Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH$_4^+$

Meytal B. Higginsa,b,1, Rebecca S. Robinsonc, Jonathan M. Hussina,b, Susan J. Cartera, and Ann Pearsona,1

aDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138; bDepartment of Geosciences, Princeton University, Princeton, NJ 08544; and cGraduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882

Edited by Donald E. Canfield, University of Southern Denmark, Odense M., Denmark, and approved December 23, 2011 (received for review March 17, 2011)

The Mesozoic is marked by several widespread occurrences of intense organic matter burial. Sediments from the largest of these events, the Cenomanian–Turonian Oceanic Anoxic Event (OAE 2) are characterized by lower nitrogen isotope ratios than are seen in modern marine settings. It has remained a challenge to describe a nitrogen cycle that could achieve such isotopic depletion. Here we use nitrogen-isotope ratios of porphyrins to show that eukaryotes contributed the quantitative majority of export production throughout OAE 2, whereas cyanobacteria contributed on average approximately 20%. Such data require that any explanation for the OAE nitrogen cycle and its isotopic values be consistent with a eukaryote-dominated ecosystem. Our results agree with models that suggest the OAEs were high-productivity events, supported by vigorous upwelling. Upwelling of anoxic deep waters would have supplied reduced N species (i.e., NH$_4^+$) to primary producers. We propose that new production during OAE 2 primarily was driven by direct NH$_4^+$-assimilation supplemented by diazotrophy, whereas chemocline denitrification and anammox quantitatively consumed NO$_3^-$ and NO$_2^-$. A marine nitrogen reservoir dominated by NH$_4^+$, in combination with known kinetic isotope effects, could lead to eukaryotic biomass depleted in 15N.

Mid-Cretaceous episodes of deposition of organic-rich sediments in the proto-Atlantic and Western Tethys basins known as Oceanic Anoxic Events (OAEs) (1) are attributed to high productivity and/or enhanced organic-matter preservation resulting from increases in nutrient supply and/or decreases in the ventilation of deep waters (2–6). Because OAEs are thought to be associated with enhanced CO$_2$ outgassing during emplacement of large igneous provinces (7, 8), understanding the feedbacks between CO$_2$, anoxia, and nutrient availability may help us understand better the effects of anthropogenic climate change on ocean circulation, oxygen balance, and marine ecology (9).

Basinal anoxia during OAEs would have promoted loss of fixed nitrogen through the processes of denitrification and anammox. The resulting nitrogen deficits in waters returning to the surface via upwelling would have been amended by nitrogen-fixing cyanobacteria, assuming iron and other micronutrients were adequately available (10). Indeed, enhancement of cyanobacterial production during many episodes of ocean anoxia has been proposed based on increased burial of 2-methylhopanoids (11–13), as these compounds are thought to be markers for cyanobacteria (14). Because such biomarker indices are only qualitative indicators of change and cannot provide quantitative estimates of export flux, complementary data generally include isotope ratios of total sedimentary nitrogen (δ15N$_{TN}$) (11, 15–17), as diazotrophy also affects the nitrogen isotopic budget of the ocean (18–20).

The modern ocean has several localized regions of anoxia, and in these regions, values of δ15N$_{TN}$ generally are higher than the present deep-water average δ15N$_{NO_3^-}$ value of +5‰ because of the isotopic fractionation of denitrification expressed in the water column (19, 21, 22). In contrast, sediments from OAE 2 record striking nitrogen isotopic depletion. They are characterized by values of δ15N$_{TN}$ consistently <-1‰, and often <-3‰ (11, 16, 17, 23). Expression of these negative values of δ15N$_{TN}$ varies consistently by depositional location, with the average value of δ15N$_{TN}$ for OAE 2 horizons of the Bonarelli section (Gubbio and Furlo, Italy) being -3.3‰ and the South Ferrriby formation (England) being -2.8‰ (16); whereas the average value for the South Atlantic is -1.9‰ (23), for the proto-North Atlantic is -1.8‰ (11, 17, this work), and for the Tarfaya Basin, Morocco is -1.7‰ (between 45–60 m in section) (16). Such differences thus reflect regional heterogeneity of water masses, phototrophic ecology, and/or nutrient biogeochemistry; and it has been suggested that patterns of intrabasinal upwelling intensity and nutrient concentrations correspond directly to regional patterns of sedimentation (8, 23, 24).

When viewed alongside the elevated 2-methylhopanoid ratios, negative values of δ15N have been interpreted as evidence for diazotrophic rebalancing of the nitrogen budget and cyanobacterial dominance of the nitrogen supply for new (export) primary production (6, 11, 15, 25, 26). However, the minimum value of δ15N for the biomass of marine diazotrophs (δ15N$_{B_2}$max) should be on average approximately -1.3‰, based on the fractionation associated with nitrogenase (ε$_{N_2}$ = 0–2‰) and the δ15N value of dissolved N$_2$ in seawater (approximately +0.7‰). This number is supported by data that consistently show N-fixing cyanobacteria to have values of δ15N$_{B_2}$max between 0.5‰ and -2‰ (average -1.4 ± 0.9‰) (25, 27–35). Reports of values significantly <-2‰ are from a cultured Trichodesmium sp. (-3.5‰) that was more negative than field samples collected in situ by the same investigators (32) and from experiments on N$_2$-sparged Anaabaena spp. (-2.4‰) grown in an artificial-seawater medium (ASP-2) that also contained NH$_4^+$ (31). Non-N$_2$-derived N in the culture media may explain these outliers. Given the likelihood that in situ values of δ15N$_{B_2}$max would average approximately -1‰, the prevalence of sedimentary values lower than -2‰ in many OAE sections cannot be explained solely by N supplied via N fixation. These patterns require that additional N-cycling processes be invoked to explain the source of nitrogen driving primary production during OAEs.

Nitrogen Isotopic Records of Sediments, Porphyrins, and Kerogen

Chlorophyll-derived sedimentary porphyrins can be used to generate records of δ15N values of eukaryotic and prokaryotic phytoplankton that are unaffected by diagenesis (36, 37), as well as to estimate the contribution of cyanobacteria to burial flux (38). We examined nitrogen cycling during OAE 2 using measurements of coeval bulk and porphyrin nitrogen isotopes in sediments from...
the Ocean Drilling Program Leg 207, Site 1258A (Demerara Rise). A well-defined positive carbon isotope excursion in this section is contained within the high total organic carbon (TOC) interval commonly associated with the OAE (39) (Fig. 1A). Values of δ²¹⁴Corg (Fig. 1B) from before the OAE through the first two-thirds of the OAE (428.5–442 m composite depth; mcd) decrease from approximately −0.1%o to approximately −1.4%o and fluctuate with greater variance than in the middle and top intervals (p < 0.05). The middle of the analyzed section (423 to 419.5 mcd), which spans the end of the OAE as defined by δ¹³Corg is characterized by stable δ¹³Corg values of −2.1 ± 0.3‰. The top section (419.5 to 415.5 mcd) is characterized by an increase in δ¹³Corg values, returning to −0.7‰ in the uppermost samples. All of these values are lower than the δ¹³Corg minima that are observed in modern sediments, even in regions underlying zones of water-column anoxia or intense nitrogen fixation (40, 41). Because diagenesis and interstitial NH₄⁺ in clays can shift values of δ¹³Corg (18, 42), we also measured δ¹⁵N values of kerogen. They show an average negative offset of −0.4‰ relative to bulk sediment (Fig. 1B), suggesting the original primary producers had even lower δ¹⁵N values than what remains recorded by values of δ¹⁵Nkerogen.

Porphyrin values of δ¹⁵N (δ¹⁵Npor) also show patterns that are similar to bulk N isotopes, although they exhibit more scatter than the δ¹⁵Nkerogen and δ¹³Corg values. The large error ranges are due to full propagation of analytical uncertainty associated with preparation and analysis by the denitrifier method (43). To overcome the scatter, we plotted 3-, 5-, and 9-point moving averages (Fig. 1C). These different resolutions all show similar patterns, indicating that temporal trends in the results are not sensitive to the degree of smoothing and are not dependent on data density. The data are spaced relatively uniformly (0.5 m), although sampling resolution is higher in some horizons surrounding the excursion interval, from 421.9 to 427.5 mcd (0.2 m). The duration of OAE 2 has been estimated to be approximately 400–800 ka (44, 45), corresponding to sampling resolution for the porphyrin data of approximately 20,000–100,000 y per sample, or significantly longer than present-day estimates of N residence time in the ocean (2,000–5,000 y; ref. 9). Trends observed in the smoothed data reflect-persistently, potentially steady-state perturbations of the marine N cycle. The top and bottom sections of the core have identical values of δ¹⁵Npor; −5.6 ± 0.7‰ above 419.5 mcd and −5.4 ± 0.7‰ below 423 mcd. However, between 423 and 419.5 mcd, values of δ¹⁵Npor average −6.4 ± 0.6‰ and decrease sharply to −7.5‰ approaching and just after the termination of the OAE. This shift correlates with the phasing observed for δ¹³Corg and δ¹³Ckerogen, but in both cases the N isotopes lag the excursion observed in δ¹³C-TOC.

The εpor Proxy for Eukaryotic vs. Cyanobacterial Burial

The relative fraction of eukaryotic vs. cyanobacterial export production can be estimated from δ¹⁵N values of porphyrins and their associated sediments. In previous work we examined the biochemical and physiological basis for fractionation of nitrogen isotopes between biomass and chloropigments (38). The offset, known as εpor (εpor = δ¹⁵Npor − δ¹⁵Nbulk), differs systematically between eukaryotes and cyanobacteria. Values of εpor for eukaryotes are around 5 ± 2‰; i.e., chlorophyll 5‰ more depleted in ¹⁵N than biomass (33, 38, 46). In contrast, cyanobacteria have values of εpor between 0 and −10‰ (i.e., chlorophyll equal to or up to 10‰ enriched in ¹⁵N relative to biomass). One example of a value of εpor near −10‰ had been observed previously for Anabaena cylindrica (33). To expand on this finding, we recently reported data showing that among the seven species of cyanobacteria tested to date, freshwater ecotypes cluster around the εpor = −10 ± 2‰ endmember, whereas marine ecotypes cluster around the εpor = 0 ± 2‰ endmember (38).

Because εpor reflects intracellular partitioning of N isotopes downstream of the amino acid glutamate, it is independent of the nitrogen substrate utilized by the organism (N₂, NO₃⁻, or NH₄⁺; ref. 38). Thus, we proposed that εpor would be an excellent proxy for calculating the relative contributions of eukaryotes and cyanobacteria to marine export production. Measured values of εpor would be 5 ± 2‰ in a 100% eukaryotic system and would be 0 ± 2‰ in a 100% marine cyanobacterial system, regardless of the proportion of diatoms among the latter (not all marine cyanobacteria are diazotrophs). Moreover, influx of terri- genous biomass and/or cyanobacteria from fresh waters would lead to values of εpor < 0‰. Indeed, to date the only in situ value of cyanobacterial εpor from the environment is from a freshwater lake in Japan in which εpor was determined to be −13 to −16‰ (47).

At Site 1258A the observed value of εpor throughout the section averages 4.3 ± 0.8‰ (if calculated vs. δ¹³Corg) or

Fig. 1. Elemental and isotopic data for site 1258A. The shaded bar represents the δ¹³Corg excursion interval that defines the OAE. (A) %TOC (squares) and δ¹³Corg (circles) from (39). (B) δ¹³C values of bulk sediment (triangles) and kerogen (diamonds), and their 1-m averaged trends. (C) Porphyrin δ¹⁵N values, and their 3- (green), 5- (tan), and 9- (blue) point averaged trends. (D) The isotopic offset εpor between bulk sediment and porphyrins (triangles), and kerogen and porphyrins (diamonds), as well as the corresponding fraction of cyanobacterial export based on the endmember values described in the text. The solid vertical line represents a typical algal value of εpor, and the dotted vertical line represents a marine cyanobacterial value of εpor (38). All error bars represent 1σ, and preparative and analytical errors are compounded when possible. Raw data are shown in Table S1.

4.0 ± 0.8‰e (if calculated vs. δ15N\textsubscript{N\textregistered{surf}}) (Fig. 1D). The values of \(\varepsilon\text{por}\) reach minima—reflecting maximum burial of cyanobacterial biomass—toward the end of the OAE. There appears to be a qualitative trend of decreasing magnitude of \(\varepsilon\text{por}\) from the beginning of the OAE until approximately 1 mcd below the termination. At this point, \(\varepsilon\text{por}\) increases and fluctuates repeatedly until approximately 4 mcd after termination of the OAE, after which \(\varepsilon\text{por}\) then returns to the starting value near 5‰e. This again shows that changes in nitrogen cycle processes are out of phase with the changes in the carbon cycle that define the OAE. Such differences may be expected: in multiple OAE 2 sections the local primary productivity is known to be variable within the overall record of the OAE as defined by δ13C values (24, 48).

If we assume that only eukaryotic algae and marine cyanobacteria contribute significantly to the burial flux of photosynthetic pigments (i.e., eliminating the possibility of freshwater cyanobacteria), a value of \(\varepsilon\text{por}\) consistently >4‰e during the OAE indicates that the export flux remained on average ≥80‰e eukaryotic throughout the event. In contrast with previous interpretations invoking N fixers as the primary source of nutrient N (11, 15, 26), these results indicate that the abundance of cyanobacteria contributing directly to export production during OAE 2 was not large; and it suggests that another N source would have been required to sustain such high rates of eukaryotic export production. However, the data for \(\varepsilon\text{por}\) are consistent with a large relative change in the cyanobacterial population, as observed values of \(\varepsilon\text{por}\) approximately 4‰e within the OAE indicate approximately 20% cyanobacterial biomass, whereas pre- and post-OAE values of \(\varepsilon\text{por}\) nearer 5‰e indicate less burial of cyanobacterial biomass (certainly <5–10%). The \(\varepsilon\text{por}\) data thus indicate at minimum a doubling to quadrupling of cyanobacterial production, but within a system consistently and overwhelmingly dominated by eukaryotic primary producers. If Site 1258A is representative of OAE 2 in general, the widespread negative values of sedimentary δ15N\textsubscript{TN} throughout OAE 2 deposits must be attributed to burial of eukaryotes having significant 15N-depletion in their biomass.

Nitrogen Cycle in Anoxic Oceans: A Paradox of Nitrification and Denitrification

A modest increase in cyanobacterial production is consistent with expected changes to the nitrogen cycle. During OAE 2, anoxic deep waters of the proto-Atlantic and Western Tethys would have contained nitrogen predominantly in the form of NH4+. Upwelling rates were high (8), and NH4+ upwelled into oxic surface waters either was assimilated by phytoplankton or oxidized to NO2− and/or NO3−. Reducing conditions impinging on the photic zone likely meant that a greater fraction of this NO2− and NO3− subsequently was reduced to N\textsubscript{2} via denitrification and anammox, causing a modestly greater fixed-nitrogen deficit. Such widespread N deficits suggest it is unlikely that negative values of δ15N\textsubscript{TN} in sediments of OAE 2 could be due to the expression of isotopic discrimination during nutrient uptake, which occurs for eukaryotes only in nutrient-replete systems in which the nitrogen supply is in excess of biological demand (49, 50). The extent to which fixed N was used to completion in OAE 2 surface waters would have determined the ecological niche for N-fixing cyanobacteria, either as free-living cells or as symbionts; but the overall system was N limited, as generally is the case in the marine photic zone (10). Complete utilization of the available nutrient N implies that the total flux must have been isotopically negative.

A deficit in fixed N during OAEs is not surprising, as anoxia promotes denitrification. What may be surprising is that the deficit was not larger. We suggest that counterintuitively, rates of denitrification may decrease under conditions of extreme basin-wide anoxia. Denitrification and anammox depend on sufficient availability of NO2− and NO3−. Because these oxidized N species are produced aerobically, extreme oxygen limitation in the water-column may decrease their rate of formation, leaving a greater fraction of remineralized organic nitrogen to cycle throughout these regionally isolated basins and reenter the photic zone as NH4+. This in turn would limit the need for compensating N fixation. Evidence for photic-zone sulfide oxidation during OAEs suggests that NO3− indeed was completely absent beneath the photic zone, at least episodically (5, 51), and that fixed N in these deep waters would have remained in reduced form. We propose that the values of δ15N\textsubscript{Nphyto} < −2‰e found in OAE sediments reflect severe diminishment of the deep-water NO3− component of the marine N cycle, implying that the deep ocean was a reservoir of NH4+. Upwelled NH4+, rather than newly fixed N, was the main N source for primary production. Chemocline impingement on the photic zone would have driven nitrification, denitrification, and anammox into competition with NH4+-assimilation. The balance between these processes—which varied regionally—would have set the loss rate of N from the ocean and the compensatory rates of N fixation.

To explain the observed values of δ15N\textsubscript{TN}, isotopic mass balance would then require that the newly fixed N (δ15N\textsubscript{Ndiazo} = 0 to −2‰e), plus the upwelled NH4+ supply, together can yield new production that has values of δ15N < −2‰e (e.g., Bonarelli and South Ferry sections; ref. 16). This is different from a modern-ocean scenario, in which denitrification associated with the spreading of anoxic zones leads to progressively higher (positive) values of δ15N\textsubscript{NO3−} that are then propagated to δ15N\textsubscript{TN} (21, 22). The modern-ocean endmembers are thus near-zero (diazotrophs) and more positive (nitrate assimilation and/or recycling), whereas the OAE endmembers must be near-zero (diazotrophs) and more negative (NH4+ assimilation and recycling). Although required to explain the data, such a scenario is far from intuitive: it requires that the fixed N lost from the ocean by the processes of denitrification plus anammox have a net positive value of δ15N. Below we explore how such a system might be possible.

NH4+-Upwelling Model

To yield a marine system in which the burial flux of δ15N\textsubscript{TN} has a negative value, we assume that NO3− and NO2− are produced only in the aerobic photic zone and are reduced quantitatively to N\textsubscript{2} in the chemocline by denitrification and/or anammox. This loss is analogous isotopically to sedimentary denitrification in the modern ocean, which is considered to impart zero fractionalation because it proceeds to completion, and by mass balance, δ15N\textsubscript{inputs} = δ15N\textsubscript{outputs} (19).

The following additional conditions then would be sufficient to achieve a denitrifying flux of N\textsubscript{2} that is net isotopically positive. To yield surface waters in which NH4+ and N\textsubscript{2} are the most important bioreducible sources of N, we assume that nitrification of the upwelling flux to NO3− followed by phytoplanktonic assimilation is much less significant than direct assimilation of concomitant upwelling NH4+. Where NH4+ is available, NO3− is a less favorable nutrient for phytoplankton growth due to the higher energetic costs associated with its reduction (52). Nitrite generally is not believed to be an important source of nutrient N (53), and thus we assume it also is removed by denitrification or, more likely, by ammonia oxidation (ammonium oxidation, NH4+ → NO2−), whereas the burial flux is small relative to these internal cycles (Fig. 24). We also specify the flux associated with remineralization of sinking phytoplankton N (\(\phi\text{fix}\)), and assume no fractionalization for this process. As stated above, all oxidations and reductions downstream of \(\phi\text{fix}\) are quantitative and do not impact further fractionalization.

In N-limited surface waters, new production reflects the isotopic signature of the integrated nitrogen budget. The resulting value of δ15N\textsubscript{TN} will reflect a weighted average of the δ15N values of diazotrophic cyanobacteria (\(\delta\text{diazo}\)) and of NH4+-consuming phytoplankton (\(\delta\text{phyto}\)). The former will be equal to δ15N\textsubscript{N\textsuperscript{2\text{aq}}}.
Fig. 2. Conceptual model for sedimentary values of δ^{15}N$_{\text{org}}$ in an ocean in which NH$_4^+$ is the dominant fixed N species. (A) System in which the δ^{15}N values of exported eukaryotic biomass depend on the fractional fluxes to ammonium assimilation (φ_1), oxidation (φ_2), and recycling (φ_3), as well as the difference between the associated fractionation factors ε_1 and ε_2. (B–D) Calculated δ^{15}N values of sedimentary organic matter as a function of percent export from diazotrophs and fractional fluxes φ_1 and φ_2 for three sets of fractionation factors: (B) $\varepsilon_1 - \varepsilon_2 = -5$‰; (C) $\varepsilon_1 - \varepsilon_2 = 5$‰; (D) $\varepsilon_1 - \varepsilon_2 = 10$‰. (E) Data for δ^{15}N$_{\text{org}}$ for OAE 2 from the literature (11 red; 16 blue; Italy; green; England; 17 yellow; 23 orange), and this study (gray), plotted relative to the range of paired values of ε_1 and ε_2 solved with the model, assuming 20% export of diazotrophic biomass (solid line), as well as an $\varepsilon_1/\varepsilon_2$ offset of 10‰ assuming 10% export of diazotrophic biomass (dashed line).

As this NH$_4^+$ upwells into the photic zone, it again becomes 15N-enriched and the system maintains steady-state.

The resulting value for total buried organic matter (δ^{15}N$_{\text{org}}$) is tempered by the percent contribution of diazotrophic biomass (Fig. 2 B–D) such that values of δ^{15}N$_{\text{org}}$ approach -1‰ when there is greater burial of diazotrophs, but decrease as the ratio φ_2/φ_1 increases and diazotrophic burial decreases. This is consistent with records showing the most negative values of δ^{15}N$_{\text{org}}$ in pelagic locations with lesser apparent bacterial biomass burial (16) and more positive values of δ^{15}N$_{\text{org}}$ in epicontinental environments with higher apparent bacterial flux (16).

The model thus depends on the relative magnitudes of ε_1 and ε_2 compared to the N deficit and resulting diazotrophic contribution. It is possible that the fractionation associated with NH$_4^+$-assimilation (ε_1) by the enzyme glutamine synthetase (GS) may exceed that of NH$_4^+$-oxidation (ε_2) by the enzyme ammion monooxygenase (AMO) under some circumstances. The observed value of ε_1 (+27‰) will depend on NH$_4^+$ concentration, with larger fractionations expressed under NH$_4^+$-rich conditions (54). In the modern ocean, NH$_4^+$ concentrations are low and ε_2 is confined to the lower end of this range. Under the NH$_4^+$-replete conditions that we propose for OAE 2, assimilation using different enzymatic controls may lead to expression of ε_2 with a larger magnitude, although to date very little information is available about fractionation during NH$_4^+$ assimilation by natural planktonic assemblages (55).

The value of ε_2 also remains poorly constrained. The relative fraction of aerobic ammonia oxidation by archaea vs. bacteria during OAE 2 is not known, but δ^{13}C and archaeal biomarker data measured in black shales deposited during the Albain OAE1b (approximately 112 Ma) suggest that Crenarchaeota
(now called Thaumarchaeota; ref. 56) that are believed to be responsible for most ammonium oxidation in the modern ocean (57). Values of ε for bacterial AMO are approximately 14–38‰, for a variety of species grown on 1–2 mM NH$_4$$^+$ (59). Recent measurements of stable carbon isotope effects associated with archaeal ammonia oxidation show a similar range of values, from 10–37‰ (60). In all cases, the relative contributions of fractionations associated with transport of NH$_4$$^+$ or diffusion of NH$_3$ through membranes and equilibrium of NH$_3$/NH$_4$ are uncertain. It is thus difficult to extrapolate these cultures to natural systems, except to suggest that bacterial and archaeal AMO results are similar.

If e_1 was large due to elevated NH$_4$$^+$ concentrations (54) upwelling to the base of the photic zone from a large, deep NH$_4$$^+$ pool, the condition of $e_1 > e_2$ could be met. For example, if $e_1 = 22\%$ (average archaeal value) and $e_2 = 27\%$ (maximum enzymatic effect on NH$_4$ oxidation), then $e_1 - e_2 = 5\%$. This results in values of δ^{15}N$_{TN}$ for export production that will be $< -2\%$ (Fig. 2C) if NH$_3$ oxidation consumes at least one-tenth of the upwelling NH$_4$$^+$ flux ($\phi > 0.1$) and the burial contribution of diazotrophs is 20%, the upper limit based on our data for ε_{por}. Other versions of the model that impose larger differences between e_1 and e_2 (e.g., $e_1 - e_2 = 10\%$, Fig. 2D) are also compatible with some of the data from OAE 2, in particular a few of the very negative values of δ^{15}N$_{TN}$ for the sections from Italy and England (Fig. 2 D and E) (16). Analogous models with $e_1 < e_2$ can produce only positive values of δ^{15}N$_{TN}$, as would be seen in the modern ocean (Fig. 2F). Using our conceptual model, most data for δ^{15}N$_{TN}$ compiled from OAE 2 (11, 16, 17, 23, this paper) fall within isotope space corresponding to ranges of $e_1 - e_2 = 5\%$ (Fig. 2E).

We further tested the plausibility of our conceptual framework using a simplified steady-state model that calculates δ^{15}N values of biomass N, NH$_4$$^+$, NO$_3$$^-$, and NO$_2$$^-$ in a two-box (surface and deep) ocean. The model was optimized to reproduce known modern values using estimates of fluxes and fractionation factors from the literature. To run the model subsequently for the OAE, we modified nitrogen-redox partitioning (more NH$_4$$^+$, less NO$_3$$^-$) and changed the magnitude of associated fluxes proportionally. Rates of upwelling and the total N inventory remained the same in both cases. By changing these parameters, the model generated sedimentary δ^{15}N$_{TN}$ values of -4.4% for the OAE and $+4.9\%$ for modern sediments. For a complete model description, results, and sensitivity analysis, see Supplementary Information.

Implications

Our model implies a widespread and well-mixed “ammonia ocean” for the proto-Atlantic and Western Tethys because it requires a sustained source of upwelling NH$_4$$^+$ that can be used for biological assimilation. This can be achieved if nitrate production is limited by severe demands on NO$_3$$^-$, possibly through enhanced anammox. In such an ocean, ammonia assimilators and N fixers both could out-compete assimilatory NO$_3$$^-$ reducers due to the dominance of NH$_4$$^+$ and a limited rate of NO$_3$$^-$ generation. Postulated high rates of upwelling, combined with nutrient trapping under estuarine circulation in the North Atlantic (8), may explain why these negative δ^{15}N signals are widespread during OAEs, yet are regionally variable (16). The trapping of quantitatively significant levels of NH$_4$$^+$ in deep waters during OAEs also helps preserve the total pool of marine N, alleviating the need for excessive rates of nitrogen fixation. Extreme anoxia may therefore exert a natural, negative feedback on the nitrogen cycle by preventing the ocean from denitrifying completely.

Our proposed model for the N cycle during OAE 2 also helps to explain why extreme N isotopic depletion is not seen in modern anoxic basins like the Black Sea and the Cariaco Trench, where δ^{15}N values of particulate organic nitrogen are >0‰ throughout the water column (41). The nutrient sources and circulation patterns in these two systems are not analogous to anoxic oceans. The Cariaco Trench is a silled basin that receives NO$_3$$^-$ from the Atlantic, and sedimentary organic nitrogen in the Cariaco basin carries an isotopic signature that reflects a mass balance between Atlantic NO$_3$$^-$ that has been influenced by N$_2$ fixation (approximately 3‰) and N$_2$ (local nitrogen fixation) (61). In the Black Sea, a commonly used analog for anoxic oceans, the supply of N to surface waters is largely sourced from continental rivers, whereas the intense salinity stratification limits the upwelling of deep NH$_4$$^+$ and promotes formation of NO$_3$$^-$ followed by nearly quantitative loss via the anammox process (62). The nutrient N cycle of the modern Black Sea, therefore, primarily is analogous to a large lacustrine system with severe stratification. In contrast, we envision OAE 2 as a time of sustained upwelling.

The ammonia ocean scenario also may help to explain the temporal evolution of N isotope patterns seen in our data. Values of δ^{15}N$_{por}$ and δ^{15}N$_{TN}$ are out of phase with carbon isotopes. They do not begin to decrease until the middle of the OAE interval, and their minimum persists past the traditionally defined termination of the event. This phase lag may reflect the balance of oxidants in the marine system. Enhanced burial of N in the Cariaco basin during OAEs should be associated with accumulation of oxygen in the ocean and atmosphere. This in turn would increase the rates of ammonium oxidation and nitrification, eventually suppressing anammox and allowing NO$_3$$^-$ to accumulate. Indeed, our predicted values of δ^{15}N$_{TN}$ decrease as ϕ increases (Fig. 2 C–E). The predicted isotopic trajectory, therefore, is that δ^{15}N$_{TN}$ values will decrease during the early stages of ocean redoxiation. Values of δ^{15}N$_{TN}$ only would “flip” to positive values when the nitrification flux (\ϕ) was sufficiently high to accumulate excess NO$_3$$^-$, allowing subsequent denitrification to enrich 15N in the accumulating NO$_3$$^-$ reservoir. These results highlight the importance and promise of using temporal records of ϕ in conjunction with δ^{15}N$_{TN}$ values to examine both the succession of marine ecosystems and the redox state of the ocean.

In sum, a mid-Cretaceous deep ocean dominated by reduced rather than oxidized nitrogen species, normal rates of ocean circulation (63), and enhanced input of nutrients (5, 6, 8) together could yield negative values of biomass δ^{15}N and sustain a primary producer community that remained rich in eukaryotes. Although the oxidation state and temperature of OAE ocean waters was very different from the modern ocean, the persistent dominance of eukaryotes and dependence of primary producers on upwelled nutrients suggests that the balance between gross and net production was not greatly dissimilar from the present-day. Our results imply that additional feedbacks act under oxygen-limited conditions to maintain nitrogen balance, thereby limiting the extent of denitrification and the compensatory expansion of diazotrophy during OAEs.

Materials and Methods

Sediments were obtained from Ocean Drilling Program Leg 207, Site 1258A, from the Demerara Rise, offshore from modern Surinam. Samples spanned 415–428 m composite depth (mcd). Forty samples were analyzed for bulk δ^{15}N$_{TN}$, δ^{15}N$_{por}$, and δ^{15}N$_{kerogen}$ at approximately 0.5 m spacing. Sampling resolution was high enough to include both samples of marine sediments and the redox state of the ocean.

In sum, a mid-Cretaceous deep ocean dominated by reduced rather than oxidized nitrogen species, normal rates of ocean circulation (63), and enhanced input of nutrients (5, 6, 8) together could yield negative values of biomass δ^{15}N and sustain a primary producer community that remained rich in eukaryotes. Although the oxidation state and temperature of OAE ocean waters was very different from the modern ocean, the persistent dominance of eukaryotes and dependence of primary producers on upwelled nutrients suggests that the balance between gross and net production was not greatly dissimilar from the present-day. Our results imply that additional feedbacks act under oxygen-limited conditions to maintain nitrogen balance, thereby limiting the extent of denitrification and the compensatory expansion of diazotrophy during OAEs.

Acknowledgments. We thank Roger Summons, Carolyn Colonero, Amy Kelly, Noreen Tuross, and Kyle McElhoney for assistance with sample preparation and analysis and machine use. We thank Chris Junium and Julian Sachs for helpful discussions and comments, and Don Canfield, the PNAS editorial staff, and two anonymous reviewers for their valuable input. This work was supported by the National Science Foundation Grant OCE-0825269 (to A.P. and R.S.R.) and by the National Aeronautics and Space Administration Astrobiology Institute and the David and Lucille Packard Foundation (A.P.)
1. Schlangen SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: Causes and con-
Higgins et al. 10.1073/pnas.1104313109

Supporting Information

SI Text

SI Materials and Methods. Sediments were obtained from Ocean Drilling Program Leg 207, Site 1258A, from the Demerara Rise, offshore from modern Surinam. Samples spanned 415–428 m composite depth (mcd). Forty samples were analyzed for bulk δ15N_{TN}, δ13N_{kerogen}, and δ15N_{por} at approximately 0.5-m spacing. Sampling resolution was higher leading into and coming out of the Oceanic Anoxic Event (OAE), which spanned approximately 422–426 mcd (Table S1).

All reagents used for chromatographic separation were Burdick and Jackson GC® grade. The porphyrin standard used was vanadyl-octaethylporphine (Frontier Scientific). Sample preparation followed the methods outlined in (1). Samples were extracted using accelerated solvent extraction (ASE) (Dionex) using 90:10 DCM/MeOH. Total lipid extracts (TLEs) were separated using Flash chromatography (Biotage) using a 12i SIL column (12 mm × 250 mm, 40–63 μm). Porphyrins were eluted into two fractions: fraction 1 (F1), which contains mostly Ni porphyrins, was eluted with 30 mL followed by 15 mL of 1:1 dichloromethane (DCM)/hexane. Fraction 2 (F2), which contains mostly vanadyl (VO) porphyrins, was eluted using two 30 mL aliquots of DCM.

Flash fractions were analyzed using normal-phase (NP-) HPLC (Agilent) with a ZORBAX SIL column (4.6 × 25 mm, 5 μm). The elution program was a 30 min gradient from 100% hexane to 100% ethyl acetate, at 1 mL/min. Absorbance was monitored at 393 and 405 nm, corresponding to absorption maxima of Ni- and VO-porphyrins, respectively. Sample porphyrin concentration was estimated using an empirically derived conversion factor between integrated absorbance and sample [N]. This conversion factor was approximately 8 × 10^{-4} nmol N • m AU^{-1} • min^{-1} for Ni porphyrins (F1) and approximately 4 × 10^{-4} nmol N • m AU^{-1} • min^{-1} for VO porphyrins (F2). Each sample was aliquoted into an HPLC vial at a volume estimated to correspond to 50 nmol N, and then injected using the same elution program, with fraction collection programmed to occur at times of absorbance peaks at 393 nm (F1) and 405 nm (F2). For this study, because all sampled horizons contained VO porphyrins, but only some contained Ni porphyrins, only F2 samples were used for isotopic analysis.

Following HPLC collection, samples were oxidized quantitatively to NO$_3^-$ following methods of (1). This was achieved using a two-step oxidation: UV oxidation in quartz tubes, followed by chemical oxidation using K$_2$S$_2$O$_8$/NaOH (0.05 mM and 0.15 mM, respectively). Oxidized samples were measured for [NO$_3^-$] by reduction to NO and measurement of [NO] using a nitric oxide analyzer (Monitor Labs). Samples containing 10 nmol N were analyzed for δ15N using the denitifier method (2) using IAEA N3 as a standard.

Samples were analyzed for bulk and kerogen values of δ15N by EA-IRMS. Rock powder was analyzed for δ15N_{TN}, and ASE-extracted rock powder (“kerogen”) was analyzed for δ15N_{kerogen}.

SI Nitrogen Isotopic Records of Sediments, Porphyrins, and Kerogen. We define the onset of the excursion at 426.2 mcd, which corresponds to the first value of δ15N$_{TOC}$ that is significantly (>2σ) higher than all values deeper in the section (Fig. 1A). The first point that marks the end of the excursion is 422.2 mcd. Carbon isotope and total organic carbon (TOC) data are taken from ref. 3, and correspond to the same core used in this study. Data are shown in Table S1.

SI NH$_4^+$ Upwelling Model. Since all processes that act as sinks for NH$_4^+$ and NO$_3^-$ are associated with typical kinetic isotope effects (producing isotopically depleted products), generating an isotopically depleted residual DIN pool is difficult. Conventional denitrification results in 15N enrichment of the unused NO$_3^-$; NH$_4^+$ oxidation results in 15N enrichment of residual NH$_4^+$, and under conditions of partial NH$_4^+$ utilization in assimilatory consumption, fractionation during uptake also results in 15N enrichment of the remaining NH$_4^+$. The only component of the DIN pool that can become depleted in 15N through these primary effects is NO$_3^-$, which has an inverse isotope effect associated with nitrification (producing 15N-enriched NO$_3^-$ and leaving behind 15N-depleted NO$_3^-$) (4). However, it is unlikely that NO$_2^-$ is utilized significantly as a source of nutrient N.

Critically, the above processes do not occur individually or in isolation. 15N-depleted DIN can be produced if these processes are considered as a system that branches at the point of NH$_4^+$. Because two processes compete for this substrate, the δ15N values of each product (NO$_2^-$ and biomass) depend on the isotopic fractionation associated with each process (5). The process that has the larger isotope effect generates a more 15N-depleted product. In the case of isotopically depleted biomass associated with OAEs, this would require a larger fractionation associated with NH$_4^+$ utilization than with NH$_3^+$ oxidation.

Such a scenario is sketched in the figure above, on which Fig. 2A is based. Under conditions of basin-wide anoxia, limited nitrification causes a buildup of NH$_4^+$ that is derived from organic-matter remineralization in deep waters. NH$_4^+$ is upwelled into surface waters and fuels primary production. This scenario assumes that NO$_3^-$ is not a source of nutrient N, and that any NO$_3^-$ produced in the aerobic photic zone is not a significant source of nutrient N and ultimately is quantitatively reduced to N$_2$ in the chemocline. The result is an ocean in which NH$_4^+$ and N$_2$ are the only significant bioavailable sources of N. In this model, assuming the only expressed fractionations are those associated with typical kinetic isotope effects (producing δ15N values of NH$_4^+$ and NO$_3^-$), we can solve for δ15N values of NH$_4^+$, NO$_3^-$, and secondary biomass.

We first set a mass balance around NH$_4^+$:

\[
\delta_{\text{diaz}} \times \varphi_5 + \delta_{\text{phyt}} + \varphi_3 = \varphi_1 \times \delta_{\text{phyt}} + \varphi_2 \times \delta_{\text{NO}_2}.
\]

Then substitute \(\varphi_5\):

\[
\delta_{\text{diaz}} \times (\varphi_1 + \varphi_2 - \varphi_3) = (\varphi_1 - \varphi_3) \times \delta_{\text{phyt}} + \varphi_2 \times \delta_{\text{NO}_2}.
\]
Substitute $\delta_{\text{phyt}} = \delta_{\text{NH}_4} - \epsilon_1$ and $\delta_{\text{NO}_3} = \delta_{\text{NH}_4} - \epsilon_2$:

\[
\delta_{\text{diaz}} \ast (\phi_1 + \phi_2 - \phi_3) = (\phi_1 - \phi_2) \ast (\delta_{\text{NH}_4} - \epsilon_1) + \phi_2 \ast (\delta_{\text{NH}_4} - \epsilon_2).
\]

Rearrange:

\[
\delta_{\text{NH}_4} = \delta_{\text{diaz}} + \frac{\phi_3 - \phi_1}{\phi_1 + \phi_2 - \phi_3} \ast \epsilon_1 + \frac{\phi_2}{\phi_1 + \phi_2 - \phi_3} \ast \epsilon_2.
\]

Solve for δ_{phyt}:

\[
\delta_{\text{phyt}} = \delta_{\text{diaz}} + \frac{\phi_3 - \phi_1}{\phi_1 + \phi_2 - \phi_3} \ast \epsilon_1 + \frac{\phi_3}{\phi_1 + \phi_2 - \phi_3} \ast \epsilon_2 - \epsilon_1.
\]

Isootope mass balance for sediments:

\[
\delta_{\text{sed}} = \frac{\delta_{\text{diaz}} \ast \phi_6 + \delta_{\text{phyt}} \ast \phi_4}{\phi_6 + \phi_4}.
\]

Given the following:

\[
\begin{align*}
& f_{\text{remin}} = \frac{\phi_1}{\phi_4} \\
& \delta_{\text{diaz}} = -1\%e \\
& \phi_{\text{cyano}} = D = \frac{\phi_6}{\phi_4 + \phi_6} \\
& f_2 = \frac{\phi_3}{\phi_4 + \phi_6}.
\end{align*}
\]

If $\phi_2 = X$ and N_2 fixation flux $= 1$,

\[
\begin{align*}
& \phi_6 = (1 - X) \ast D \\
& \phi_4 = (1 - X) \ast (1 - D) \\
& \phi_5 = 1 - (1 - X) \ast D \\
& \phi_1 = \phi_2 \ast \frac{1 - f_2}{f_2}.
\end{align*}
\]

We substitute the above fluxes into the mass balance around NH_4^+:

\[
\begin{align*}
& \phi_3 + \phi_5 = \phi_1 + \phi_2 \\
& \Rightarrow 1 - (1 - X) \ast D + \phi_1 \ast f_{\text{remin}} = \phi_2 \ast \frac{1 - f_2}{f_2} + \phi_2 \\
& \Rightarrow 1 - (1 - X) \ast D + \phi_2 \ast \frac{1 - f_2}{f_2} \ast f_{\text{remin}} = \phi_2 \ast \left(\frac{1 - f_2}{f_2} + 1\right) \\
& \Rightarrow 1 - (1 - X) \ast D + X \ast \frac{1 - f_2}{f_2} \ast f_{\text{remin}} = X \ast \left(\frac{1 - f_2}{f_2} + 1\right) \\
& \Rightarrow \frac{D - 1}{f_2} = f_{\text{remin}} - 1 = 1 + D.
\end{align*}
\]

Solve for ϕ_1, ϕ_2, ϕ_3, ϕ_4, ϕ_5, ϕ_6 as a function of X, and use those values to solve for δ_{sed}.

To generate negative δ^{15}N values of secondary biomass, ϵ_1 must be $>\epsilon_2$. Assuming that sedimenting organic matter contains a mixture of material derived from N fixation and the remainder reflects biomass produced from recycled NH_4^+ (similar to today’s ocean, but with NH_4^+ substituting for NO_3^-), the δ^{15}N values of sedimentary organic nitrogen as a function of ϵ_1, ϵ_2, ϵ_3 (fraction nitrification/denitrification), and % contribution of diazotrophic biomass to export production are shown in Fig. 2 B–D. These figures assume $\delta_{\text{diaz}} = -1\%e$ and $f_{\text{remin}} = 0.8$. According to this simple model, peak depletions in δ^{15}N$_{\text{org}}$ values occur as the value of $\epsilon_1 - \epsilon_2$ increases. Increased contribution of diazotrophic bio-

mass drives average δ^{15}N$_{\text{org}}$ values toward the δ^{15}N value of nitrogen fixers. Increased contribution of eukaryotic phytoplankton drives average δ^{15}N$_{\text{org}}$ values away from $-1\%e$, toward more negative values.

Nitrification utilization cannot be invoked to explain values of sedimentary δ^{15}N$_{\text{IN}} < -2\%e$. A model analogous to Fig. 2A but written for NO_3^- assimilation (ϵ_3) vs. denitrification (ϵ_2) cannot satisfy $\epsilon_1 > \epsilon_2$. Indeed the positive values for δ^{15}N$_{\text{IN}}$ in the modern ocean arise because the opposite is true ($\epsilon_2 > \epsilon_1$). Nitrification fractionates by approximately 5–10%e and is not completely expressed due to quantitative consumption of available NO_3^-. This value is smaller than the minimum approximately 13%e fractionation associated with denitrification (ϵ_2) in the water-column, when NO_3^- is not utilized to completion.

We also developed a two-box steady-state model to further clarify the conceptual explanation for depleted secondary δ^{15}N values (Fig. S1). This model, although certainly a great oversimplification of oceanic biological complexity, is meant to test whether a decrease in secondary δ^{15}N values can occur when known nitrogen transformations occur under expected chemical conditions and with expected kinetic isotope fractionations.

The model contains a surface ocean (defined as the photic zone) and a deep ocean. It calculates isotopic values for four nitrogen species (biomass N, NH_4^+, NO_3^-, and NO_2^-) in each box, specifies δ^{15}N$_{\text{IN}}$ of the atmosphere as 0%e, and calculates the δ^{15}N value of accumulating sediments. The processes modeled are assimilation of NH_4^+ and NO_3^- by biomass (biomass N), remineralization of biomass N to NH_4^+, two-step nitrification ($\text{NH}_4^+ \rightarrow \text{NO}_3^- \rightarrow \text{NO}_2^-$), denitrification ($\text{NO}_3^- \rightarrow \text{N}_2$), anammox ($\text{NH}_4^+ + \text{NO}_2^- \rightarrow 2\text{N}_2$), and N$_2$ fixation (the last set as a balanced flux to compensate for all losses).

The model first was optimized to generate output consistent with δ^{15}N values found in the modern ocean (Fig. S1, blue text values; Table S2). The model rates of nitrogen fixation of approximately 124 Tg N/y, heterotrophic denitrification of approximately 96 Tg N/y (where 80% occurs in sediment), and anammox loss of approximately 18 Tg N/y all are comparable to currently estimated values for these processes (6, 7). The isotopic composition of the resulting simulated N pools depends strongly on the kinetic isotope effects (KIEs) assigned to water-column denitrification, consistent with other models of the modern ocean (8). The model also accurately simulates export of regional anoxic zones in an otherwise oxidized ocean circulation system (i.e., the situation of higher values of δ^{15}N$_{\text{NO}_2^-}$).

To run the model for the OAE, we maintained a modern rate of upwelling and the same rate of primary production, but we increased the total rate of denitrification and anammox from approximately 114 to approximately 291 Tg N/y to reflect the driving force for a diazotrophic increase of approximately 2.5x. We presume fully anoxic deep basins are consistent with speciation of most fixed N as NH_4^+ and set the ratio of $\text{NH}_4^+:\text{NO}_3^-:\text{NO}_2^-$ equal to 90:5:5. We then nitrified the upwelling waters such that surface water speciation was 49:2:49. Because the model quantitatively denitrifies downwelling NO_3^- and NO_2^-, we assume that sedimentary denitrification always is negligible. We also increased anammox as a fraction of denitrification between the modern and the OAE scenarios. The OAE scenario therefore primarily alters the proportion of N cycling through processes that use NH_4^+, and in so doing, it generates biomass that has negative values of δ^{15}N (Fig. S1, green text; boxes 2, 3, and 8). Deep and surface biomass under the OAE scenario have values of $-4.4\%e$ and $-5.3\%e$, respectively, significantly more depleted than in the modern scenario, whereas values of deep NH_4^+ and deep NO_3^- are $-1.5\%e$ and $-4.7\%e$, respectively. Sedimentary δ^{15}N values in the OAE scenario are $-4.4\%e$, compared to $4.9\%e$ in the modern scenario.
Since KIEs associated with NH₄⁺ assimilation and oxidation are uncertain (see discussion in main text), the same values were used in both ocean scenarios for this exercise (Fig. S1). Culture-based measurements of KIEs associated with NH₄⁺ assimilation and oxidation under conditions of low NH₄⁺ average 4‰ and 22‰, respectively (9, 10). However, neither value reflects culturing conditions that resemble the chemistry of surface waters in the modern ocean; and likewise, it is impossible to know the true chemistry of the Cretaceous surface ocean. The important outcome of the box model exercise, however, is the relative insensitivity to these choices of values. The model can reproduce observed values of δ¹⁵NTN for both the modern and Cretaceous simply by changing N speciation in accordance with differences in N redox state.

To address this more thoroughly, we conducted sensitivity tests to examine the effects of varying KIEs associated with NH₄⁺ oxidation/assimilation, as well as surface water NH₄⁺ recycling, enrichment associated with sedimentary diagenesis, and surface water NH₄⁺ oxidation/assimilation ratios on sedimentary δ¹⁵N values (Table S3). These tests were done under both the modern and the OAE scenarios. The model generates negative values for δ¹⁵N_{sed} in the OAE scenario when ε_{assim} > ε_{nitrif} and surface recycling and/or ammonium oxidation rates are increased. Values of δ¹⁵N_{sed} and are more depleted under smaller values of ε_{nitrif}. Additional sedimentary δ¹⁵N depletion occurs with the loss of diagenetic δ¹⁵N enrichment under anoxic sedimentary conditions (11, 12).

The overall finding is that the most important determinant of sedimentary δ¹⁵N_{TN} values appears to be the speciation of nutrient N used by primary producers: N₂, NH₄⁺, or NO₃⁻. Rates of primary production and upwelling, the total N inventory, and KIEs for enzymatic processes all could be relatively similar during OAEs relative to their values under modern conditions.

Fig. S1. Results of the 2-Box steady-state model. Values of δ¹⁵N for the modern ocean are shown in blue and for the Cretaceous ocean are shown in green. Values for KIEs (values of ε) are shown in red text next to the flux arrows to which they were applied. Where two ε values are listed, the first indicates the value used for the modern, and the second is the value used in the OAE scenario.
Table S1. Data collected for this study

<table>
<thead>
<tr>
<th>mcd</th>
<th>δ¹⁵N_NT</th>
<th>δ¹⁵N_Npor</th>
<th>Raw δ¹⁵N_Npor</th>
<th>Blank-corrected δ¹⁵N_Npor</th>
<th>ε_Npor-NT</th>
<th>ε_Npor-CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>415.52</td>
<td>−0.4 ± 0.6</td>
<td>−1.6</td>
<td>−6.3 ± 0.0</td>
<td>−5.8 ± 0.5</td>
<td>4.2 ± 0.6</td>
<td>5.4 ± 0.8</td>
</tr>
<tr>
<td>415.52</td>
<td>−0.4</td>
<td>−1.6</td>
<td>−7.0 ± 0.4</td>
<td>−6.5 ± 0.6</td>
<td>4.8 ± 0.6</td>
<td>—</td>
</tr>
<tr>
<td>416.565</td>
<td>−0.9 ± 0.3</td>
<td>−1.0</td>
<td>−5.4 ± 0.2</td>
<td>−5.0 ± 0.6</td>
<td>4.0 ± 0.6</td>
<td>4.2 ± 0.6</td>
</tr>
<tr>
<td>417.23</td>
<td>−1.0 ± 0.2</td>
<td>−1.2</td>
<td>−6.0 ± 0.0</td>
<td>−5.4 ± 0.4</td>
<td>4.2 ± 0.5</td>
<td>4.4 ± 0.5</td>
</tr>
<tr>
<td>417.27</td>
<td>−1.0 ± 0.2</td>
<td>−1.2</td>
<td>−6.0 ± 0.2</td>
<td>−5.5 ± 0.6</td>
<td>4.4 ± 0.6</td>
<td>—</td>
</tr>
<tr>
<td>418.005</td>
<td>−1.8 ± 0.2</td>
<td>−2.6</td>
<td>−7.2 ± 0.2</td>
<td>−6.6 ± 0.5</td>
<td>4.1 ± 0.5</td>
<td>4.9 ± 0.5</td>
</tr>
<tr>
<td>418.52</td>
<td>−1.3 ± 0.3</td>
<td>−1.6</td>
<td>−5.4 ± 0.1</td>
<td>−4.8 ± 0.5</td>
<td>3.2 ± 0.5</td>
<td>3.5 ± 0.5</td>
</tr>
<tr>
<td>419</td>
<td>−1.9 ± 0.7</td>
<td>−2.2</td>
<td>−6.3 ± 0.3</td>
<td>−5.7 ± 0.6</td>
<td>3.5 ± 0.6</td>
<td>3.5 ± 0.6</td>
</tr>
<tr>
<td>419.53</td>
<td>−2.2 ± 0.2</td>
<td>−2.6</td>
<td>−5.8 ± 0.8</td>
<td>−5.8 ± 0.9</td>
<td>3.2 ± 0.9</td>
<td>3.6 ± 0.9</td>
</tr>
<tr>
<td>420</td>
<td>−2.1 ± 0.3</td>
<td>−2.7</td>
<td>−7.0 ± 0.2</td>
<td>−6.5 ± 0.5</td>
<td>3.8 ± 0.6</td>
<td>4.3 ± 0.6</td>
</tr>
<tr>
<td>420.25</td>
<td>−2.1 ± 0.2</td>
<td>−2.8</td>
<td>−7.0 ± 0.4</td>
<td>−6.5 ± 0.6</td>
<td>3.7 ± 0.7</td>
<td>4.4 ± 0.7</td>
</tr>
<tr>
<td>421</td>
<td>−1.6 ± 0.1</td>
<td>−1.9</td>
<td>−6.4 ± 0.2</td>
<td>−5.9 ± 0.5</td>
<td>4.0 ± 0.6</td>
<td>4.3 ± 0.6</td>
</tr>
<tr>
<td>421.34</td>
<td>−2.4 ± 0.1</td>
<td>−2.9</td>
<td>−7.2 ± 0.1</td>
<td>−6.7 ± 0.4</td>
<td>3.7 ± 0.5</td>
<td>4.3 ± 0.5</td>
</tr>
<tr>
<td>421.92</td>
<td>−2.1 ± 0.3</td>
<td>−2.8</td>
<td>−6.8 ± 0.2</td>
<td>−6.3 ± 0.6</td>
<td>3.6 ± 0.6</td>
<td>4.2 ± 0.6</td>
</tr>
<tr>
<td>422.05</td>
<td>−2.0 ± 0.4</td>
<td>−2.6</td>
<td>−6.6 ± 0.1</td>
<td>−6.0 ± 0.4</td>
<td>3.4 ± 0.5</td>
<td>3.8 ± 0.5</td>
</tr>
<tr>
<td>422.22</td>
<td>−2.2 ± 0.1</td>
<td>−2.6</td>
<td>−7.5 ± 0.2</td>
<td>−6.9 ± 0.5</td>
<td>4.3 ± 0.5</td>
<td>4.7 ± 0.5</td>
</tr>
<tr>
<td>422.38</td>
<td>−1.8 ± 0.3</td>
<td>−2.1</td>
<td>−8.0 ± 0.2</td>
<td>−7.5 ± 0.6</td>
<td>5.5 ± 0.6</td>
<td>5.5 ± 0.6</td>
</tr>
<tr>
<td>422.51</td>
<td>−2.1 ± 0.1</td>
<td>−2.6</td>
<td>−6.3 ± 0.9</td>
<td>−5.2 ± 0.8</td>
<td>2.6 ± 0.8</td>
<td>3.2 ± 0.8</td>
</tr>
<tr>
<td>422.67</td>
<td>−2.5 ± 0.2</td>
<td>−2.6</td>
<td>−7.4 ± 0.3</td>
<td>−6.9 ± 0.5</td>
<td>4.3 ± 0.6</td>
<td>4.4 ± 0.6</td>
</tr>
<tr>
<td>422.965</td>
<td>−1.8 ± 0.2</td>
<td>−2.0</td>
<td>−6.7 ± 0.1</td>
<td>−6.2 ± 0.5</td>
<td>4.2 ± 0.5</td>
<td>4.4 ± 0.5</td>
</tr>
<tr>
<td>423.256</td>
<td>−1.4 ± 0.1</td>
<td>−1.7</td>
<td>−5.4 ± 0.3</td>
<td>−4.8 ± 0.5</td>
<td>3.1 ± 0.6</td>
<td>3.4 ± 0.6</td>
</tr>
<tr>
<td>423.56</td>
<td>−0.9 ± 0.2</td>
<td>−1.3</td>
<td>−5.0 ± 0.4</td>
<td>−4.7 ± 1.0</td>
<td>3.4 ± 1.0</td>
<td>3.7 ± 1.0</td>
</tr>
<tr>
<td>423.87</td>
<td>—</td>
<td>—</td>
<td>−6.9 ± 0.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>424.01</td>
<td>−1.2 ± 0.2</td>
<td>−1.5</td>
<td>−5.6 ± 0.0</td>
<td>−4.9 ± 0.4</td>
<td>3.4 ± 0.5</td>
<td>3.7 ± 0.4</td>
</tr>
<tr>
<td>424.32</td>
<td>−2.0 ± 0.2</td>
<td>−2.9</td>
<td>−5.7 ± 0.4</td>
<td>−5.2 ± 0.7</td>
<td>2.3 ± 0.8</td>
<td>3.2 ± 0.8</td>
</tr>
<tr>
<td>424.595</td>
<td>−1.7 ± 0.2</td>
<td>−2.1</td>
<td>−6.7 ± 0.3</td>
<td>−6.2 ± 0.6</td>
<td>4.1 ± 0.6</td>
<td>4.4 ± 0.6</td>
</tr>
<tr>
<td>424.885</td>
<td>−0.4 ± 0.3</td>
<td>−0.9</td>
<td>−5.1 ± 0.2</td>
<td>−4.5 ± 0.5</td>
<td>3.6 ± 0.6</td>
<td>4.1 ± 0.5</td>
</tr>
<tr>
<td>425.325</td>
<td>−2.0 ± 0.1</td>
<td>—</td>
<td>−6.4 ± 0.3</td>
<td>−5.9 ± 0.6</td>
<td>—</td>
<td>3.9 ± 0.6</td>
</tr>
<tr>
<td>425.68</td>
<td>−1.4 ± 0.4</td>
<td>−2.4</td>
<td>−6.8 ± 0.4</td>
<td>−6.3 ± 0.6</td>
<td>3.9 ± 0.6</td>
<td>4.6 ± 0.6</td>
</tr>
<tr>
<td>425.83</td>
<td>−0.8 ± 0.1</td>
<td>−0.8</td>
<td>−5.3 ± 0.1</td>
<td>−4.8 ± 0.6</td>
<td>4.0 ± 0.6</td>
<td>3.9 ± 0.6</td>
</tr>
<tr>
<td>426.15</td>
<td>−2.0 ± 0.2</td>
<td>−1.5</td>
<td>−5.9 ± 0.0</td>
<td>−5.3 ± 0.4</td>
<td>3.8 ± 0.5</td>
<td>3.3 ± 0.5</td>
</tr>
<tr>
<td>426.28</td>
<td>−0.7 ± 0.1</td>
<td>−1.4</td>
<td>−5.7 ± 0.6</td>
<td>−5.1 ± 0.8</td>
<td>3.8 ± 0.8</td>
<td>4.4 ± 0.8</td>
</tr>
<tr>
<td>426.455</td>
<td>−0.9 ± 0.3</td>
<td>−1.3</td>
<td>−6.3 ± 0.1</td>
<td>−5.9 ± 0.6</td>
<td>4.6 ± 0.7</td>
<td>5.0 ± 0.7</td>
</tr>
<tr>
<td>426.58</td>
<td>−0.7 ± 0.2</td>
<td>−1.3</td>
<td>−5.8 ± 0.4</td>
<td>−5.3 ± 0.6</td>
<td>4.0 ± 0.7</td>
<td>4.6 ± 0.7</td>
</tr>
<tr>
<td>426.735</td>
<td>−1.8 ± 0.2</td>
<td>−1.8</td>
<td>−6.7 ± 0.4</td>
<td>−6.2 ± 0.6</td>
<td>4.4 ± 0.6</td>
<td>4.4 ± 0.6</td>
</tr>
<tr>
<td>427.03</td>
<td>−1.8 ± 0.5</td>
<td>−2.2</td>
<td>−6.2 ± 0.6</td>
<td>−5.6 ± 0.9</td>
<td>3.4 ± 1.0</td>
<td>4.0 ± 1.0</td>
</tr>
<tr>
<td>427.18</td>
<td>−1.9 ± 0.2</td>
<td>−2.1</td>
<td>−6.1 ± 0.6</td>
<td>−5.6 ± 0.7</td>
<td>3.5 ± 0.7</td>
<td>3.7 ± 0.7</td>
</tr>
<tr>
<td>427.35</td>
<td>—</td>
<td>—</td>
<td>−4.7 ± 0.2</td>
<td>−4.1 ± 0.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>427.52</td>
<td>−0.5 ± 0.3</td>
<td>−1.2</td>
<td>−6.6 ± 0.2</td>
<td>−6.2 ± 0.7</td>
<td>5.0 ± 0.7</td>
<td>5.6 ± 0.7</td>
</tr>
<tr>
<td>427.78</td>
<td>−1.4 ± 0.1</td>
<td>−1.3</td>
<td>−5.3 ± 0.3</td>
<td>−4.7 ± 0.6</td>
<td>3.4 ± 0.6</td>
<td>3.4 ± 0.6</td>
</tr>
<tr>
<td>428.095</td>
<td>−0.4 ± 0.1</td>
<td>−0.4</td>
<td>−5.8 ± 0.6</td>
<td>−5.3 ± 0.7</td>
<td>4.9 ± 0.7</td>
<td>4.9 ± 0.7</td>
</tr>
<tr>
<td>428.56</td>
<td>−0.1 ± 0.4</td>
<td>−0.4</td>
<td>−7.1 ± 0.2</td>
<td>−6.5 ± 0.5</td>
<td>6.1 ± 0.5</td>
<td>6.1 ± 0.5</td>
</tr>
<tr>
<td>434.03</td>
<td>−1.8 ± 0.5</td>
<td>−2.3</td>
<td>−9.0 ± 0.0</td>
<td>−8.6 ± 0.6</td>
<td>6.3 ± 0.6</td>
<td>6.8 ± 0.8</td>
</tr>
<tr>
<td>434.73</td>
<td>−2.1 ± 0.1</td>
<td>−2.3</td>
<td>−8.0 ± 0.1</td>
<td>−7.4 ± 0.4</td>
<td>5.1 ± 0.5</td>
<td>5.3 ± 0.4</td>
</tr>
</tbody>
</table>

All δ¹⁵N values are shown ±1σ, and ε values are shown with fully propagated errors. Blank-corrected δ¹⁵N_Npor data reflect a blank with δ¹⁵N value of 0 ± 10‰, and Rayleigh fractionation associated with incomplete oxidation of up to 0.7‰ (1).
Table S2. Parameter values for modern and OAE-type oceans

<table>
<thead>
<tr>
<th>Variable</th>
<th>Note</th>
<th>Definition</th>
<th>Value (modern)</th>
<th>Value (OAE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPP</td>
<td>in 10^{15} mol/y</td>
<td>export production</td>
<td>0.075</td>
<td>0.075</td>
</tr>
<tr>
<td>Vs</td>
<td>in 10^{15} m3</td>
<td>surface volume</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Vd</td>
<td>in 10^{15} m3</td>
<td>deep volume</td>
<td>1421</td>
<td>1421</td>
</tr>
<tr>
<td>U</td>
<td>in 10^{15} m3/y</td>
<td>upwelling</td>
<td>1.95</td>
<td>1.95</td>
</tr>
<tr>
<td>INVs</td>
<td>in 10^{15} mol</td>
<td>surface N inventory</td>
<td>0.125</td>
<td>0.125</td>
</tr>
<tr>
<td>INVD</td>
<td>in 10^{15} mol</td>
<td>deep N inventory</td>
<td>49.875</td>
<td>49.875</td>
</tr>
<tr>
<td>NH$_4$s</td>
<td>fraction</td>
<td>% NH$_4^+$ in surface</td>
<td>4.28E−4</td>
<td>4.09</td>
</tr>
<tr>
<td>NO$_3$s</td>
<td>fraction</td>
<td>% NO$_3^-$ in surface</td>
<td>4.28E−5</td>
<td>4.09</td>
</tr>
<tr>
<td>NH$_4$d</td>
<td>fraction</td>
<td>% NH$_4^+$ in deep</td>
<td>4.28E−5</td>
<td>0.9</td>
</tr>
<tr>
<td>NO$_3$d</td>
<td>fraction</td>
<td>% NO$_3^-$ in deep</td>
<td>4.28E−5</td>
<td>0.05</td>
</tr>
<tr>
<td>m$_{atm}$</td>
<td>moles</td>
<td>N atmosphere</td>
<td>1E9</td>
<td>1E9</td>
</tr>
<tr>
<td>m$_{surf}$</td>
<td>moles</td>
<td>N-surface bio</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>m$_{deep}$</td>
<td>moles</td>
<td>N-deep bio</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>m$_{sed}$</td>
<td>moles</td>
<td>N sediments</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

A — anammoxNH$_4$→N$_2$/ðdeepNH$_4$→NO$_3$ + anammoxNH$_4$→N$_2$) | 0.0085 | 0.15 |

S — denit$_{sed}$/ðdenit$_{sed}$ + denit$_{water}$ | 0.8 | 1 |

Rec — surface recycling = surf$_{bio}$−NH$_4$/export | 9 | 13.5 |

Ch — deep$_{bio}$−NO$_3$/deep$_{bio}$−NO$_3$ | 0.05 | 0.05 |

Aos — surf$_{bio}$−NO$_3$/surf$_{bio}$, fluxin | 0.01875 | 0.03 |

Table S3. Sensitivity analysis

<table>
<thead>
<tr>
<th>NH$_4^+$ Fractionations</th>
<th>Rec</th>
<th>Sediment enrichment (%)</th>
<th>Modern δ^{15}N$_{sed}$ (%)</th>
<th>OAE δ^{15}N$_{sed}$ (%)</th>
<th>OAE δ^{15}N$_{sed}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface:</td>
<td>9</td>
<td>1</td>
<td>5.7</td>
<td>13.6</td>
<td>13.2</td>
</tr>
<tr>
<td>$r_{assim} = 4%$, $r_{nitrif} = 22%$</td>
<td>—</td>
<td>0</td>
<td>4.8</td>
<td>12.6</td>
<td>12.2</td>
</tr>
<tr>
<td>Deep:</td>
<td>13.5</td>
<td>1</td>
<td>5.7</td>
<td>13.4</td>
<td>13.0</td>
</tr>
<tr>
<td>$r_{assim} = 4%$, $r_{nitrif} = 22%$</td>
<td>—</td>
<td>0</td>
<td>4.8</td>
<td>12.4</td>
<td>12.0</td>
</tr>
<tr>
<td>$r_{assim} = 14%$, $r_{nitrif} = 4%$</td>
<td>—</td>
<td>0</td>
<td>4.6</td>
<td>−2.5</td>
<td>−4.5</td>
</tr>
<tr>
<td>Surface:</td>
<td>9</td>
<td>1</td>
<td>5.5</td>
<td>−2.5</td>
<td>−4.3</td>
</tr>
<tr>
<td>$r_{assim} = 14%$, $r_{nitrif} = 4%$</td>
<td>—</td>
<td>0</td>
<td>4.6</td>
<td>−5.0</td>
<td>−7.2</td>
</tr>
<tr>
<td>Surface:</td>
<td>9</td>
<td>1</td>
<td>4.9</td>
<td>1.3</td>
<td>−1.3</td>
</tr>
<tr>
<td>$r_{assim} = 24%$, $r_{nitrif} = 14%$</td>
<td>—</td>
<td>0</td>
<td>4.0</td>
<td>0.4</td>
<td>−2.2</td>
</tr>
<tr>
<td>Deep:</td>
<td>13.5</td>
<td>1</td>
<td>4.9</td>
<td>−0.8</td>
<td>−3.5</td>
</tr>
<tr>
<td>$r_{assim} = 24%$, $r_{nitrif} = 14%$</td>
<td>—</td>
<td>0</td>
<td>3.9</td>
<td>−1.7</td>
<td>−4.5</td>
</tr>
<tr>
<td>Surface:</td>
<td>9</td>
<td>1</td>
<td>4.9</td>
<td>1.4</td>
<td>−1.2</td>
</tr>
<tr>
<td>$r_{assim} = 14%$, $r_{nitrif} = 4%$</td>
<td>—</td>
<td>0</td>
<td>4.0</td>
<td>0.5</td>
<td>−2.2</td>
</tr>
<tr>
<td>Deep:</td>
<td>13.5</td>
<td>1</td>
<td>4.9</td>
<td>−0.7</td>
<td>−3.5</td>
</tr>
<tr>
<td>$r_{assim} = 24%$, $r_{nitrif} = 14%$</td>
<td>—</td>
<td>0</td>
<td>3.9</td>
<td>−1.6</td>
<td>−4.4</td>
</tr>
</tbody>
</table>

Sedimentary δ^{15}N values from Fig. S1 are shown in bold.