Reprogramming of human fibroblasts toward a cardiac fate

Young-Jae Nam, Kunhua Song, Xiang Luo, Edward Daniel, Kaleb Lambeth, Katherine West, Joseph A. Hill, J. Michael DiMaio, Linda A. Baker, Rhonda Bassel-Duby, and Eric N. Olson

Departments of *Molecular Biology, *Internal Medicine, *Cardiothoracic Surgery, and *Urology, and *Center for Human Genetics/McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390

Contributed by Eric N. Olson, January 30, 2013 (sent for review November 14, 2012)

Reprogramming of mouse fibroblasts toward a myocardial cell fate by forced expression of cardiac transcription factors or microRNAs has recently been demonstrated. The potential clinical applicability of these findings is based on the minimal regenerative potential of the adult human heart and the limited availability of human heart tissue. An initial but mandatory step toward clinical application of this approach is to establish conditions for conversion of adult human fibroblasts to a cardiac phenotype. Toward this goal, we sought to determine the optimal combination of factors necessary and sufficient for direct myocardial reprogramming of human fibroblasts. Here we show that four human cardiac transcription factors, including GATA binding protein 4, Hand2, T-box5, and myocardin, and two microRNAs, miR-1 and miR-133, activated cardiac marker expression in neonatal and adult human fibroblasts. After maintenance in culture for 4–11 wk, human fibroblasts reprogrammed with these proteins and microRNAs displayed sarcomere-like structures and calcium transients, and a small subset of such cells exhibited spontaneous contractility. These phenotypic changes were accompanied by expression of a broad range of cardiac genes and suppression of nonmyocyte genes. These findings indicate that human fibroblasts can be reprogrammed to cardiac-like myocytes by forced expression of cardiac transcription factors with muscle-specific microRNAs and represent a step toward possible therapeutic application of this reprogramming approach.

Reprogramming Human Foreskin Fibroblasts with Human Cardiac Transcription Factors. We first examined whether the same four cardiac transcription factors, GHMT, shown previously to direct the reprogramming of mouse fibroblasts to induced cardiac-like myocytes (iCLMs) (11), were able to reprogram neonatal human foreskin fibroblasts (HFFs) toward a cardiac phenotype. Unlike mouse fibroblasts, retroviral transduction of GHMT in HFFs failed to efficiently activate cardiac marker expression after 2 wk (Fig. S1). Thus, we selected 14 additional transcription factors that are known to be important in heart development and 3 muscle-specific miRNAs in an effort to identify optimal combinations of factors for human cardiac reprogramming (Fig. S2 A and B).

Two weeks after transducing HFFs with retroviruses expressing GMT, GHMT, or GHMT with the addition of an extra factor, we quantified endogenous cardiac marker expression using flow cytometry. GMT and GHMT activated cardiac Troponin T (cTnT) expression in ∼0.2% and ∼2% of cells, respectively. In contrast, the addition of myocardin (Myod or My) or myocardin-related transcription factor-A (Mrtf-A) to GHMT, significantly increased the number of cTnT + cells to ∼17% and ∼13%, respectively.

Results

Conflict of interest statement: E.N.O., Y.-J.N., and K.S. have all filed a patent relating to reprogramming of human fibroblasts to human cardiomyocytes. This patent has been licensed by LoneStar Heart, Inc. E.N.O. is a cofounder of this company and holds equity.

To whom correspondence should be addressed. E-mail: Eric.Olson@utsouthwestern.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1301019110/-/DCSupplemental.

The ability to convert one cell type to another by forced expression of cardiac transcription factors has been known for decades (1, 2). For example, overexpression of the skeletal muscle basic helix-loop-helix transcription factor, MyoD or related factors in fibroblasts, converts these cells into skeletal muscle (3, 4). Similarly, forced expression of the cardiovascular coactivator myocardin is sufficient to convert fibroblasts into smooth muscle cells (5–9). However, no single factor has yet been shown to possess the ability to convert one cell type to another by forced expression of transcription factors in combination. Here we show that four human cardiac transcription factors, including GATA binding protein 4, Hand2, T-box5, and myocardin, and two microRNAs, miR-1 and miR-133, activated cardiac marker expression in neonatal and adult human fibroblasts. After maintenance in culture for 4–11 wk, human fibroblasts reprogrammed with these proteins and microRNAs displayed sarcomere-like structures and calcium transients, and a small subset of such cells exhibited spontaneous contractility. These phenotypic changes were accompanied by expression of a broad range of cardiac genes and suppression of nonmyocyte genes. These findings indicate that human fibroblasts can be reprogrammed to cardiac-like myocytes by forced expression of cardiac transcription factors with muscle-specific microRNAs and represent a step toward possible therapeutic application of this reprogramming approach.

Cardiogenesis | cell fate specification | phenotypic switching | regeneration

5588–5593 | PNAS | April 2, 2013 | vol. 110 | no. 14

www.pnas.org/cgi/doi/10.1073/pnas.1301019110
The ability of each combination of factors (GHMT plus each of the 14 transcription factors and 3 miRNAs) to activate cardiac gene expression was also analyzed by the percentage of tropomyosin+ cells using flow cytometry. Although the percentage of tropomyosin+ cells induced by GMT was only ∼1%, GHMT was able to induce ∼24% of cells to adopt the tropomyosin+ phenotype, indicating the critical role of Hand2 in cardiac reprogramming of human fibroblasts. Consistent with cTnT expression, addition of either Myocd or Mrtf-A significantly enhanced the percentage of tropomyosin+ cells compared with GHMT alone (∼39% and ∼45%, respectively; Fig. S3 A and B). However, neither Myocd nor Mrtf-A alone was able to activate cTnT or tropomyosin expression in HFFs (Fig. S3C).

Because Myocd can activate smooth muscle gene expression in fibroblasts (6–9), we analyzed the expression of smooth muscle markers including smooth muscle myosin heavy chain and smooth muscle protein 22 alpha that are not expressed in adult cardiomyocytes (20–22). These smooth muscle markers were up-regulated in adult human cardiac fibroblasts (AHCf) transduced with GHMT plus Myocd [referred to as the five factors (5F) or GHMMyT] (Fig. S4 A). However, the level of expression was insignificant compared with that of human aorta. These findings suggested that myocardin in combination with other cardiac transcription factors activates the cardiac gene program more prominent than the smooth muscle gene program.

We next determined whether all five factors, GHMMyT, are necessary for optimal activation of cardiac marker expression in HFFs by withdrawing each factor individually from the 5F pool. Removing Gata4, Hand2, Tbx5, or Myocd markedly decreased the percentage of cells expressing cTnT (Fig. 1 C and D). In contrast, removal of MeF2c did not diminish the expression of cTnT in response to the other four factors. On the other hand, the activation of tropomyosin expression was ablated when Hand2 was withdrawn, but was not significantly altered by withdrawal of any other factor from the 5F pool (Fig. 1 C and D). Indeed, Hand2 when combined with any three of the four GMMyT factors resulted in activation of tropomyosin expression in 60–70% of HFFs. These findings suggest that the GMMyT factors act redundantly to complement the reprogramming activity of Hand2 in activation of tropomyosin expression in HFFs. Surprisingly, the absence...
of Hand2 almost eliminated both cTnT and tropomyosin expression in HFFs, demonstrating the irreplaceable activity of this factor for activation of cardiac contractile gene programs in human fibroblasts, unlike its synergistic role in mouse myocardial reprogramming (11).

Because withdrawing any of the five factors (GHMMiT) failed to further increase cardiac marker expression, we searched for an additional sixth factor that could cooperatively enhance cardiac gene expression in HFFs by adding each factor into the 5F pool. No other factor added to the 5F pool allowed for further optimization of the reprogramming process. On the contrary, most other factors demonstrated inhibitory effects (Fig. S5 and Fig. 2A).

Influence of miRNAs on Cardiac Reprogramming. In an effort to further optimize the reprogramming process, we tested whether various muscle-specific miRNAs could augment the activity of GHMT or GHMMyT. Prior studies reported that miR-1 alone or in combination with miR-133, -208, and -499 allowed for efficient reprogramming of mouse cardiac fibroblasts to a cardiomyocyte-like phenotype (19). However, in our hands, retroviral expression of these miRNAs failed to activate expression of cardiac markers in mouse fibroblasts (Fig. S6A). We transduced HFFs with 5F and either miR-1 or miR-133 or both. The expression of endogenous cardiac markers, including cTnT and tropomyosin, was quantified by flow cytometry 2 wk after infection. GHMMyT with both miRNAs (termed 7F) increased the percentage of cTnT+ cells (Fig. 2B and C), whereas there was no significant effect of these miRNAs on tropomyosin expression (Fig. S6B and C). The effect on cardiac marker expression by both miRNAs was relatively mild, but highly reproducible. Next, we tested whether these miRNAs were able to replace any of the 5Fs or whether all 7Fs were necessary for optimal activation of cardiac gene expression by withdrawing each factor from the 7F pool. Unexpectedly, the deletion of Met2c significantly increased the percentage of cells expressing cardiac markers, as quantified by flow cytometry (Fig. S7 and Fig. 2D). Although neither miR-1 nor miR-133 was required, the six factors including these two muscle-specific miRNAs (termed 6F: Gata4, Hand2, Tbx5, Myocd, miR-1, and miR-133) represented the most optimal combination of factors for efficient initiation of cardiac gene expression in human fibroblasts among the combinations of factors we tested. We henceforth refer to 5F-, 6F-, or 7F-transduced human fibroblasts expressing endogenous cardiac markers as human-induced cardiac-like myocytes (hiCLMs).

We also examined whether miR-133 was necessary for the activation of endogenous cardiac-specific gene expression using tail-tip fibroblasts isolated from mice lacking miR-133 (23). We found that genetic deletion of miR-133 markedly decreased the percentage of cells expressing cTnT (Fig. 2E).

Reprogramming Human Adult Cardiac and Dermal Fibroblasts. Cardiac fibroblasts represent the most prevalent cell type in the adult human heart and are the principal mediators of cardiac fibrosis and scar formation post-MI (24, 25). Thus, AHCFs are an ultimate target cell type for cardiac reprogramming. To examine whether

![Fig. 2. Determining the optimal combination of factors to activate cardiac gene expression.](image)

![Fig. 3. Induction of cardiac markers in AHCFs.](image)
combinations of factors could activate cardiac gene expression in this population of cells, we isolated AHCFs from human hearts provided by heart transplantation recipients or disqualified organ donors using an explant culture in which AHCFs migrated from minced heart tissue to activate viral growth medium. This method avoids contamination of adult cardiomyocytes, which are unable to migrate or survive in this medium. We transduced into AHCFs multiple combinations of factors including the 6F combination and expression of cardiac markers was analyzed 2 wk later. The 6F combination induced ~13% of AHCFs to become cTnT+, whereas other combinations we tested showed lower efficiency of generating cTnT+ cells (Fig. 5 A and B). Overall, the reprogramming efficiency of AHCFs was much lower than that of HFFs. This difference results, at least in part, from relatively inefficient retroviral transduction of AHCFs compared with HFFs because of the slower proliferation rate of AHCFs. Moreover, AHCFs from humans of at least 20 y of age have likely established more stable epigenetic programs, which are more refractory to reprogramming than HFFs isolated from newborns.

We also tested whether adult human dermal fibroblasts (AHDFs) could be reprogrammed into hiCLMs. Two weeks after transduction of AHDFs with retroviruses expressing 6F or 7F, cardiac marker expression was quantified by flow cytometry. Consistent with the reprogramming of HFFs and AHCFs, the presence of 6F activated a high percentage of AHDFs to express cTnT at 6 wk (Fig. S4), whereas there was no significant difference in tropomyosin expression with each combination (Fig. S8).

Analysis of the time course of cardiac marker expression in HFFs transduced with 6F showed that the percentage of cells expressing cTnT and tropomyosin reached 2.3% and 22.4%, respectively, at 1 wk and continuously increased up to 35% and 42.5% at 4 wk after transduction, respectively (Fig. S9 A and B).

Compared with the relatively rapid activation of cardiac gene expression seen in mouse tail-tip fibroblasts (TTFs), which showed a peak at 1 wk after viral transduction of GHMT (11), the initiation as well as full maturation of cardiac gene expression in HFFs was much slower. After extended culture periods of 4–5 wk postinfection, HFFs infected with various combinations of factors, including at least GHMYT, showed strong immunostaining of the sarcomeric proteins α-actinin and cTnT with cellular striations resembling sarcomere structures (Fig. 4A). With viral transduction of 6F, ~12% or ~19% of HFFs became α-actinin+ or cTnT+, respectively, by immunostaining, which was greater than with any other combinations we tested (Fig. 4B and C). However, 7F inducing Mrtf-A instead of Mef2c was unable to activate α-actinin expression in HFFs, indicating that Mrtf-A is not an alternative factor to Myocd for cardiomyocytes because of the cardiac specificity of the cTnT promoter, ruling out the possibility that GCaMP5-positive cells from HFFs or AHDFs were cardiomyocytes or adult heart (Fig. 5C).

Upon maintaining hiCLMs in culture for 11 wk, ~20% of cells still showed calcium transients (Fig. 5D), indicating that cardiac gene expression in human iPS cell–derived cardiomyocytes is more stable than that in mouse iPS cell–derived cardiomyocytes. Moreover, these hiCLMs maintain a normal atrioventricular node-like function and pacemaking activity, as shown by spontaneous calcium transients of mSNP cells carrying the atrial-specific cardiac gene 5F (Fig. 5E). These findings indicate that human fibroblasts can be converted into functional hiCLMs at lower efficiency and need a longer maturation time compared with mouse fibroblasts. Expression of the GCaMP5 reporter is specific for cardiomyocytes because of the cardiac specificity of the cTnT promoter, ruling out the possibility that GCaMP5-positive cells derive from a small population of fibroblasts reprogrammed to smooth muscle-like cells by Myocd. Moreover, smooth muscle cells do not display the type of spontaneous, rhythmic contractility observed in 5F-transduced fibroblast cultures.

Contrastility of hiCLMs. Upon maintaining hiCLMs in culture for 4 wk, we observed calcium transients in ~10% of HFFs (Fig. 6A) and ~15% of AHCFs (Fig. 6B) in response to potassium chloride stimulation. Using coinfection with a cTnT-green fluorescent protein (GFP) CaMP5 lentiviral reporter, in which expression of GCaMP5, a fluorescent calcium sensor, is controlled by the cardiac-specific cTnT promoter, we were able to identify a low percentage of hiCLMs generating spontaneous calcium transients at 8 wk after infection (Movie S1). By extending the culture period for ~11 wk, a small subset of hiCLMs derived from AHCFs exhibited spontaneous contractions (Movies S2 and S3). We did not observe spontaneous contractions in hiCLMs derived from HFFs or AHDFs. These findings indicate that human fibroblasts can be converted into functional hiCLMs at lower efficiency and need a longer maturation time compared with mouse fibroblasts. Expression of the GCaMP5 reporter is specific for cardiomyocytes because of the cardiac specificity of the cTnT promoter, ruling out the possibility that GCaMP5-positive cells derive from a small population of fibroblasts reprogrammed to smooth muscle-like cells by Myocd. Moreover, smooth muscle cells do not display the type of spontaneous, rhythmic contractility observed in 5F-transduced fibroblast cultures.

Fig. 4. Immunostaining of cardiac markers in 5F-, 6F-, or 7F-transduced human fibroblasts. Immunofluorescence staining for α-actinin (red) or cTnT (green) was performed 5 wk after transduction of (A) HFFs, (D) AHCFs, or (E) AHDFs with 5F, 6F, or 7F. (Scale bar, 100 μm.) (B) Quantification of α-actinin+ cells. (C) Quantification of cTnT+ cells. Percentage of α-actinin+ (B) or cTnT+ (C) cells after infection of HFFs with 5F, 7F, or 6F minus an indicated individual factor as shown. Data from two or three independent experiments are presented as mean ± SD.
therapeutically useful cells from an adult patient. An attractive strategy in regenerative medicine is to generate logically matched tissues and circumvent immunogenicity. In this context, we and others recently showed that mouse fibroblasts can be converted into functional cardiac-like myocytes by forced expression of three or four core cardiac transcription factors or muscle-specific miRNAs (10–12, 19, 27). Furthermore, direct delivery of these transcription factors into the myocardium of mice following MI reduced scar formation and blunted worsening of cardiac function, which appears to be at least partially attributable to reprogramming of nonmyocytes into cardiac-like myocytes (11, 12). To advance this strategy toward clinical application, reprogramming human fibroblasts is a prerequisite. In the present study, we identified a combination of factors capable of initiating cardiac gene expression in human fibroblasts. Whereas we previously found GHMT to be the optimal combination of factors for cardiac reprogramming of mouse fibroblasts (11), these factors alone were ineffective in activating cardiac gene expression in human fibroblasts and required the addition of Myocd for human cardiac gene expression. Two muscle-specific miRNAs, miR-1 and miR-133, further improved myocardial conversion of human fibroblasts and eliminated the requirement of Myocd. We showed previously that miR-1 and miR-133 are regulated by Myel2 (23), which likely contributes to their ability to replace this transcription factor in the reprogramming mixture. The different requirements for reprogramming of mouse and human fibroblasts likely reflect differences in the mouse and human fibroblast populations and the susceptibility of cardiac genes to activation in these different cells. A recent study highlighted the importance of myocardin in the activation of cardiac gene expression in mouse fibroblasts, demonstrating more effective induction of a cardiac phenotype with myocardin in combination with Myel2 and Tbx5, compared with any other combination of three factors from 10 candidate transcription factors including GMT (28). Although myocardin plays a key role in vascular smooth muscle cell differentiation (29), it also activates cardiac gene expression through interactions with other cardiac transcription factors including serum response factor, Tbx5, and Myel2 (5, 30, 31). Our results indicate that smooth muscle genes are minimally activated by myocardin in the presence of GMT, raising the possibility that the latter cardiac factors suppress the ability of myocardin to efficiently activate the smooth muscle gene program. In this regard, we showed previously that miR-133a null mice displayed disrupted sarcomeres and ectopic activation of smooth muscle genes in the developing heart (23). In addition, miR-1 and -133 have been shown to act through different mechanisms to influence the generation of cardiomyocytes from embryonic stem cells (32). Thus, we speculate that forced expression of miR-1 and -133 may play a role in development of sarcomere structure and suppression of smooth muscle gene expression in hiCLMs.

A concern with using freshly isolated primary fibroblasts as starting cells for reprogramming is that it is difficult to exclude contamination of other cell types, including immature or progenitor cells, which are known to be more susceptible to reprogramming (33). We found that a commercially available adult human dermal fibroblast cell line, which does not contain any contaminating cells, can convert to hiCLMs with comparable

Fig. 5. Gene expression profile in human fibroblasts transduced with SF. Gene expression profile was analyzed by microarray or quantitative PCR (qPCR) in HFFs or AHCFs 4 wk after transduction with SF. (A) Heat map of microarray data illustrating differentially expressed 2,436 genes in HFFs, SF-transduced HFFs, and adult human heart. Red indicates up-regulated genes; green indicates down-regulated genes. (B) Heat map of selected genes. Genes that encode cardiac contractile proteins, cardiac peptides, calcium handling genes, cardiac transcription factors, and genes involved in cardiac metabolism were up-regulated. In contrast, genes encoding nonmyocyte markers were down-regulated. (C) Gene expression analyses by qPCR in HFF and AHCFs transduced with SF. ACTC1, TNNT2, MYL7, MYH6, and TPM1 are sarcomere genes; ATP2A2, GJA1, and GJA5 are cardiac channel genes; NPPA and NPPB are cardiac peptide genes; COL1A2, COL3A1, and S100A4 are nonmyocyte genes. Expression of cardiac and nonmyocyte genes was quantified by qPCR. UD, undetectable.

Discussion

An attractive strategy in regenerative medicine is to generate therapeutically useful cells from an adult patient’s own ordinary tissue and replenish dying or diseased cells with these new cells (26). This autologous therapeutic approach can produce immunologically matched tissues and circumvent immnogenicity. In this context, we and others recently showed that mouse fibroblasts can be converted into functional cardiac-like myocytes by forced expression of three or four core cardiac transcription factors or muscle-specific miRNAs (10–12, 19, 27). Furthermore, direct delivery of these transcription factors into the myocardium of mice following MI reduced scar formation and blunted worsening of cardiac function, which appears to be at least partially attributable to reprogramming of nonmyocytes into cardiac-like myocytes (11, 12). To advance this strategy toward clinical application, reprogramming human fibroblasts is a prerequisite. In the present study, we identified a combination of factors capable of initiating cardiac gene expression in human fibroblasts. Whereas we previously found GHMT to be the optimal combination of factors for cardiac reprogramming of mouse fibroblasts (11), these factors alone were ineffective in activating cardiac gene expression in human fibroblasts and required the addition of Myocd for human cardiac gene expression. Two muscle-specific miRNAs, miR-1 and miR-133, further improved myocardial conversion of human fibroblasts and eliminated the requirement of Myocd. We showed previously that miR-1 and miR-133 are regulated by Myel2 (23), which likely contributes to their ability to replace this transcription factor in the reprogramming mixture. The different requirements for reprogramming of mouse and human fibroblasts likely reflect differences in the mouse and human fibroblast populations and the susceptibility of cardiac genes to activation in these different cells. A recent study highlighted the importance of myocardin in the activation of cardiac gene expression in mouse fibroblasts, demonstrating more effective induction of a cardiac phenotype with myocardin in combination with Myel2 and Tbx5, compared with any other combination of three factors from 10 candidate transcription factors including GMT (28). Although myocardin plays a key role in vascular smooth muscle cell differentiation (29), it also activates cardiac gene expression through interactions with other cardiac transcription factors including serum response factor, Tbx5, and Myel2 (5, 30, 31). Our results indicate that smooth muscle genes are minimally activated by myocardin in the presence of GMT, raising the possibility that the latter cardiac factors suppress the ability of myocardin to efficiently activate the smooth muscle gene program. In this regard, we showed previously that miR-133a null mice displayed disrupted sarcomeres and ectopic activation of smooth muscle genes in the developing heart (23). In addition, miR-1 and -133 have been shown to act through different mechanisms to influence the generation of cardiomyocytes from embryonic stem cells (32). Thus, we speculate that forced expression of miR-1 and -133 may play a role in development of sarcomere structure and suppression of smooth muscle gene expression in hiCLMs.

A concern with using freshly isolated primary fibroblasts as starting cells for reprogramming is that it is difficult to exclude contamination of other cell types, including immature or progenitor cells, which are known to be more susceptible to reprogramming (33). We found that a commercially available adult human dermal fibroblast cell line, which does not contain any contaminating cells, can convert to hiCLMs with comparable

Fig. 6. Measurement of calcium transient in hiCLMs. Calcium transient of a single cell was traced upon KCL stimulation in hiCLMs derived from (A) HFFs and (B) AHCFs. HFFs or AHCFs were used as a negative control accordingly. The graph bar represents the percentage of cells displaying calcium transients. The total number of cells recorded for calcium transients was 50 for HFFs and 19 for AHCFs.

www.pnas.org/cgi/doi/10.1073/pnas.1301019110 Nam et al.
efficiency to freshly isolated adult fibroblasts, excluding potential contributions of stem or progenitor cells in this process. Human cardiomyocytes have also been differentiated from human iPS cells or cardiac progenitors (34, 35). The ability to reprogram human fibroblasts that were expanded multiple times after isolation could, with further optimization, eventually allow large-scale production of hiCLMs for possible transplantation. In this context, a recent study demonstrated that human ES cell–derived cardiomyocytes can integrate into an infantated guinea pig heart and suppress development of post-MI arrhythmias (36). Given that human ES cells have limitations as a clinical source for cell transplantation, hiCLMs may be a viable alternative for this approach in the future.

As with other reprogrammed cells generated from human fibroblasts, including human iPS cells and human-induced neurons, human iCLMs are functionally immature, as indicated by their morphology, low-amplitude calcium transients in response to electrical stimulation, and relatively rare spontaneous contractions. In addition, the human iCLMs generated in this study were heterogeneous, containing cells with varying levels of expression of cardiac and noncardiac genes. Phenotypic conversion to a cardiac cell fate probably requires a precise stoichiometry as well as certain levels of expression of reprogramming factors, which are achieved only in a small subset of fibroblasts. Heterogeneity of hiCLMs is likely to reflect variations in the stoichiometry and levels of expression of reprogramming factors in individual cells. Moreover, variations in the percentage of cardiac marker–expressing cells from experiment to experiment are likely also attributable to heterogeneity of human fibroblasts that were isolated from human subjects of various ages and genetic backgrounds. Human fibroblasts whose epigenetic stabilities vary depending on their origins are likely to have a wide spectrum of susceptibility to reprogramming. In addition, the differences that exist in each viral preparation also contribute to variability in reprogramming efficiency. For similar reasons, we observed variable reprogramming efficiency from experiment to experiment even in mouse fibroblasts (11). Nevertheless, the results of this study indicate that diverse types of human fibroblasts can be reprogrammed toward a cardiac fate and establish a foundation for further optimization of this process and the eventual generation of more mature and homogeneous populations of hiCLMs. It will also be of particular interest to modify this process using pharmacologic agents and to generate specialized cells involved in cardiac conduction as a strategy for modulating cardiac contractility. Such studies are under way.

Materials and Methods

All deidentified human heart and foreskin tissues were obtained and banked with proper informed consent under approval of the University of Texas Southwestern Institutional Review Board (IRB CR00001649/STU 032011-174). All animal experiments were performed in accordance with the guidelines of the American Heart Association. The University of Texas Southwestern Microarray Core Facility for collecting gene expression data; Dr. Megan Kong for analyzing the microarray data; and Ankit Garg, Thomas Haden, Dr. Ning Liu, and Dr. Ji-Hoon Lee for technical advice. E.N.O. is supported by grants from the National Institutes of Health (NIH), the Donald W. Reynolds Center for Clinical Cardiovascular Research, the Robert A. Welch Foundation (Grant I-0025), the Leukemia Foundation-Transatlantic Network of Excellence in Cardiovascular Research Program, the American Heart Association-Jon Holden DeHaan Foundation, and the Cancer Prevention and Research Institute of Texas; L.A.B. is supported by the Seay Endowment and a grant from the NIH; and Y.-J.N. was supported by NIH Grant K08 HL111420-02.

ACKNOWLEDGMENTS. We thank Dr. J. Gearhart (University of Pennsylvania) for the cTnT-GcaMPS FuFudeltGw-vTA construct; J. Cabrera for graphics and the University of Texas Southwestern Microarray Core Facility for collecting gene expression data; Dr. Megan Kong for analyzing the microarray data; and Ankit Garg, Thomas Haden, Dr. Ning Liu, and Dr. Ji-Hoon Lee for technical advice. E.N.O. is supported by grants from the National Institutes of Health (NIH), the Donald W. Reynolds Center for Clinical Cardiovascular Research, the Robert A. Welch Foundation (Grant I-0025), the Leukemia Foundation-Transatlantic Network of Excellence in Cardiovascular Research Program, the American Heart Association-Jon Holden DeHaan Foundation, and the Cancer Prevention and Research Institute of Texas; L.A.B. is supported by the Seay Endowment and a grant from the NIH; and Y.-J.N. was supported by NIH Grant K08 HL111420-02.
Supporting Information

Nam et al. 10.1073/pnas.1301019110

SI Materials and Methods

Isolation of Human Fibroblasts. Human tissues were manually sharply minced and placed in fibroblast growth medium [DMEM supplemented with 10% FBS and 1% (vol/vol) penicillin/streptomycin]. Human foreskin fibroblasts (HFF) migrated out from the explants within 2 wk and were passaged three times before use. Adult human cardiac fibroblasts (AHCFs) were harvested from heart tissue within 2 wk and were harvested in 3–4 wk. These cells were passaged twice before use. Adult human dermal fibroblasts (AHDFs) were purchased from ScienceCell Research Laboratories.

Production of Retrovirus and Induction of Reprogramming. Retroviral constructs were generated by subcloning EGFP, Myc-tagged human GATA binding protein 4 (GATA4), Gata5, Hand1, Hand2, Hey2, Isl1, myocyte enhancer factor 2C (Mef2c), Mesp1, Myocd, Mrtfl, Nkx2.5, Smyd1, Srf, T-box5 (Tbx5), Tbx18, and Tbx20, and mouse Stars cDNAs and FLAG-tagged human Tead1 cDNA into pBabe-X. Retroviral DNA plasmid was transfected using FuGENE 6 (Promega) into Platinum A cells (Cell Biolabs) along with pCMV-VSV-G [Addgene plasmid 8454; deposited by Bob Weinberg (Massachusetts Institute of Technology, Whitehead Institute, Cambridge, MA) (1)] and pUMVC [Addgene plasmid 8449; deposited by Bob Weinberg (1)]. Platinum A cells were cultured as per manufacturer’s protocol. Platinum A cells were seeded into culture dishes a day before transfection in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin. Cells reached ~60–70% confluency on the day of transfection. Fifteen microliters of FuGENE 6 transfection reagent was mixed with 150 μl of OptiMEM reduced serum media (Invitrogen) for 5 min at room temperature. A total of 5 μg DNA plasmid was prepared to transfecT a 6-cm culture dish at a ratio of 8:8:1 (retroviral DNA: pUMVC: pCMV-VSV-G). DNA plasmid was added into the mixture of FuGENE 6 and OptiMEM solution and incubated for 15 min at room temperature. The mixture was then added to the plated Platinum A cells in 4 mL of media in a drop-by-drop manner. On the day of transfection, ~1 × 10^5 human fibroblasts were seeded into 6-cm culture dishes that were precoated with SureCoat (Cellutron) for a few hours. To infect one well of a six-well plate, the amount of plasmid DNA and transfection reagents and the number of human fibroblasts were scaled down to half of those used for 6-cm culture dishes. Twenty-four hours after transfection, polybrene was added to viral medium that was filtered through a 0.45-μm filter at a concentration of 6 μg/mL. The mixture replaced the growth medium in the cell culture plate with human fibroblasts. The viral infection was serially repeated twice. Twenty-four hours after the second infection, the viral medium was replaced with induction medium, composed of DMEM/199 (4:1), 10% conditioned medium obtained from neonatal rat cardiomyocyte culture, 10% FBS, 5% horse serum, 1% penicillin/streptomycin, 1% nonessential amino acids, 1% essential amino acids, 1% B-27, 1% insulin-selenium-transferrin, 1% vitamin mixture, and 1% sodium pyruvate (Invitrogen) as described previously (2). This medium was changed every other day until cells were harvested.

Flow Cytometry. Cells were trypsinized and fixed with fixation buffer (BD Bioscience) for 20 min on ice. Fixed cells were washed with Perm/Wash buffer (BD Bioscience). Then, cells were incubated with mouse monoclonal anti-cardiac Troponin T (cTnT) antibody (Thermo Scientific) at 1:200 dilution or mouse monoclonal anti-tropomyosin antibody (Sigma) at 1:800 dilution in Perm/Wash buffer for 1 h at room temperature followed by incubation with donkey anti-mouse Alexa fluor 647 (Invitrogen) at 1:200 for cTnT and at 1:800 for tropomyosin. Cells were washed with Perm/Wash buffer, and then analyzed for cTnT or tropomyosin expression using FACS Caliber (BD Sciences) and FlowJo software.

Immunocytochemistry. Cells were fixed in 4% paraformaldehyde for 10 min and permeabilized with permeabilization buffer (0.5% Triton-X). Cells were incubated with primary antibodies against cTnT (Thermo Scientific, 1:400 dilution) or α-actinin (Sigma, 1:400 dilution). After washing with PBS, Alexa fluorogenic secondary antibodies (Invitrogen) were used to detect the signal.

Real-Time PCR and DNA Microarray. Total RNA was extracted from human fibroblasts transduced with indicated retroviruses, adult human ventricular tissue, human aorta, and human induced pluripotent stem (iPS) cell–derived cardiomyocytes, which were purchased from Cellular Dynamics and cultured as per the manufacturer’s protocol. cDNA was synthesized by reverse transcription for real-time PCR. Microarray analysis was performed on the platform of Affymetrix Human Exon 1.0 ST array by the University of Texas Southwestern Microarray Core Facility. Data were analyzed using Multiexperimenter Viewer software (TM4) and deposited in the National Center for Biotechnology Information’s Gene Expression Omnibus (GSE43588).

Calcium Transient Measurements. Calcium imaging was used to detect calcium transients in human-induced cardiomyocyte-like myocytes. Cells were loaded with 5 μM Fura-2 AM (Invitrogen) together with 0.1% Pluronic F-127 (Invitrogen) in modified Tyrode solution (140 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 10mM glucose, and 10 mM Hepes, pH 7.4) containing 0.1% BSA and 1% pyruvate for 30 min at 37 °C while shielded from light. Before imaging, the cells were washed and allowed to de-esterify the Fura-2 AM for 30 min in Tyrode solution at room temperature as described previously (3). Ca^{2+} imaging was performed using the PTI (Photon Technology International) Ca^{2+} Imaging System with an automated fluorescence microscope and a CCD camera. A glass coverslip was inserted into the bottom of a perfusion chamber. The cells were perfused with modified Tyrode solution or 45 mM KCl solution following the protocol; [Ca^{2+}], in individual cell clusters was detected by exciting Fura-2 alternately at 340 and 380 nm, and recording emitted fluorescence at 510 nm. Data were analyzed by Image Master software (Photon Technology International).

Fig. S1. Inefficient activation of cardiac gene expression by Gata4, Hand2, Mef2c, and Tbx5 (GHMT). Flow cytometry plot for analyses of cTnT+ cells 2 wk after infection of HFFs with retroviruses expressing GHMT. Cells infected with empty vector retrovirus were used as a control. The numbers in each plot indicate the percentage of cTnT+ cells. Two independent experiments were presented.

Fig. S2. Retroviral expression of candidate transcription factors and microRNAs (miRNAs). (A) HFFs were transduced with retroviruses encoding the indicated transcription factors tagged with a FLAG-epitope (Tead1) or Myc-epitope (all other factors except for Tead1) and protein expression was detected by Western blot analysis using anti-FLAG or anti-Myc antibodies with extracts from cells infected with each virus. A GFP-expressing retrovirus was used as a negative control and GAPDH or tubulin was a loading control. (B) Mouse 10T1/2 fibroblasts were transduced with retroviruses encoding the indicated miRNAs and expression of indicated miRNAs was detected by Northern blot analysis using extracts from cells infected with each virus. A GFP-expressing retrovirus was used as a negative control and RNA extracted from mouse heart was used as a positive control. U6 was used as a loading control.
Fig. S3. Screening for additional factors able to enhance cardiac marker expression. (A) Representative flow cytometry plot for analyses of tropomyosin+ cells 2 wk after infection of HFFs with retroviruses expressing indicated combinations of factors. Cells infected with empty vector retrovirus were used as a control. The numbers in each plot indicate the percentage of tropomyosin+ cells. (B) Summary of flow cytometry analyses for tropomyosin expression by additional factors. Percentage of tropomyosin+ cells following infection of HFFs with empty vector retrovirus (control) or retroviruses expressing Gata4, Hand2, Mef2c, and Tbx5 (GHMT) along with an indicated individual factor as shown. Data from three independent experiments are presented as mean ± SD. Dotted line indicates the percentage of tropomyosin+ cells induced by retroviruses expressing GHMT alone. (C) Representative flow cytometry plot for analyses of cTnT+ cells 2 wk after infection of HFFs with retroviruses expressing 5F (GHMT + Myocd), Myocd, or Mrtf-A alone. Cells infected with empty vector retrovirus were used as a control. The numbers in each plot indicate the percentage of cTnT+.
Fig. S4. Gene expression analyses by quantitative PCR (qPCR). (A) Expression of smooth muscle myosin heavy chain (SM-MHC) and smooth muscle protein 22 alpha (SM22) was quantified 4 wk after transduction of Gata4, Hand2, Mef2c, and Tbx5 (GHMT) plus Myocd (5F) in AHCFs by qPCR. The relative expression to human adult aorta was shown. Data from two independent experiments are presented as mean ± SD. (B) Expression of cardiac and nonmyocyte genes was quantified 4 wk after transduction of Gata4, Hand2, Tbx5, Myocd, miR-1, and miR-133 (6F) in AHDFs by qPCR. (C) Expression of indicated genes was quantified by qPCR 4 wk after transduction of 5F in HFFs. *CACNA1C, CANCA1G, KCNJ2, and SCN5A are cardiac channel genes; ACE, ACE2, and ADRB2 are genes involved in neurohumoral regulation of cardiomyocytes. AHDF, adult human dermal fibroblasts; hiPS-CMs, human iPS cell-derived cardiomyocytes; UD, undetectable.
Fig. S5. Screening for an additional sixth factor to enhance cardiac gene expression. Representative flow cytometry plot for analyses of cTnT+ cells 2 wk after infection of HFFs with retroviruses expressing indicated combinations of factors. Cells infected with empty vector retrovirus were used as a control. The numbers in each plot indicate the percentage of cTnT+ cells. SF, Gata4, Hand2, Mef2c, Tbx5, and Myocd.

Fig. S6. The effect of muscle-specific microRNAs (miRNAs) on cardiac marker expression. (A) Representative flow cytometry plot for analyses of cTnT+ cells 10 d after infection of wild-type mouse tail-tip fibroblasts with retroviruses expressing Gata4, Hand2, Mef2c, and Tbx5 (GHMT) or a combination of muscle-specific miRNAs. Cells infected with empty vector retrovirus were used as a control. The numbers in each plot indicate the percentage of cTnT+ cells. (B) Representative flow cytometry plot for analyses of tropomyosin+ cells 2 wk after infection of HFFs with retroviruses expressing indicated combinations of factors. Cells infected with empty vector retrovirus were used as a control. The numbers in each plot indicate the percentage of tropomyosin+ cells. (C) Percentage of tropomyosin+ cells following infection of HFFs with empty vector retrovirus, or retroviruses expressing GHMT plus Myocd (SF) or SF plus miR-1, miR-133, or both miR-1 and miR-133 as shown. Data from four independent experiments are presented as mean ± SD.
Fig. S7. Subtractive analyses to determine the necessity of individual Gata4, Hand2, Mef2c, Myocd, Tbx5, miR-1 and miR-133 (7F). Representative flow cytometry plot for analyses of cTnT+ (Upper) or tropomyosin+ (Lower) cells 2 wk after infection of HFFs with retroviruses expressing indicated combinations of factors. Cells infected with empty vector retrovirus were used as a control. The numbers in each plot indicate the percentage of cTnT+ or tropomyosin+ cells. SF, Gata4, Hand2, Mef2c, Tbx5, and Myocd.

Fig. S8. Induction of cardiac markers in AHDFs. Representative flow cytometry plot for analyses of cTnT+ or Tropomyosin+ cells 2 wk after infection of AHDFs with retroviruses expressing indicated combinations of factors. Cells infected with empty vector retrovirus were used as a control. The numbers in each plot indicate the percentage of cTnT+ or tropomyosin+ cells. ADHF, adult human dermal fibroblasts.
Fig. S9. Time course of cardiac gene activation by Gata4, Hand2, Tbx5, Myocd, miR-1, and miR-133 (6F). (A) Representative flow cytometry plot for analyses of cTnT⁺ or tropomyosin⁺ cells at the indicated time points after retroviral transduction of 6F in HFFs. Cells transduced with empty vector retrovirus were used as a control. (B) Summary of flow cytometry analyses. Percentage of cTnT⁺ (Left) or tropomyosin⁺ (Right) cells following infection of HFFs with empty vector retrovirus (control), or retroviruses expressing 6F as shown. Data from three independent experiments for cTnT expression are presented as mean ± SD.

Movie S1. This movie shows spontaneous calcium transients represented by cyclic fluorescent signals generated from adult human cardiac fibroblasts-derived human-induced cardiac-like myocytes 8 wk after transduction of 7F along with cardiac Troponin T–green fluorescent protein (GFP) CaMP5 lentiviral reporter. 7F, Gata4, Hand2, Mef2c, Myocd, Tbx5, miR-1 and miR-133.

Movie S1
Movie S2. This movie shows spontaneously beating human-induced cardiac-like myocytes 11 wk postinfection of adult human cardiac fibroblasts with Gata4, Hand2, Mef2c, Tbx5, and Myocd retroviruses.

Movie S3. This movie shows spontaneously beating human-induced cardiac-like myocytes 11 wk postinfection of adult human cardiac fibroblasts with Gata4, Hand2, Mef2c, Tbx5, and Myocd retroviruses.