Nitration of Hsp90 induces cell death

Mary Clara Franco, Yaozu Ye, Christian A. Refakis, Jessica L. Feldman, Audrey L. Stokes, Manuela Basso, Raquel M. Melero Fernández de Mera, Nicklaus A. Sparrow, Noel Y. Calingasan, Mahmoud Kiaei, Timothy W. Rhoads, Thong C. Ma, Martin Grumet, Stephen Barnes, M. Flint Beal, Joseph S. Beckman, Ryan Mehl, and Alvaro G. Estévez

*Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827; Departments of *Pathology and *Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294; *Franklin and Marshall College, Lancaster, PA 17603; *Burke Medical Research Institute, White Plains, NY 10605; *Universidad de Castilla-La Mancha, 02071 Albacete, Spain; *Department of Neurology and Neurosciences, Weill Cornell Medical College, New York, NY 10063; *Department of Biochemistry, Oregon State University, Corvallis, OR 97331; and *Rutgers, The State University of New Jersey, Piscataway, NJ 08854

AUTHOR SUMMARY

Oxidative stress plays a critical role in the immune defense by killing pathogens and tumor cells, but this form of stress also can promote disease processes (1). The vast number of oxidation products and their potential targets has made it difficult to identify the critical biological bases of such pathogenic mechanisms. Our previous work showed that a potent oxidant known as “peroxynitrite” (ONOO\(^{-}\)) activates distinct cell-death pathways in motor neurons and in PC12 cells, a cell line used to study neural cell growth and differentiation (1, 2). Oxidative damage to proteins by ONOO\(^{-}\) can be detected by examining the addition of nitro groups to tyrosine residues. This process is not random and occurs at specific sites on surprisingly few proteins (3). Because cell death induced by ONOO\(^{-}\) in motor neurons and PC12 cells can be prevented by small molecules that avert tyrosine nitration (4), we hypothesized that nitration of a particular protein might activate specific death-signaling pathways. The challenge has been to distinguish the nitrated proteins that act as causal drivers of pathology from the far more common sites of protein nitration that may constitute collateral damage with minimal functional consequences.

Mass spectrometry revealed that the prosurvival protein heat shock protein 90 (Hsp90) is a major target for ONOO\(^{-}\) in vivo and that five of its 26 tyrosine residues are susceptible to nitration. Neuronal death was triggered by the intracellular delivery of purified Hsp90 treated with ONOO\(^{-}\). Even without induction, constitutive Hsp90 expression accounts for ~3% of soluble protein in motor neurons. Delivery of only ~4% of nitrated Hsp90 relative to endogenous, unmodified Hsp90 was sufficient to induce motor neuron death, indicating that nitration of Hsp90 elicits a gain of function that turns the protein from prosurvival to toxic. The replacement of the five tyrosine residues susceptible to nitration by ONOO\(^{-}\) to nitration-resistant phenylalanine residues prevented recombinant Hsp90 from becoming toxic after treatment with ONOO\(^{-}\). Retention of either tyrosine residues 33 or 56 allowed this mutated form of Hsp90 to become toxic after treatment with ONOO\(^{-}\), whereas tyrosine at the other three sites did not affect toxicity. These results were supported further by using site-specific unnatural amino acid mutagenesis to incorporate a nitrotyrosine residue rather than a tyrosine residue directly at each of the five known sites of nitration in Hsp90; only nitrotyrosine incorporated at either position 33 or 56 on Hsp90 induced motor neuron death. Thus, incorporation of a single nitrotyrosine near the ATP-binding pocket of the protein was sufficient to induce motor neuron death at the same levels observed for the ONOO\(^{-}\)-treated recombinant Hsp90 protein.

Further study revealed that the toxic form of nitrated Hsp90 was present in motor neurons of spinal cords from sporadic amyotrophic lateral sclerosis (ALS) patients, in animal models of ALS, and in spinal cords following experimental spinal cord contusion. These results show that nitration of Hsp90 occurs in vivo in the cells and tissues most affected by chronic degenerative diseases like ALS as well as after acute trauma to the central nervous system.

Finally, we were able to show that nitration of Hsp90 induced motor neuron death by affecting P2X7-mediated activation of the Fas death pathway (Fig. P1). P2X7 is an extracellular ATP receptor/channel implicated in inflammation and cell death, and the binding of Hsp90 to its intracellular domain regulates P2X7 activity. Inhibitors of P2X7, the Fas pathway, and

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Ferlay available online through the PNAS open access option.

www.pnas.org/cgi/doi/10.1073/pnas.1215177110

PNAS | March 19, 2013 | vol. 110 | no. 12 | 4449–4450

"To whom correspondence should be addressed. E-mail: alvaro.estevez@ucf.edu."

See full research article on page E1102 of www.pnas.org.

Cite this Author Summary as: PNAS 10.1073/pnas.1215177110.
caspases—proteins that, when activated, are a hallmark of cell death by a process known as apoptosis—all prevented motor neuron death induced by nitrated Hsp90. In these cells, the activation of P2X7 resulted in a calcium influx that mobilized Fas ligand (FasL) from intracellular vesicles to the plasma membrane. Remarkably, the cell-death pathway that was activated by nitrated Hsp90 is the same pathway triggered by the expression of mutant superoxide dismutase (SOD), an antioxidant enzyme that, when mutated, is linked to familial ALS (5).

The approach used here provides conclusive evidence that selective nitration at a specific tyrosine residue converts Hsp90 from a prosurvival protein into a potent mediator of neuronal cell death. The high cellular abundance of Hsp90 makes it a potential sensor for ONOO⁻. In pathological conditions such as ALS and spinal cord injury, nitration of Hsp90 may be the key identifier for highly damaged and subfunctional cells to activate death and removal pathways.