Corrections

The authors wish to note, "The legend of Fig. 2B should state that the experiment was performed in HMEC cells, rather than in MCF7 cells, similar to the confirmatory experiment presented in Fig. 2C." The figure and its corrected legend appear below.

Fig. 2. Rapid induction of interchromosomal interactions by nuclear hormone signaling. (A) 3D-FISH confirmation of E2-induced (60 min) TFF1:GREB1 interchromosomal interactions in HMECs with the distribution of loci distances measured (box plot with scatter plot) and quantification of colocalization (bar graph) before and after E2 treatment. Cells exhibiting mono- or biallelic interactions were combined for comparison with cells showing no colocalization; statistical significance in the bar graph was determined by χ² test (**, P < 0.001). (B) 2D FISH confirmation of the interchromosomal interactions in HMEC cells by combining chromosome paint (aqua) and specific DNA probes (green and red). (Upper) Illustrates two examples of mock-treated cells. (Lower) Shows the biallelic interactions/nuclear reorganization after E2 treatment for 60 min, exhibiting kissing events between chromosome 21 and chromosome 2. (C) Similar analysis on HMECs, but in this case using 3D FISH to paint chromosome 2 (red) and chromosome 21 (green), showing E2-induced chromosome 2–chromosome 21 interaction. Both assays revealed neither chromosome 21–chromosome 21 nor chromosome 2–chromosome 2 interactions in response to E2. (D) Temporal kinetics of GREB1:TFF1 interactions by 3D FISH in HMECs (**, P < 0.001 by χ²). (E–G) Nuclear microinjection of siRNA against ERα, CBP/p300, or SRC1/pCIP prevented E2-induced interchromosomal interactions, counting both mono- and biallelic interactions (**, P < 0.001 by χ²). The injection of siER and siDLC1 were done in the same experiment, sharing the same control group. (H) Nuclear microinjection of siRNA against LSD1, which was shown to be required for estrogen-induced gene expression (22), did not block E2-induced interchromosomal interactions. The injection of siLSD1 and SRC1/pCIP were done in a single experiment, sharing the same control group.
BIOCHEMISTRY

The authors wish to note: “We recently published corrections to two articles that describe the functional role (1) and enzymology (2) of caspase-12. The figures in these two articles have been thoroughly investigated by a committee at McGill University. With regard to Fig. 6 in the article in PNAS, two findings were determined: First, that republication of the data was a consequence of miscommunication among co-authors working in different locations, and second, that the molecular weight markers were unintentionally mislabeled. The latter issue has recently been corrected (3). The former issue has recently been rectified because figure 4 of the Nature article was replaced with a de novo independent experiment (4). Interpretation of the experiment and the conclusions of both the PNAS article and the Nature article are unaffected by these changes. The authors apologize for any confusion.”

www.pnas.org/cgi/doi/10.1073/pnas.1323789111

IMMUNOLOGY

The authors note that the accession number for the GEO database is GSE51393.

www.pnas.org/cgi/doi/10.1073/pnas.1400120111

MEDICAL SCIENCES, ENGINEERING

The authors note that the following statement should be added to the Acknowledgments: “This work is in part supported by Department of Defense (DoD) Breast Cancer Research Innovator Award W81XWH-10-1-0016 (to R.K.J.).”

www.pnas.org/cgi/doi/10.1073/pnas.1400494111
Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells

Rekha Samuel^a,b,1,2, Laurence Daheron^b,2, Shan Liao^a,b,2, Trupti Vardam^a,b,2, Walid S. Kamoun^a, Ana Batista^a, Christa Buecker^b,3, Richard Schäfer^b,3, Xiaoxing Han^a, Patrick Au^a,4, David T. Scadden^a, Dan G. Duda^a, Dai Fukumura^a,5, and Rakesh K. Jain^a,5

^aEdvin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114; ^bDepartment of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138; and ^cCenter for Regenerative Medicine, Richard B. Simches Research Center, Massachusetts General Hospital, Boston, MA 02114

Contributed by Rakesh K. Jain, June 6, 2013 (sent for review February 1, 2013)

Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a triple combination of selection markers—CD34, neuropilin 1, and human kinase insert domain-containing receptor—and an efficient 2D culture system for hiPS cell-derived endothelial precursor cell expansion. With these methods, we successfully generated endothelial cells (ECs) from hiPS cells obtained from healthy donors and formed stable functional blood vessels in vivo, lasting for 280 d in mice. In addition, we developed an approach to generate mesenchymal precursor cells (MPCs) from hiPS cells in parallel. Moreover, we successfully generated functional blood vessels in vivo using these ECs and MPCs derived from the same hiPS cell line. These data provide proof of the principle that autologous hiPS cell-derived vascular precursors can be used for in vivo applications, once safety and immunological issues of hiPS-based cellular therapy have been resolved. Additionally, the durability of hiPS-derived blood vessels in vivo demonstrates a potential translation of this approach in long-term vascularization for tissue engineering and treatment of vascular diseases. Of note, we have also successfully generated ECs and MPCs from type 1 diabetic patient-derived hiPS cell lines and use them to generate blood vessels in vivo, which is an important milestone toward clinical translation of this approach.

Vascular disease is the principal cause of mortality in the United States. More than one in three Americans (36.9%) suffer from heart disease, and by 2030, an estimated 116 million people in the United States (40.5%) will have some form of cardiovascular disease. By this time, the cost of medical care for heart disease is expected to increase from $273 billion to $818 billion (1). Cell-based vascular regenerative engineering is an attractive option for revascularization that requires further validation before clinical translation (2). The discovery of human induced pluripotent stem (hiPS) cells (3, 4) has brought great hope because of their capacity to differentiate into different cell types and great potential for use in tissue engineering and regeneration (5). Several protocols to derive endothelial and perivascular lineages have been reported, with varying efficiencies (6–11). Disease-specific hiPS cells may serve as an excellent source for modeling human diseases (4, 12, 13). Indeed, the hiPS cell-derived vascular precursor cells have been shown to be excellent models to study disease. For example, hiPS cell-derived vascular precursors have been used to derive blood–brain barrier type endothelial cells (ECs) in culture (14) or to study patient-specific EC and smooth muscle cell defects in a Hutchinson-Gilford progeria model (15) and rescue the vascular phenotype of Williams–Beuren syndrome (16).

Moreover, hiPS cell-derived endothelial precursor cells (EPCs) have been shown to alleviate myocardial insufficiency in bovine models (10) and peripheral arterial disease in murine models (9) and to improve recovery of blood flow in hind-limb ischemia murine models (11). Additionally, a recent hiPS derivation of EPCs using partially reprogrammed fibroblasts, demonstrated a quick reprogramming to ECs and the potential application for acute critical limb ischemia (11). There are applications in cell therapy-based regenerative medicine, where sustained, durable, and functionally competent blood vessels are crucial, such as in long-standing ischemic (17), arterial, diabetic, or nonhealing ulcers. Lack of timely intervention thereof leads to nontraumatic limb amputation (18).

A prerequisite to realize the full potential of hiPS cell-derived EPCs in forming blood vessels is the ability to examine their functional characteristics in vivo. To this end, we first optimized selection markers and a culture system for efficient expansion of hiPS cell-derived EPCs. Then, we tested the vasculogenic capacity of hiPS cell-derived EPCs in a model of durable blood vessel formation in vivo in mice using a murine embryonic precursor cell line, 10T1/2, as supporting perivascular cells (19). Next, we determined whether mesenchymal precursor cells (MPCs) could be derived from hiPS cells and if they could support vasculogenesis when coimplanted with hiPS ECs in vivo. Finally, we tested whether hiPS cells derived from patients harboring diseases with potential vascular complications, such as type 1 diabetes (T1D),
can be differentiated to ECs and MPCs and if these progenies have vasculogenic potential.

Results

Differentiated hiPS Cells Coexpressing CD34, human kinase insert domain-containing receptor, and Neuropilin 1 Are Enriched in EPCs. We first established a robust protocol for EPC derivation. The previously established method for EC differentiation from hESCs using CD34 sorting (20) was not optimal for hiPS cells (SI Appendix, Table S1). Thus, we sorted the CD34+ cell subpopulation coexpressing the early EPC markers neuropilin 1 (NRP1) (21) and VEGF receptor 2, human kinase insert domain-containing receptor (KDR) (22). We separated five subpopulations of cells (CD34+KDR−NRP1+, CD34+KDR−NRP1−, CD34+KDR+NRP1−, CD34−KDR+NRP1+, and CD34−KDR−NRP1+ cells) by flow cytometry (SI Appendix, Figs. S1 and S2) and derived them from four hiPS cell lines: human adult dermal fibroblast cell line (HFib2)-iPS4, HFib2-iPS5, human foreskin fibroblast cell line (HS27)-iPS, and human foreskin fibroblast cell line (BJ)-iPS cells (SI Appendix, SI Materials and Methods, section I.A). We found the peak in the number of CD34+KDR−NRP1+ differentiated HS27-iPS cells (i.e., 3.3%) at day 7. We first tested the capacity of these cell populations to differentiate into ECs using a 2D culture system (Fig. 1 A–C). Only the cells derived from CD34+KDR−NRP1+ cells showed bona fide characteristics of ECs. These cells expressed the endothelial markers CD31, CD144, and von Willebrand factor, and they showed uptake of acetylated (Ac)-LDL and tube formation on Matrigel (SI Appendix, SI Materials and Methods and Fig. S3). The CD34+KDR+ NRP1+ cell-derived ECs could be expanded for up to 15 passages while maintaining angiogenic gene expression (SI Appendix, SI Materials and Methods and Fig. S4A) and characteristic “cobblestone” endothelial morphology in monolayers. Similar results were obtained with three other healthy donor-derived hiPS cell lines (BJ-iPS, HFib2-iPS4, and HFib2-iPS5). However, the HS27-iPS cell line showed a higher propensity for EC derivation and in vivo functionality compared with the other hiPS cell lines (SI Appendix, Fig. S5), and it was used for the subsequent in vivo studies.

hiPS Cell-Derived ECs Can Form Functional Blood Vessels in Vivo. Next, using a previously established tissue-engineered blood vessel model (19), we evaluated the vasculogenic potential and monitored in real time the structure and function of vessels formed by hiPS cell-derived ECs by means of intravital multiphoton microscopy in SCID mice. The CD34+KDR−NRP1+ cell-derived ECs were expanded in vitro for up to 10 d before implantation in vivo in the cranial window model to generate adequate cell numbers for implantation (SI Appendix, SI Materials and Methods). Although hiPS cells were initially sorted based on their expression of CD34, KDR, and NRP1, the progenies of this population after in vitro culture for 10 d showed a low level of CD34 expression (SI Appendix, Fig. S4B). These data indicate that the CD34+KDR−NRP1+ cell population is enriched in EPCs, which acquired a more mature EC phenotype during the 10-d culture period.

hiPS cell-derived ECs coimplanted with 10T1/2 MPCs formed blood-perfused vessels within 2 wk postimplantation in vivo (Fig. 2A, SI Appendix, and Movies S1 and S2). Once vascular network formation was completed, vessels became mature and stable, and densities of ECs and supporting cells remained relatively constant (SI Appendix, Fig. S6). Whole-mount gel staining at 6 mo postimplantation showed an infiltration of the gel by the host CD31+ murine ECs, which anastomosed with the engineered vessels at the host-implant interface (Fig. 3A), as recently described, via stabilization or a “wrapping and tapping” mechanism (23). The engineered vessels were associated with both implanted 10T1/2 supporting cells and desmin-positive host-derived cells (Fig. 3B). Of note, ECs derived from hiPS cells showed no vasculogenic potential when implanted alone (i.e., without MPC support). Functional intravital microscopy analyses showed that the engineered vessels demonstrated RBC velocity and flux comparable to capillaries and exchange vessels in the adjacent brain tissues (Fig. 2B and C). Further studies showed that 4 wk after gel implantation in cranial windows, 68% of the mice (n = 25) implanted with hiPS-ECs and 10T1/2 cells formed functional vessels. The RBC velocities were measured in 5 of those mice (1.36 ± 0.3 mm/s), and they were comparable to those of normal capillaries or postcapillary venules (24). The engineered vessels from CD34+KDR−NRP1+ hiPS

![Fig. 1](image-url) Differentiation and characterization of hiPS cell-derived ECs. (A–C) 2D EC differentiation from nondiseased hiPS cells. (A) HS27-iPS cell colonies grown on feeder cells (mouse embryonic fibroblasts). (B) Day 10 in differentiation medium (50 ng/mL bone morphogenetic protein-4 added on day 1). (C) Putative EC morphology. Immunocytochemical staining of HS27-iPS-ECs for CD31 (D), vascular endothelial cadherin (E), and von Willebrand factor (F). (G) HS27-iPS-ECs show uptake for Ac-LDL. (H) HS27-iPS-ECs show tube formation on Matrigel. (Magnification: A–G, 10×.)
cell-derived ECs lasted in vivo for 280 d, in sharp contrast to the other hiPS cell derivatives, which regressed within a few days (Fig. 4A).

In addition, we performed s.c. implants of hiPS cell-derived ECs in Matrigel plugs. Whereas hiPS cell-derived ECs coimplanted with 10T1/2 cells formed RBC-perfused blood vessels (SI Appendix, Figs. S7A and B), there was no appreciable vessel formation in Matrigel plugs implanted without any cells (SI Appendix, Fig. S7C) or with the hiPS cell-derived ECs alone. Histological examination of the s.c. gel in the dorsal chamber at day 30 showed perfused blood vessels containing RBCs in the lumen (SI Appendix, Fig. S8). However, vasculogenesis in this model required fivefold higher numbers of both hiPS cell-derived ECs and 10T1/2 cells in the construct. This result is consistent with our previous data showing that s.c. implantation requires higher doses of angiogenic factors for new vessel formation compared with the brain (25). Of note, we did not observe teratoma formation in any of the in vivo experiments.

cell-derived ECs lasted in vivo for 280 d, in sharp contrast to the other hiPS cell derivatives, which regressed within a few days (Fig. 4A).

In addition, we performed s.c. implants of hiPS cell-derived ECs in Matrigel plugs. Whereas hiPS cell-derived ECs coimplanted with 10T1/2 cells formed RBC-perfused blood vessels (SI Appendix, Figs. S7A and B), there was no appreciable vessel formation in Matrigel plugs implanted without any cells (SI Appendix, Fig. S7C) or with the hiPS cell-derived ECs alone. Histological examination of the s.c. gel in the dorsal chamber at day 30 showed perfused blood vessels containing RBCs in the lumen (SI Appendix, Fig. S8). However, vasculogenesis in this model required fivefold higher numbers of both hiPS cell-derived ECs and 10T1/2 cells in the construct. This result is consistent with our previous data showing that s.c. implantation requires higher doses of angiogenic factors for new vessel formation compared with the brain (25). Of note, we did not observe teratoma formation in any of the in vivo experiments.

Fig. 2. In vivo imaging of hiPS cell-derived engineered blood vessels. (A) Multiphoton laser-scanning microscopy image of HS27-iPS-ECs (green) and 10T1/2 cells (blue) coembedded in a fibronectin/collagen I tissue-engineered vessel construct and inoculated in SCID mice in a cranial window. These cells developed functional perfused blood vessels [red, 1,1-dioctadecyl-3,3,3,3-tetramethylindodicarbocyanine perchlorate (DID)-labeled RBCs] in vivo (day 14). (B–D) Functional assessment of iP cell-derived engineered blood vessels. (B) Perfused vessels engineered from HS27-iPS-ECs (green) imaged after injection of DID-RBCs (red) and Alexa 647-BSA (blue). (C) Map of RBC velocity quantified by recently established line and full-field RBC velocity-scanning techniques (45). Engineered vessels are well perfused. (D) Histogram of RBC velocity profile in iP cell-derived vessels. HS27-iPS-ECs with 10T1/2 cells (blue bars), T1D-iPS-ECs with 10T1/2 cells (brown bars), and HS27-iPS-ECs with HS27-iPS-mesenchymal cells (green bars) are shown. (E) Map of vessel permeability to Alexa 647-labeled BSA quantified based on the extravasation of BSA from individual vessels over time. Engineered vessels have a segment with higher permeability compared with endogenous normal vessels. Multiphoton imaging was carried out on a custom-built multiphoton laser-scanning microscope using a confocal laser-scanning microscope body and a broadband femtosecond laser source. Imaging studies in A–C and E were performed at a magnification of 20×, using a 0.95-N.A. water immersion objective. Two-micron-thick optical sections were taken. The imaging field of view was 660 μm × 660 μm × 155 μm with a resolution of 1.3 μm × 1.3 μm × 2 μm.

Generation of ECs and Blood Vessels in Vivo from Patient-Derived hiPS Cells. Having established that hiPS-derived ECs from healthy individuals can form durable and functional vasculature in vivo, we next tested whether hiPS from patients with disease who potentially develop vascular complications can do the same. To this end, we separated CD34+KDR*NRP1+ cells from four T1D-iPS cell lines derived from patients with T1D (1021-4F-B-DiPS, 1024-4F-2A-DiPS, 1027-3F-C-DiPS, and 1028-3F-A-DiPS) and expanded them using the 2D protocol (SI Appendix, SI Materials and Methods).

We next implanted the bona fide ECs derived from T1D-iPS cells (SI Appendix, Fig. S9) with 10T1/2 MPCs in vivo using the tissue-engineered model in the cranial window of SCID mice (26, 27). We found that T1D-iPS cell-derived ECs could generate a functional vasculature within 2 wk of coimplantation. Established T1D-iPS cell-derived blood vessels also persisted for the entire period of observation (120 d) in mice and demonstrated good perfusion of RBCs in the engineered vessels derived from T1D-iPS-ECs (Fig. 2D, SI Appendix, and Movies S3 and S4).
Moreover, the T1D-iPS-EC vessels were not apparently leaky similar to those in the nondiseased hiPS-EC vessels or the engineered vessels derived from other sources of ECs (19).

Mesenchymal Cells Derived from hiPS Cells Can Support hiPS-EC-Engineered Vessels. Because mesenchymal cells are essential for functional and durable vessel formation, deriving them from clinically accessible precursors, such as hiPS cells, would be a critical step for the translation of this tissue-engineered vessel approach in patients (28). To test the possible use of mesenchymal cells derived from hiPS cells in the engineered vessel model, we isolated CD73+ cells from the CD31+CD144+ fraction of differentiated HS27-iPS cells and expanded them in human mesenchymal stem cell (MSC) medium for a period of 2 wk (SI Appendix, SI Materials and Methods). Flow cytometric analysis confirmed that these cells had the phenotype of MPCs, as demonstrated by expression of CD90, CD105, and CD44 and lack of expression of CD144, CD31, and CD45 (SI Appendix, Fig. S10). Moreover, these hiPS cell-derived MPCs displayed adipocytic, chondrocytic, and osteoblastic differentiation when exposed to the appropriate media in vitro (SI Appendix, Fig. S11), similar to bone marrow-derived human MSCs obtained from Cambrex Bioscience (catalog no. PT-3238). We next coimplanted the HS27-iPS cell-derived MPCs with the same hiPS cell-derived ECs to test their vasculogenic potential in vivo. Indeed, the hiPS cell-derived MPCs could support the formation of durable and functional vessels (SI Appendix, Fig. S12 and Movie S5) for more than half of the mice over 28 d (SI Appendix, Fig. S13), which is 2.5-fold longer than human MSCs derived from bone marrow (catalog no. PT-3238) (Fig. 4B). We were unable to derive MPCs from T1D-iPS cells using our original 2D protocol. However, we could derive MPCs from one of the four T1D-iPS cell lines (1024-4F-2A-DiPS), using an alternate 2D protocol and sorting CD73+ cells (SI Appendix, SI Materials and Methods, section I.D). This result highlights the importance of individual cell line variability, as well as differentiation protocols that affect the differentiation potential of hiPS cell vascular derivatives. The 1024-4F-2A-DiPS-MPCs formed functional blood vessels when coimplanted with human umbilical cord vein endothelial cells (HUVECs) by day 16 (SI Appendix, Figs. S14 and S16). These MPCs were indeed capable of supporting engineered blood vessels in vivo similar to 10T1/2 cells, which are the current gold standard (SI Appendix, Fig. S17). These findings support the potential of using human sources of ECs and MPCs in regenerative medicine for patients with vascular diseases.

Discussion

Cell-based vascular engineering for tissue repair/regeneration involves the incorporation of vascular precursor cells within biomaterials to restore integrity of blood vessels or generate new blood vessels (2). We previously reported successful generation of durable engineered blood vessels in vivo using HUVECs (19) or ECs derived from cord blood-derived EPCs (26) or hESCs (20). In all cases, coimplantation with murine MPC 10T1/2 cells (19, 20, 26) or human MSCs (29) was required to sustain these engineered blood vessels in vivo.
Translation of our previous findings will thus require patient-compatible sources of both ECs and mesenchymal cells in a large quantity. Unfortunately, the likelihood of having a patient’s own HUVECs or cord blood EPCs accessible for use in regenerative medicine in adulthood is currently remote. Moreover, the ethical concerns surrounding the use of hESCs-derived ECs currently preclude their application in many countries. Yamanaka’s breakthrough discovery of hiPS cells in 2007 (4) provided a potential inexhaustible source of vascular cells that could avert the immunological and ethical controversies that surround the use of human ECs derived from other sources. Recent development of viral-free and nonintegrating approaches for generation of safe hiPS cells makes this a real possibility (30).

Surprisingly, the functional capacity of hiPS-derived ECs in vivo in a noninvasive model has not yet been explored (6, 7). In addition, the vasogenic potential of different stem cell lines appears to be much more variable for hiPS cells than for hESCs, and this could have a direct impact on differentiation capability (31). We have previously reported on a recently developed 2D approach of deriving ECs from hESCs using CD34 sorting, implicating CD34 as a primitive EPC marker (20). CD34+ progenitor cells from peripheral blood appear to be a popular starting material from which to derive hiPS cells (32). We used magnetic bead sorting to obtain up to 6% CD34+ cells using the healthy hiPS cell line (SI Appendix, Table S1), and we employed differentiation culture conditions as described for hESCs (20). In our experience, the hiPS-ECs derived from CD34+ cells were unable to expand further in culture. In this study, we show that presorting of hiPS cell-derived EPCs using a combination of three markers—CD34, KDR, and NRP1—allowed generation of large numbers of bona fide ECs endowed with in vivo potential of functional vessel formation. NRP1 has been shown to be expressed in EPCs and before CD34 in hESCs (21), and isolated embryonic KDR+ cells are believed to be primitive EPCs (22). Recently, KDR+ cells have been shown to yield a pure EC population from hESCs and hiPS cells (33). We therefore explored whether a combination of these markers—CD34, NRP1, and KDR—had primitive vasogenic potential in vivo using a 2D approach for generating ECs. Indeed, the CD34+ KDR−NRP1+ ECs formed durable blood vessels (over 280 d) in mice, indicating an exciting potential of this approach for vascular tissue engineering.

Although various 3D culture systems (e.g., embryoid bodies) have been proposed for efficient generation of ECs (8), we found that a 2D approach is far more efficient than a 3D method for EC derivation from hESCs (20). However, the superiority of 2D culture was not known for iPSC-EC differentiation. To this end, we compared our 2D method with an established two-step 3D and 2D protocol for EC differentiation (SI Appendix, SI Materials and Methods). The dual 3D and 2D in vitro method successfully differentiated hiPS cells into EPCs, and ultimately into ECs (SI Appendix, Figs. S18 and S19). However, ECs derived from the 3D method failed to form stable blood vessels in vivo (SI Appendix, Fig. S20). This confirms that the 2D culture method is more efficient in deriving vasogenic ECs from hiPS cells and emphasizes the importance of in vivo testing of hiPS cell progenies.

Using autologous ECs derived from patients with vascular complications would be challenging (34). Hence, we next explored generation of ECs in hiPS cells derived from individuals with disease and their capacity to form functional blood vessels in vivo. It is known that T1D is associated with dysfunctional ECs (34). Although the current focus of iPSC technology for T1D is on the generation of functional pancreatic islet cells for cell replacement therapy (35), interestingly, circulating EC function was found to improve after the islet cell transplantation (36). In line with those findings, we successfully generated functional blood vessels in vivo using ECs derived from three different T1D-iPS cell lines. Such capability to generate large amounts of functional EPCs from patients for autologous cell transplantation or tissue-engineering strategies is highly appealing not only for T1D but for many diseases where revascularization is required.

Functional stable vasculature for tissue engineering requires both ECs and a perivascular source, vascular smooth muscle, MSC, pericyte, or MPC (37). It is therefore equally relevant to obtain perivascular cells from hiPS cells (38). In this study, we could generate MPCs, which can function as perivascular supporting cells in vivo, from healthy or T1D-iPS cells. This development further supports the potential use of hiPS-derived MPCs in regenerative medicine. However, these MPCs are not as robust as 10T1/2 cells, the most potent MPCs we have tested to date. Hence, further studies to identify the mechanisms that define the in vivo efficiency of MPCs are warranted.

Having highlighted the clinical potential of these hiPS-derived ECs and MPCs, as well as their vasogenic capacity, a number of concerns must be addressed before their clinical translation. For example, the ability to generate durable blood vessels from different iPSCs is quite variable despite the uniform ability to generate bona fide ECs in vitro using the same method of triple selection for CD34+, KDR+, and NRP1+ with the 2D differentiation protocol. Our gene expression profile analyses did not detect significant differences between vasogenic and non-vasogenic hiPS-ECs (SI Appendix, Table S2). Further dissection of molecular determinants of in vivo fate (the ability to form and maintain engineered vessels) of these seemingly bona fide ECs is needed. Another consideration is that current in vivo methods to test for blood vessel formation and vascular function are performed not in a diseased host but in healthy immunodeficient animals. Host immune environment affects the functionality of engineered vessels (39). Furthermore, the host environment in patients with disease, such as those with diabetes, is not as supportive for vasculogenesis as in a healthy host (40). For further development of the hiPS-EC-based strategy, the use of syngeneic disease-specific models might be necessary (41).

In summary, we have generated hiPS cell-derived ECs capable of forming blood vessels in vivo from various hiPS cell lines. We have successfully engineered functional blood vessels from ECs and MPCs derived from the same healthy hiPS cell line. Additionally, we showed that hiPS cell-derived ECs and perivascular MPCs from patients with T1D may have differential vasogenic potential in vivo. Taken together, these findings suggest that autologous hiPS cell-derived vascular precursors could potentially be used to treat vascular disease in cell-based vascular regenerative engineering.

Materials and Methods

hiPS cell lines were generated by transducing various combinations of octamer-binding transcription factor-4 (Oct-4), sex determining region Y, box 2 (Sox-2, also known as SRY), kruppel-like factor 4 (Klf4), cellular homolog of the myelocytomatosis viral oncogene (c-myc), and Nanog to fibroblasts (3, 42, 43). ECs were differentiated from these hiPS cells by 2D (20) or 3D (44) culture methods, and sorted by flow cytometry using combinations of anti-CD34, KDR, and NRP1 antibodies. For MPCs, CD73/CD31/CD144− or CD73+ cells were isolated after 2D differentiation of hiPS cells. Molecular and immunocytochemical analyses, cell senescence, Ac-LDL uptake, and in vitro tube formation assays were performed as described in SI Appendix, SI Materials and Methods. In vivo vasogenic potential of hiPS cell-derived ECs and MPCs was determined using a tissue-engineered vessel model, intravital microscopy, and immunohistochemistry, as described in SI Appendix, SI Materials and Methods. All animal procedures were carried out following the Public Health Service Policy on Humane Care of Laboratory Animals and approved by the Institutional Animal Care and Use Committee of Massachusetts General Hospital. In SI Appendix and Movies S1, S2, S3, S4, S5, and S6, multiphoton imaging was carried out on a custom-built multiphoton laser-scanning microscope using a confocal laser-scanning microscope body (Olympus 300; Optical Analysis) and a broadband femtosecond laser source (High Performance MaiTai; Spectra-Physics). Imaging studies were performed with a magnification of 20× and a 0.95-N.A. water immersion objective (Olympus XLMPlanFL, 1-UB6965; Optical Analysis). Multiple regions of interest were randomly
chosen, ensuring that areas within the gel, at the periphery of the gel, and outside the gel were included. Two-micron-thick optical sections were taken. The imaging field of view was 660 μm × 660 μm × 155 μm with a resolution of 1.3 μm × 1.3 μm × 2 μm.

ACKNOWLEDGMENTS. We thank Sylvie Roberge, Peigen Huang, Christina Koppel, Phyllis McNally, and Julia Kahn for outstanding technical assistance and Drs. Vikash Pal Singh Chauhan, Ravi Mlyavaganam, and Matija Snuderl for help with the experiments. We also thank Dr. Douglas Melton for his generous gift of T1D-iPS cell lines and helpful scientific input on our manuscript. This work was supported by a fellowship from the Department of Biotechnology, Ministry of Science and Technology, Government of India (to R. Samuel); a Tosteson Postdoctoral Fellowship, Charles A. King Trust Fellowship, and Grant K99HL111343-01A1 (to S.L); funds from the Harvard Stem Cell Institute; National Institutes of Health Grant P01-CA080124; Federal Share/National Cancer Institute Proton Beam Program Income Grants R01-CA151767, R01-CA085140, and R01-CA126642 (to R.K.J.); R01CA159258 (to D.G.D.); and R01CA096915 (to D.F.D.); and American Cancer Society Grant 120733-RSG-11-073-01-TBG (to D.G.D.).

