Correction

CELL BIOLOGY

The authors note that Figs. 1C (Bottom), 2A, 2C, 3F, and 4E have been revised to include dividing lines between lanes to show where extraneous data have been removed. These changes do not affect the data presented nor the conclusions of the article. The changes were made to comply with the PNAS policy that requires dividing lines whenever entire nonessential lanes have been removed from a single original gel. The corrected figures appear below.
Fig. 2.
Fig. 3.
Fig. 4.
TANK-binding kinase 1 (TBK1) controls cell survival through PAI-2/serinop2B and transglutaminase 2

Mireille Delhasea,b,c,d,1, Soo-Youl Kimb,2, Ho Lee1,2, Aya Naiki-itoa,b,2, Yi Chen2,3, Eu-Ree Ahn4, Kazuhiro Murataa,d, Se-Jin Kim1, Norman Lancoba,c,d, Koichi S. Kobayashib,2, Tomoyuki Shirai1, Michael Karina,b,4,5, and Makoto Nakanimi8,4,5

*Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115; 2Department of Pathology, Harvard Medical School, Boston, MA 02115; 3Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92039-0723; 4Department of Cell Biology, Graduate School of Medical Sciences, Nagoya University, Nagoya 467-8601, Japan; 5Cancer Cell and Molecular Biology Branch and Cancer Experimental Resources Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 410-769, Republic of Korea; 6Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya University, Nagoya 467-8601, Japan; and 7Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115

AUTHOR SUMMARY

Apoptosis, the major form of programmed cell death in multicellular organisms, is a highly regulated process essential for proper cellular development and well being (1). Defective apoptosis is associated with multiple diseases, including immune disorders and cancer. The pleiotropic inflammatory mediator TNF-α binds to TNFR1, a receptor at the cell surface, to promote or prevent cell death, depending on the nature and relative strength of the signals that it elicits within the cell. TNF-induced apoptosis is orchestrated by the activation of a protease cascade (i.e., a sequence of protein activation that involves proteases, which function to cleave proteins) in which the protease caspase-8 acts upstream of caspase-3, an executioner caspase that destroys vital cellular components (Fig. P1). By contrast, the TNF-generated survival signal largely relies on activation of the IKβ kinase (IKK), which regulates proteins by adding phosphate groups to specific sites (a process termed phosphorylation), and NF-κB, a protein that acts as a transcription factor by binding to gene sequences and by regulating their expression. Both IKK and NF-κB control the expression of antiapoptotic genes, the products of which attenuate activation of the caspase cascade (2). The balance between these two antagonistic signaling pathways ultimately determines whether a TNF-stimulated cell will survive or die. In the present study, we provide evidence for an additional survival pathway involving the IKK-related kinase, TANK-binding kinase 1 (TBK1), previously identified as an activator of NF-κB (3). We show that TBK1 triggers an antiapoptotic response by controlling the phosphorylation of RelA/p65, a subunit of NF-κB. Our results also show that the proteins plasminogen activator inhibitor-2 (PAI-2) and transglutaminase 2 (TG2) act as downstream mediators in the antiapoptotic response triggered upon TBK1 activation.

In the present study, we showed that, rather than being a general NF-κB activator, TBK1 exerts its survival function, at least in part, by modulating the transcriptional activity of the NF-κB subunit RelA/p65 through its specific phosphorylation by IKK. We then used TBK1-deficient cells (4), which are susceptible to TNF-induced apoptosis, to identify TNF-induced genes that are dependent on TBK1. This resulted in the identification of PAI-2 as a TBK1-dependent survival gene. The PAI-2 protein is a member of the serpin family, which includes a significant number of proteins involved in inhibiting proteases. Expression of the PAI-2 protein in TBK1-deficient cells protected these cells from TNF-induced apoptosis. PAI-2 expression prevented activation of caspase-3 and degradation of the protein modifier TG2. After the catalytic activity of TG2 is stimulated in response to TNF, TG2 cross-links inactive procaspase-3 (the precursor of caspase-3) into dimers, or protein pairs, that are targeted for degradation (Fig. P1).

Author contributions: M.D., M.K., and M.N. designed research; M.D., H.L., A.N.-I., E.-R.A., K.M., and S.-J.K. performed research; Y.C., N.L., K.S.K., and T.S. contributed new reagents/analytic tools; M.D., S.-Y.K., M.K., and M.N. analyzed data; and M.D. and M.K. wrote the paper. The authors declare no conflict of interest.

This is a Contributed submission.

1To whom correspondence may be addressed. E-mail: mdelhase@gmail.com or karinoffice@ucsd.edu.

2S.-Y.K., H.L., and A.N.-I. contributed equally to this work.

3Present address: Shanghai Kanda Biotechnology, Shanghai 201203, China.

4Present address: Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA 02215.

5M.K. and M.N. contributed equally to this work.

See full research article on page E177 of www.pnas.org.

Cite this Author Summary as: PNAS 10.1073/pnas.1119296109.
This reduces the pool of procaspase-3 available for activation, thereby preventing cell death. To validate the antiapoptotic function of TG2 in vivo, we injected TNF and actinomycin D (a transcriptional inhibitor) into WT and TG2-deficient mice and examined the level of apoptosis in the liver, an organ whose survival depends on NF-κB, IKK, and TBK1 signaling. TG2-deficient mice exhibited massive TNF-induced liver destruction as a result of apoptosis, supporting the importance of the TBK1–PAI-2–TG2 survival pathway. TG2 was also found to protect the liver from apoptosis induced by engagement of CD95 (Fas), another member of the TNF receptor family (5). This suggests that the TBK1–PAI-2–TG2 survival pathway might also inhibit other apoptotic responses.

Although numerous NF-κB–dependent antiapoptotic genes have been identified and their specific prosurvival functions characterized, a remaining challenge is the identification of a minimal set of survival genes that need to be expressed in a particular cell type under given environmental conditions to suppress specific cell death triggers. Our findings add additional components to the intricate regulatory network that protects cells from death induced by TNF and related proteins, and demonstrate that activation of these components depends on a specific modification of one NF-κB protein, RelA/p65.

In light of our work, it is likely that targeting TBK1 or its downstream targets by using specific inhibitors may constitute an attractive approach to modulate the balance between life and death, not only in normal cells but also in cancer cells developing in the context of chronic inflammation.