to the entry point, making differences better visible. The finding that no difference was detected in the decay phase of the second Ca\(^{2+}\) transient could be explained by the fact that pump-unrelated Ca\(^{2+}\) dissipation (e.g., by buffering and diffusion) would depend on the height of the peak transients; therefore, possible differences could have been masked by the increased rate of dissipation (in the first phase of the decay) in cell expressing the mutant pump. A difference was instead appreciated in the resting Ca\(^{2+}\) values at the end of transients.

Fig. 3. Cytosolic Ca\(^{2+}\) measurements in HeLa cells overexpressing the wt and the mutant PMCA3 isoforms. Cells were cotransfected with cytAEQ and the expression plasmid for the a (A) or the b (B) wt, as well as mutated, PMCA3 variants. Cytosolic Ca\(^{2+}\) transients (A and B) were recorded following histamine stimulation, and the average peak values (C and D), as well as the mean slope of Ca\(^{2+}\) transients, were calculated at the half time of the peak decay (E and F). Insets in E and F show histograms representing the half time of the peak decay of Ca\(^{2+}\) transients. Bars in C and D represent mean [Ca\(^{2+}\)] values upon stimulation (μM ± SEM). Bars in the Insets represent mean time for half-peak (seconds ± SEM). The traces and the histograms were obtained by averaging 15 independent experiments for each condition. ***P < 0.001; **P < 0.01; *P ≤ 0.05.

Fig. 4. Effect of the truncated (A and B) and full-length (C and D) wt and mutant pump on the ER Ca\(^{2+}\) mobilization and on the Ca\(^{2+}\) influx from the extracellular ambient. HeLa cells were cotransfected with cytAEQ and the PMCA3 constructs or transfected with cytAEQ only, perfused in KRB/EGTA buffer, and stimulated with histamine to release Ca\(^{2+}\) from the intracellular stores (first peak). Then, the perfusion medium was switched to KRB/Ca\(^{2+}\) (in the continuous presence of histamine) to stimulate Ca\(^{2+}\) entry from the extracellular ambient (second peak). The Ca\(^{2+}\) transients in A are those for the PMCA3a isoform, and the Ca\(^{2+}\) transients in C are those for the b variant. They are representative of at least six independent experiments. B and D show the averaged peak [Ca\(^{2+}\)] values obtained upon stimulation. Bars represent means ± SEM obtained by averaging the values obtained in six independent experiments for each condition. **P < 0.01; *P ≤ 0.05. Ns., not significant.
The decreased ability of the mutated pump to extrude Ca\(^{2+}\) could be conveniently ascribed to the impaired interplay of its binding domain with CaM. The suggestion is supported by the bioinformatic modeling of Fig. 5, which shows that the interaction between CaM and the mutated binding domain, is predicted to be looser because of the presence of the mutated Asp. The mutation would presumably reduce the ability of CaM to interact with its binding domain; i.e., the defect would tend to depress the basal activity of the pump. However, mutations of residues in the immediate vicinity of G1107 [i.e., W1093 to A (30)] or of D1080 to various residues (31) have, instead, been found to increase the basal activity of other pump isoforms. In these cases, the effect could have been attributable to a decreased autoinhibitory interaction of the CaM-binding domain with the main body of the pump. In principle, such an effect could have also been expected by the G1107D mutation; i.e., the situation generated by the mutation on the Ca\(^{2+}\) pumping function of PMCA3 is likely to be more complex. It could also be mentioned that, aside from their function in controlling basal Ca\(^{2+}\) levels, PMCAs are emerging as signaling molecules (32) and could be directly involved in local Ca\(^{2+}\)-signaling through their interaction with Caveolin-1 (33) and in the regulation of the cytoskeleton through their interaction with 14-3-3 proteins (34, 35) or other interacting proteins (for a review, see ref. 1). More than a dozen X-linked gene defects generate a cerebellar phenotype (36), with those associated with mutations in the synaptic proteins oligophrenin-1 (OPHN1) (37, 38) and calcium/calmodulin-dependent serine protein kinase (CASK) (39, 40) being well-characterized. The CASK syndrome is caused by the disruption of the gene for the Ca\(^{2+}\)-CaM-dependent protein kinase, and it may be significant that CASK interacts through its PDZ domain with the PSD95 [Post synaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and Zonula occludens-1 protein (zo-1)]-binding domain with the C-terminal of the PMCA pump (41). PMCA isoforms are part of a postsynaptic complex formed by metabotropic glutamate receptors (mGluR1, H1), Homer (which interacts with PSD95 and InsP\(_3\) type 1 receptors (InsP\(_3\)R1) (42–44). The levels of mGluR1 and InsP\(_3\)R1 are reduced in PNs in several mouse models of ataxia, and it is interesting that late-onset human degenerative ataxias with a pure cerebellar phenotype have been related to the disruption of Ca\(^{2+}\)- and InsP\(_3\)-dependent signaling pathways (45). The importance of maintaining the homeostasis of Ca\(^{2+}\) within neurons with exquisitely controlled precisely why a relatively mild defect in the extrusion ability of the PMCA3 pump could generate a severe neuronal (cerebellar) phenotype. The possible inability of the mutant pump to engage in functional multiprotein complexes handling synaptic Ca\(^{2+}\) nanodomains could be an additional factor in the cerebellar disease phenotype.

Materials and Methods

X-Exome Sequencing. Genomic DNA (3 μg) from the index patient (III:1 in Fig. 1) was used for constructing a single-end illumina sequencing library using the Illumina Genomic DNA Single End Sample Prep kit, according to the instructions of the manufacturer. X-chromosome exome enrichment was performed for the sequencing library using the Agilent SureSelect Human X Chromosome Kit, which contains 47,657 RNA baits for 7,591 exons of the human X chromosome. Single-end deep sequencing was performed on the Illumina Genome Analyzer GAIIx. Read-length was 76 nt. Sequences were analyzed with in-house-developed tools.

Nucleotide changes identified by NGS and segregation analysis in the family were confirmed by conventional sequencing using gene-specific primers.

Site-Directed Mutagenesis of Full-Length and Truncated Variants of hPMCA3 G1107D Mutant. Both PMCA3b (full-length) and PMCA3a (truncated) cDNAs of human origin were used as targets, and site-directed mutagenesis was performed according to the standard protocol of the manufacturer (Stratagene). The following primers were used: G1107D, 5′-ATCCTCGGTTCGGGACTCTGACAGGAAGC-3′ (forward); G1107D, 5′-GGCTGTCATATCCTGGTGTCGGGACTCTGACAGGAAGC-3′ (reverse). All of the constructs were verified by sequencing.

Immunolocalization of the Overexpressed Pumps. HEK293 cells were grown in DMEM high-glucose medium supplemented with 10% (vol/vol) FCS onto 13-mm glass coverslips. Transfection with 4 μg of total plasmid DNA was carried out with a Ca\(^{2+}\)-phosphate procedure. Thirty-six hours after transfection, the cells were washed twice with PBS [140 mM NaCl, 2 mM KCl, 1.5 mM KH\(_2\)PO\(_4\), 8 mM Na\(_2\)HPO\(_4\) (pH 7.4)], fixed for 20 min in 3.7% formaldehyde and washed three times with PBS. The cells were then permeabilized in 0.1% Triton X-100 in PBS, followed by a 1-h wash with 1% gelatin (type IV, from bovine skin) in PBS and incubated for 1 h at 37 °C in a humidified chamber with the SFI0 monoclonal Antibody (affinity BioReagents) at a 1:100 dilution in PBS. Staining was carried out with Alexa Fluor 488-labeled anti-mouse secondary antibody (Molecular Probes) at a 1:50 dilution in PBS. After each incubation, cells were washed four times with PBS.
Fluorescence was analyzed with an Axiovert microscope (Zeiss) equipped with an AxioCam HRm camera (Zeiss). Images were acquired with AxioVision version 3.2 software (Zeiss).

Western Blotting Analysis. Forty-eight hours after transfection, HeLa cells were washed on ice with CaCl2/Mg2+-free phosphate buffer (Euroclone), followed by lysis in 50 mM Hepes, 150 mM NaCl, 1% Nonidet P-40, 1% sodium deoxycholate (pH 7.4) containing a protease inhibitor mixture (Sigma) for 10 min on ice. Postnuclear supernatants were collected after spinning for 10 min at 0.8 × g. Samples for electrophoresis were prepared in Sample Buffer supplemented with DTT (final concentration 100 mM) and urea (125 mg/mL) and incubated for 10 min at 37 °C. The total protein content was determined by the Bradford assay (Bio-Rad). Samples were loaded on a 8% SDS/PAGE Tris-HCl gel, transferred onto PVDF membranes (Bio-Rad), blocked for 1 h at room temperature using 5% nonfat dried milk (NFDM) in TBST [20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.05% Tween-20] and incubated overnight with the specific primary antibody at 4 °C. Primary antibody anti-PMCA3 (1:1,000; Thermo Scientific), monoclonal anti-PMCA clone 5F10 (1:1,000; Thermo Scientific), and monoclonal anti-β-actin (1:30,000; Sigma) were used.

Aequorin Ca2+ Measurements. Transfected cytAEQ was reconstituted by incubating HEK cells for 1–3 h with 5 μM coelenterazine in DMEM supplemented with 1% FBS at 37 °C and 5% CO2. Additions to the Krebs–Ringer buffer were made as pre-specified in the figure legends. Measurements and calibration of aequorin signal were performed as previously described (15). Data are reported as means ± SEM. Statistical differences were evaluated by Student’s two-tailed t test for unpaired samples. A P value of <0.05 was considered statistically significant.

Bioinformatic Analysis. To predict whether the missense variant was deleterious, we used the combined results of three different computer algorithms: SIFT (available at http://sift.jcvi.org), the polymorphism phenotyping program PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2), and PMut (available at http://mmb2.ucsf.edu/pmut). For evolutionary conservation, the protein sequences were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/protein), and the alignments were calculated using ClustalW (http://www.ebi.ac.uk/clustalw2).

Protein Modeling. The structural model of the mutant and wt CaM-binding domain of human PMCA3 (NCBI accession no. NP_001001344.1) was derived by homology modeling using University of California at San Francisco (UCSF) Chimera modeling system (46). The NMR solution structure of the human PMCA4 bound to CaM [Protein Data Bank (PDB) code 2XNK], which shares 100% sequence identity to the CaM-binding domain of human PMCA3, was used as a template. The quality and stereochemistry of the model was assessed using ProSA-ii (https://prosa.services.cbi.cam.ac.uk).

ACKNOWLEDGMENTS. We thank Dr. Rosalba Carrozzo and Prof. Charles Schwartz for help and advice, Melanie Bienek and Corinna Jensen for NGS, and Filip Surjan for help with NGS data analysis. This work was supported by grants from the Italian Telethon Foundation [Projects 492/B (to G.Z.) and GGP08145 (to E.B.)]; the Italian Ministry of University and Research (PRIN 2008) and the University of Padova (Progetto di Ateneo 2008 CPDA082825 [to M.B.]); and Fondazione Cariparo (Progetti di Eccellenza 2008-2009 and ERA-Nest) (Neuron grant nr.264338 to E.B.).

Supporting Information

Zanni et al. 10.1073/pnas.1207488109

SI Materials and Methods

Fibroblast Preparation. Primary fibroblast cultures were established from skin biopsy of individual II:1 (affected maternal uncle) and control. Skin biopsies were performed following written, informed consent, according to the rules of the Ethics Committee of the Ospedale Pediatrico Bambino Gesù (OPBG). Fibroblasts were cultured in DMEM/high glucose (EuroClone) at 37 °C. At confluence, cells were detached from the flasks with trypsin/EDTA (Sigma-Aldrich) and subcultured at the same density.

RT-PCR Analysis of the Splicing Variants of the Human PMCA3a and -b Transcript and Analysis of Ca\(^{2+}\)-Exporting Activity in Patient-Derived Fibroblasts. A semiquantitative RT-PCR analysis of the b and the a splicing variants of the PMCA3 transcript was performed in control and in patient-derived fibroblasts. Human fetal and adult brain, as well as cerebellum, were used as positive controls.

Total RNA from skin fibroblasts of the patient was isolated using TRIzol solution (Invitrogen), according to the protocol of the manufacturer. RNA from human brain and cerebellum was obtained from Clontech. One microgram of each RNA sample was reverse-transcribed with the SuperScript First-Strand Synthesis system and random hexamers as primers (Invitrogen Life Technologies). The following primers were used: b′ primer, 5′-CTGGTTCCGGGCCGCTG-3′ (forward) and 5′-TTAGAGAAGGATGTCCACCGTCGCT-3′ (reverse); a variant, 5′-CTCTGTTGCCTTGCCCGTGTG-3′ (forward) and 5′-CTACGGAACGCTTTCACTACGG-3′ (reverse). They were expected to amplify a 510-nt fragment in the case of b variant and a 205-nt fragment in the case of a variant. As shown in Fig. S1C, splicing variants of the PMCA3 transcript was performed in control and patient-derived fibroblasts; and 2.31 ± 0.04 (n = 29) for patient-derived fibroblasts.

Measurements of Resting Ca\(^{2+}\) Concentration in the ER and Effect of Stimulation in HeLa Cells Overexpressing the Different PMCA3 Constructs. Endoplasmic reticulum targeted aequorin (erAEQ) was used to measure the intralumenal ER Ca\(^{2+}\) concentration (2). Functional aequorin was reconstituted with a modified prosthetic group, coelenterazine n, to decrease the affinity of the photo- and, thus, to monitor the high values of ER Ca\(^{2+}\) (3). In all experiments, erAEQ reconstitution was carried out after depleting the ER lumen of Ca\(^{2+}\) with 5 μM ionomycin as described previously (2). In the experiment shown in Fig. S2, parallel batches of HeLa cells, transfected with either erAEQ or co-transfected with erAEQ, and the different PMCA3 variants were first perfused with KRB supplemented with 1 mM CaCl\(_2\) and then, when the plateau was reached, challenged with the InsP\(_3\)-generating agonist histamine. Independently of the PMCA3 variant used, cells overexpressing PMCA3 pumps exhibited a lower steady-state value of ER Ca\(^{2+}\) (first plateau): 343.6 ± 4 μM for WT PMCA3a; 352 ± 23 μM for WT PMCA3b; and 513.26 ± 20.32 μM for control cells (P < 0.001 and P ≤ 0.05; Fig. S2 A and B). Possibly, the finding may help explain why our protocol failed to reveal effects of the PMCA3 mutation on the height of the peak transient generated by the release of Ca\(^{2+}\) from the ER. Possibly, under these conditions, the reduction of the ER Ca\(^{2+}\) level was dominant. Interestingly, PMCA-overexpressing cells also had a lower plateau value after histamine stimulation with respect to control cells, the differences being smaller in cells expressing the mutant pump than in those overexpressing the wt form. This suggests that the PMCA pump may have possibly lowered Ca\(^{2+}\) in the microdomains, available to the SERCA pump, thus affecting its ability to pump Ca\(^{2+}\) into the ER. The difference in ER Ca\(^{2+}\) after histamine stimulation (second plateau) in the cells overexpressing the mutated pump would suggest its lower ability to affect the activity of the SERCA pump compared with the wt pump and thus, indirectly, to extrude Ca\(^{2+}\) from the cell. The defect is evident in the PMCA3a variant.

Fig. S1. Semiquantitative RT-PCR analysis of the full-length and truncated splicing variants of the human PMCA3 transcript and analysis of intracellular Ca2+ handling in control vs. patient-derived fibroblasts. (A) Full-length and truncated splicing variants of the PMCA3 transcript in human control fetal and adult brain, cerebellum, and control (Ctrl) vs. patient (Pt)-derived fibroblasts. GADPH is shown as a control. The expression of the splicing variants is weak or absent in fibroblasts and fetal brain. Cerebellum expresses the highest level of the full length PMCA3 variants, compared with brain. (B and C) Fibroblasts were transfected with cytAEQ and stimulated with histamine in a medium containing 1 mM CaCl\textsubscript{2} and cytosolic Ca2+ transients were recorded. (B) Kinetics of the Ca2+ transients in the two fibroblast batches. The traces are the average of 26 and 29 independent experiments performed in control or patient-derived fibroblasts, respectively. (C) Average of peak heights (means ± SEM). Ns., not significant.
Fig. S2. Measurements of Ca$^{2+}$ concentration in the lumen of ER, [Ca$^{2+}$]$_{ER}$. HeLa cells were cotransfected with erAEQ (2) and the PMCA3 constructs or transfected with erAEQ only. Transfected HeLa cells were depleted of Ca$^{2+}$ as described above and then incubated with 5 μM coelenterazine n in modified KRB supplemented with 600 μM EGTA. After extensive washing, the coverslip with the cells was placed in the thermostated chamber of the luminometer and perfused with KRB medium supplemented with 100 μM EGTA. Then, the EGTA was replaced with 1 mM CaCl$_2$ until a plateau was reached indicating the complete refilling of the lumen of the ER (1, first plateau). Then, the cells were challenged with the InsP$_3$-linked agonist histamine to induce the release of Ca$^{2+}$ from the ER lumen, and the trace reached a second plateau level (2, second plateau). (A and B) ER Ca$^{2+}$ levels and effects of the InsP$_3$-generating agonist histamine on it. The traces were obtained from the average of at least five independent experiments. (C and D) Bars represent the average plateau values of ER Ca$^{2+}$ level before (1) and after (2) histamine stimulation in μM ± SEM. ***P < 0.001; *P ≤ 0.05. The means were obtained from at least five independent experiments for each condition.