Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics

Jesus M. Cortes, Mathieu Desroches, Serafim Rodrigues, Romain Veltz, Miguel A. Muñoz, and Terrence J. Sejnowski

Contributed by Terrence J. Sejnowski, August 28, 2013 (sent for review April 13, 2013)

Short-term synaptic plasticity strongly affects the neural dynamics of cortical networks. The Tsodyks and Markram (TM) model for short-term synaptic plasticity accurately accounts for a wide range of physiological responses at different types of cortical synapses. Here, we report a route to chaotic behavior via a Shilnikov homoclinic bifurcation that dynamically organizes some of the responses in the TM model. In particular, the presence of such a homoclinic bifurcation strongly affects the shape of the trajectories in the phase space and induces highly irregular transient dynamics; indeed, in the vicinity of the Shilnikov homoclinic bifurcation, the number of population spikes and their precise timing are unpredictable and highly sensitive to the initial conditions. Such an irregular deterministic dynamics has its counterpart in stochastic/network versions of the TM model: The existence of the Shilnikov homoclinic bifurcation generates complex and irregular spiking patterns and—acting as a sort of springboard—facilitates transitions between the down-state and unstable periodic orbits. The interplay between the (deterministic) homoclinic bifurcation and stochastic effects may give rise to some of the complex dynamics observed in neural systems.

Brain oscillations | Chaotic dynamics | Shilnikov homoclinic orbit | Cerebral cortex

Short-term synaptic plasticity (STSP) is a temporal increase or decrease of synaptic strength in response to use, modulating the efficacy of synaptic transmission on timescales from a few milliseconds to several minutes (1–3). Short-term variations of the synaptic efficacy directly affect the timing and integration of presynaptic inputs to postsynaptic neurons, thereby affecting network-level dynamics and influencing brain function. Synaptic depression, an activity-regulatory mechanism that performs gain control (4), reduces cortical responses to strong stimuli (5). Depression, an activity-regulatory mechanism that performs gain control (4), reduces cortical responses to strong stimuli (5). Here, we report the existence of highly irregular and chaotic-like dynamics in the TM model. Chaotic dynamics has been already suggested as a possible mechanism to explain the irregular dynamics observed in cortical activity (14), as reflected, for example, in trial-to-trial variability of neuron responses observed after multiple repetitions of the same stimulus (15, 16), and the erratic and complex transients occurring in local field potentials (17). We identified a form of chaos in the TM model, called Shilnikov chaos, which induces highly irregular transient dynamics and large sensitivity to initial conditions, even for the case of the Shilnikov chaos having an associated attractor that is unstable, rather than a stable one (18–21). The existence of Shilnikov chaos cannot, in principle, account for all of the observed complexity of cortical dynamics, but it may account for some irregularity in the overall network activity and, in particular, for facilitating transitions between large-scale brain states.

Model

We consider the continuous time TM model (8) as sketched in Fig. 1; the corresponding differential equations are detailed in Materials and Methods. The model describes the deterministic behavior of a population of identical excitatory neurons (in blue

Significance

Short-term synaptic plasticity contributes to the balance and regulation of brain networks from milliseconds to several minutes. In this paper we report the existence of a route to chaos in the Tsodyks and Markram model of short-term synaptic plasticity. The chaotic region corresponds to what in mathematics is called Shilnikov chaos, an unstable manifold that strongly modifies the shape of trajectories and induces highly irregular transient dynamics, even in the absence of noise. The interplay between the Shilnikov chaos and stochastic effects may give rise to some of the complex dynamics observed in neural systems such as transitions between up and down states.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

1J.M.C., M.D., and S.R. contributed equally to this work.

2To whom correspondence should be addressed. E-mail: terry@salk.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316071110/-/DCSupplemental.
in Fig. 1A) described by three state variables: the average excitatory network activity at any given time, $E(t)$ (in hertz) and two other variables, $x(t)$ and $u(t)$, that model synaptic depression and facilitation, respectively. Each neuron receives global inhibition (in red in Fig. 1A) represented by the constant I_0.

In the TM model, presynaptic resources are finite and each one is represented by two possible states: available to be released, inducing presynaptic activation (green circles in Fig. 1B), and nonavailable for release (orange circles in Fig. 1B). The overall fraction of available neurotransmitters is $x(t)$, whereas $1-x(t)$ is the fraction of nonavailable ones. Network activity, $E(t) > 0$, consumes resources; the consumption rate from state $x(t)$ to $1-x(t)$ is given by $u(t)E(t)$ (discussed below), which leads to short-term synaptic depression. The transition from nonavailable to available states (i.e., refilling dynamics) is occurring at a rate T_0^{-1}, where T_0 represents the spontaneous recovery time from the depressed state.

The facilitation variable $u(t)$ encodes variations in the release probability of available neurotransmitters, owing mainly to the influx of calcium ions into the presynaptic terminal. Thus, neurotransmitters are represented by two additional states: a fraction $1-u(t)$ (yellow in Fig. 1B) with a low probability to be released (the low-p releasable state) and a complementary fraction $u(t)$ in the high-p releasable state (pink in Fig. 1B). The transition rate from low-p to high-p releasable state is given by $U E(t)$, with U representing the baseline level of $u(t)$, whereas the reverse transition occurs spontaneously at a rate T_f^{-1}, where T_f is the time constant modeling facilitation.

The total input arriving at the postsynaptic terminal is given by $Ju(t)x(t)E(t)+I_0$ (where J is the strength of recurrent connections in the neuronal excitatory population), which is then rectified and amplified via the gain function $g(z) = a \log_1 + e^{\alpha z}$ (ref. 8 and Materials and Methods). Parameter values and time constants are summarized in Table S1.

Results

Bifurcation Diagram of the TM Model. The TM model is known to exhibit a wide range of dynamical regimes, such as bistable electrical activity, mimicking cortical up and down states, and oscillatory up states (see figure S1 in ref. 8). Here, we further explored the TM phase space using a numerical software tool, XPPAUT (22), for bifurcation analysis. This software enabled us to systematically track the model’s trajectories and stability of equilibrium points and limit cycles while continuously varying system parameters. In addition, XPPAUT allowed us to reconstruct the full bifurcation diagram summarizing all possible states. We identified stable attractor solutions as well as unstable solutions beyond the reach of standard brute-force search. The resulting bifurcation diagram, shown in Fig. 2, illustrates all possible transitions from steady-state activity to oscillatory and complex oscillations under continuous variations of the external inhibition parameter I_0. Solid lines correspond to stable solutions and dashed lines to unstable ones. There are three classes of network stable states, which had already been described (8). A down-state fixed point (blue), an up-state fixed point (black), and a periodic up state (a limit cycle whose maximum and minimum amplitudes are the lines marked in red and green, respectively). Further continuing, these states become unstable and we subsequently have detected a Shilnikov homoclinic bifurcation point (orange), which had not previously been identified. Although the trajectories associated with the Shilnikov homoclinic bifurcation are unstable, its presence organizes the observable network states, as we will show below.

States and Transitions in the TM Model. For very large inhibition currents, $|I_0|$, the only stable state is the down state. In contrast, for relatively small inhibitory inputs, the system settles to a fixed point with nonvanishing constant activity, called an up state; by progressively increasing $|I_0|$ a saddle-node of a periodic bifurcation leads to a stable oscillatory up state, which coexists with the up state and eventually loses its stability, giving rise to a branch of unstable periodic states. This solution branch terminates at a Shilnikov homoclinic bifurcation (Fig. 2 gives a full description of the different bifurcations).

Note that there is another subcritical Hopf bifurcation at $I_0 = -1.84$; the branch of unstable limit cycles emanating from that Hopf bifurcation terminates at a homoclinic bifurcation at $I_0 \approx -1.82$, which is not of Shilnikov type. This branch has no impact on the dynamics of the system.

Properties of the Shilnikov Homoclinic Bifurcation. The existence of a Shilnikov homoclinic bifurcation in STSP dynamics unveils hidden complexity in the TM model. Indeed, as illustrated in Fig. 3A, the period T of the oscillations of the unstable branch of solutions grows without bound as the homoclinic bifurcation is approached, becoming infinitely large right at the bifurcation point; this infinitely large period can be a first indication of chaotic-like dynamics (23).

Fig. 1. Model of the STSP dynamics. (A) Cartoon of a neural network; a pool of identical excitatory pyramidal neurons (blue) are recurrently connected and receive global inhibition from a pool of identical interneurons (red). $E(t)$ is the average rate in hertz for the excitatory pool and I_0 the average rate in hertz for inhibitory neurons (fixed parameter). Excitatory connections are described by the TM model for STSP. (B) Sketch of TM dynamics. At the presynaptic site (large gray oval) resources are represented by small circles and could be in two possible states: available to be released (green, $x(t)$) and nonavailable (orange, $1-x(t)$). The transition rates between these states are given by $u(t)E(t)$ and T_f^{-1}. The variable $u(t)$ (in pink) models variations in release probability, affecting neurotransmitters that have a high probability of releasing $u(t)$ and to those with a low release probability ($1-u(t)$, in yellow). The transition rates between the two states are given by T_0^{-1} and $U E(t)$, with U the baseline decay for $u(t)$. (C) Equilibrium solution for the average activity in the excitatory population. The total input arriving to the postsynaptic neuron (small gray oval), given by $Ju(t)x(t)E(t)+I_0$ with J a synaptic-strength parameter, is rectified and amplified through the gain function g.

Cortes et al. PNAS October 8, 2013 vol. 110 no. 41 16611
As shown in Fig. 3B the time series (plotted as a function of t/T), along the previously identified wigglly branch, changes its time profile as the homoclinic bifurcation is approached. Far from the homoclinic bifurcation (yellow circle 1 in Fig. 3A), the solutions are harmonic oscillations, but as the period of oscillation increases (green circle 2), the solutions exhibit a spiking behavior followed by a slow oscillatory relaxation to a nominal state. Notice that there is coexistence between different network states, so that for a fixed external stimulus either a small parameter variation or simply noise can produce transitions between the different network states that coexist along the same vertical line in the bifurcation diagram. The SN, H, and SNP bifurcations were reported in ref. 8, but the Shilnikov homoclinic bifurcation HO, which indicates chaos, is new here. Note that there is another subcritical Hopf (H) at $I_0 = -1.84$, creating a branch of unstable limit cycles that terminate at a homoclinic bifurcation (HFO) at $I_0 = 1.82$. This HFO bifurcation does not produce Shilnikov chaos, so it has no impact on the overall dynamics.

As the homoclinic bifurcation is approached, the solutions exhibit a spiking behavior followed by a slow oscillatory relaxation to a nominal state; this slow return to a quasi-rest state lasts longer and longer as the period of oscillations increases without bound as the homoclinic orbit is approached (further details in Materials and Methods).

An approximate (computationally tractable) solution of a homoclinic orbit is shown in Fig. 3C; observe that the orbit is stable in the (u,x)-plane and spirals toward a saddle equilibrium fixed point where the stable and unstable manifolds intersect; the orbit then shoots out in the unstable direction, with E increasing in a “spike-like” way, before spiraling back to the saddle-equilibria. In the neighborhood of the homoclinic bifurcation trajectories are similar to this orbit, but eventually after some number of cycles around the attractor, they flow away along the unstable direction. Thus, $E(t)$ exhibits transient population spikes, the number of spikes, their amplitude, and their exact locations being extremely sensitive to initial conditions. This is illustrated in Fig. 4, where different traces of activity corresponding to slightly different initial conditions are shown. The irregular spike-like bursting has an oscillatory character as the system eventually settles to the stable down state. These orbits corresponds to solutions very close to the homoclinic orbit, which repeat themselves with relatively small variance; despite this regularity, the return periods of these orbits widely fluctuate with weak correlation between successive returns (24); these are typical features of homoclinic chaos. In conclusion, the existence of a homoclinic bifurcation profoundly affects the transient dynamics in a broad neighborhood around it, leading to irregular dynamics that directly affects the transient responses of the TM model.

A mathematical test for whether the dynamics around the attractor is actually chaotic is to evaluate the so-called saddle quantity, σ; a theorem by Shilnikov (25, 26) states that the dynamics is complex/chaotic for $\sigma > 0$ and simple for negative values (Materials and Methods). As shown in Fig. S1, the saddle quantity measured numerically for the TM model is strictly positive and quite large, confirming the presence of Shilnikov chaos.

Fig. 2. Bifurcation diagram of the STSP dynamics. Numerical continuation of E when varying parameter I_0 for $J = 3.07$. Changes in solutions stability occurred at bifurcation points: saddle node at (SN) $I_0 = -1.46$ and 6 $I_0 = -1.86$, subcritical Hopf (H) at $I_0 = -1.15$, and saddle node of a periodic solution (SNP) at $I_0 = -1.14$ and $I_0 = -1.77$. Chaos emerged near the homoclinic bifurcation (HFO) at $I_0 = -1.76$. Different classes of states (fixed points) describing the network dynamics are depicted with different colors: downstate fixed point (blue), up-state fixed point (black), up-periodic state (red for the maximum oscillation amplitude and green for the minimum), and upchaotic state (orange). Solid lines refer to stable solutions and dashed lines to unstable solutions. Notice that there is coexistence between different network states, so that for a fixed external stimulus either a small parameter variation or simply noise can produce transitions between the different network states that coexist along the same vertical line in the bifurcation diagram. The SN, H, and SNP bifurcations were reported in ref. 8, but the Shilnikov homoclinic bifurcation HFO, which indicates chaos, is new here. Note that there is another subcritical Hopf (H) at $I_0 = -1.84$, creating a branch of unstable limit cycles that terminate at a homoclinic bifurcation (HFO) at $I_0 = 1.82$. This HFO bifurcation does not produce Shilnikov chaos, so it has no impact on the overall dynamics.

Fig. 3. Divergence of the oscillation period as a route to chaos in the STSP dynamics. (A) Accumulation of branches of periodic solutions close to a Shilnikov homoclinic (HFO) bifurcation. The branch undergoes an infinite number of saddle-node bifurcations (folds); however, these accumulate to a fixed value of I_0 corresponding to the Shilnikov homoclinic bifurcation. (Inset) A zoom-in of the gray area. (B) Time series of the population activity E and synaptic parameters x and u along the branch. Time is measured in units of the period T. Far from the homoclinic bifurcation (yellow 1 in A) the network activity exhibits a smooth wave with time. Closer to the homoclinic bifurcation, the wave is briefer (green 2). At the homoclinic bifurcation (purple 3), the wave becomes a spike. (C) Last periodic orbit Γ along the branch illustrated in A, viewed in 3D phase space (E,x,u). The orbit Γ has a large period and is a numerical approximation of the homoclinic orbit (formally with infinite period). The orbit Γ in the plane (u,x) is approximately stable and spirals toward an equilibrium of saddle type in which both stable and unstable directions coexist. The orbit then shoots out in the unstable direction, which approaches the E direction before spiraling back to the saddle equilibria. Simulations are performed for $J = 3.07$; similar behavior was observed for a wide range of parameter values (Fig. S1).
synaptic plasticity (Fig. S2), confirming the robust existence of Shilnikov chaotic dynamics in the TM model.

Influence of Noise on the Network Dynamics Near the Shilnikov Homoclinic Bifurcation. Physiological systems have noise that precludes strict determinism. To study the interplay between stochasticity and the deterministic chaotic dynamics, we have studied a network model proposed in ref. 27 (Fig. 5); the model is such that, in the limit of an infinite number of neurons \(N \to \infty \), it is exactly described by the TM deterministic equations (further details are given in (SI Text, section 2). In contrast, for a finite number of neurons, \(N \), the network is a noisy version of the TM model with the noise amplitude scaling as \(1/\sqrt{N} \). Thus, the standard TM model is the mean field description of the noisy network and the level of noise in the system can be controlled by varying the number of neurons.

We have performed computer simulations of the stochastic network using parameter values close to the homoclinic orbit \((J = 3.07, I_0 = -1.76)\), for which the up-periodic state is at the edge of undergoing a stability change at a deterministic level (Fig. 2). Simulations show that depending on the noise level the network switches between the down state and what seems to be a noisy version of the periodic state (Fig. 5). For intermediate noise intensities (i.e., \(N \approx 10^4 \)), we observed spikes corresponding to the unstable periodic orbits close to the homoclinic point (Fig. 5). As in the deterministic model, these unstable spikes decayed back to the down state and, consequently, were temporally isolated. However, eventually the system jumps to the periodic up state by using the nearby unstable periodic solutions close to the homoclinic orbit as a kind of springboard. Indeed, it did not require much noise to put the system close to the stationary point on the homoclinic orbit, from which the network could jump to nearby unstable periodic orbits. The resulting highly irregular dynamics results from the interplay between deterministic complex dynamics and stochasticity. Further away from the homoclinic bifurcation (i.e., for smaller values of \(I_0 \)), there is no homoclinic orbit between the down- and the up-periodic state and much more noise is required to observe jumps between these two regimes.

Fig. 4. Effects of the Shilnikov chaos in the transient dynamics. Shilnikov chaos differs from other routes to chaos: Although the time series for the TM model near the homoclinic orbit looks regular, the intervals between spikes vary from spike to spike. \(E(t) \) is superimposed for trajectories from similar initial conditions \(E(t=0) \) (15 different traces in different colors), illustrating the large sensitivity to small variations; the trajectories vary in the number of spikes from four to nine before settling down to the stable equilibrium (note also the variable amplitudes of the peaks and the lack of temporal coherence).

Fig. 5. Effects of the Shilnikov chaos in the network dynamics. Simulation of the network activity \(n/N \) based on the model introduced in ref. 27, which in its infinite network size limit is described by the TM deterministic equations. We considered a network with \(N = 17,000 \) neurons and parameter values \(J = 3.07 \) and \(I_0 = -1.76 \), very close to the homoclinic orbit of the deterministic equations. The initial condition was close to the stationary point on the homoclinic orbit. The standard TM model with these parameters does not have a stable periodic state. (Upper) Transitions to noisy transient periodic up states. Some isolated spikes, indicated with an arrow, correspond to the unstable periodic up states near the homoclinic points. (Lower) Insets of areas labeled A, B, and C in the upper figure. Observe the high irregularity and complexity of the curves.
Discussion

Consequences of the Shilnikov Homoclinic Bifurcation. We have identified the existence of Shilnikov homoclinic chaos in the simple and parsimonious TM model for the STSP dynamics. Shilnikov proved that if the saddle quantity is positive, infinitely many saddle limit cycles coexist at the bifurcation point: Each of these saddle limit cycles is a stable and unstable manifold, which results in high sensitivity to initial conditions and irregular transient dynamics. In the TM model the saddle quantity is generally positive in all cases: The behavior around the homoclinic bifurcation point is chaotic in the sense of Shilnikov, yielding unpredictable transient patterns with arbitrarily many spikes before settling down to the stable (down-state) equilibrium (Fig. 4).

The striking point to be stressed here is that the presence of a homoclinic bifurcation shapes and organizes the flow of trajectories in a relatively large region around it. We have shown that the Shilnikov bifurcation induces different complex transient responses depending on initial conditions before the system converges to one of the stable attractors. Could this transient dynamics caused by the Shilnikov homoclinic bifurcation mediate or explain certain irregular transients observed in large-scale brain dynamics, such as the erratic and complex transients observed in local field potentials in brain electrophysiology under certain conditions with a nontrivial power spectrum—around its average value (13, 36)? The underlying mechanism responsible for such quasi-oscillations is that the corresponding eigenvalues of the underlying up-state fixed point are complex, and hence the transient decay toward it occurs in the form of damped oscillations. Noise eventually kicks the system away from the deterministic fixed point, increasing the amplitude of the damped oscillations, and the system reaches a balanced state in which deterministic relaxation and noise excitation equilibrate, giving rise to a nontrivial spectrum of fluctuations (13, 36). In a similar spirit, we expect that adding noise to the STSP dynamics might lead to highly complex dynamics, especially in the neighborhood of the homoclinic orbit. First, deterministic chaos produces irregular transient spiking behavior (converging to the resting down state as described above). Second, noise kicks the system away from the down state, leading to a complex interplay of chaotic dynamics and stochasticity.

Self-Organization to the Edge of Chaos. Recent in vitro experiments revealed that spontaneous up–down transitions occurred predominantly near the limit of stability of the oscillatory phase (37), suggesting that there is some kind of biological self-organizing mechanism tuning cortical networks to the “edge of chaos,” a borderline between the active and quiescent phases in parameter space (38–43). This corresponds to the region near the Shilnikov homoclinic bifurcation the TM model unveiled. A feedback loop between excitation and inhibition could be a good candidate to provide for such a mechanism. Future research should explore these issues in the context of more complex network models.

To summarize, we have found the existence of Shilnikov chaos in the parsimonious TM model for short-term synaptic plasticity. Shilnikov chaos may have a profound impact in transient dynamics of large-scale network dynamics, which could be relevant for neural computation. We have shown that the presence of Shilnikov chaos constitutes a possible neural mechanism for the damped oscillations even in the noiseless neural dynamics and in a stochastic system may serve to facilitate transitions between different stable states.

Materials and Methods

Standard TM Model. We consider the continuous-time version of the TM model (8), as defined by the following set of equations (dot stands for time derivatives):

\[
\begin{align*}
\dot{x}(t) &= -E(t) + g(x(t))u(t) + I(t) \\
\dot{u}(t) &= g_1(1 - x(t)) - u(t)E(t) \\
\dot{E}(t) &= \frac{E(t) - E(t) + g(0)u(t)I(t)}{I_0}
\end{align*}
\]

Bifurcation Diagram and Numerical Continuation and XPPAUT. A bifurcation diagram is simply a plot summarizing all possible dynamical states in the parameter space, marking all possible fixed-point steady states, limit cycles, chaotic attractors, and so on, as well as the unstable and saddle points separating their respective domains of attractions. For clarity of visualization, we plotted a one-dimensional projection of the full state space as a function of one parameter: In the case of periodic oscillations only the maximum and the minimum amplitude values are plotted versus the parameter of interest, and the chaotic attractor is represented by a single point.

XPPAUT is a software package that uses continuation techniques to numerically analyze sets of differential equations in an efficient manner (22). By
Shilnikov Homoclinic Orbit and Saddle Quantity. A homoclinic orbit is a trajectory of a dynamical system that joins the stable W^s and unstable W^u manifolds of a saddle-type invariant set with an infinite period. The stable manifold is defined as the set of all trajectories (solutions) that tend to the invariant set in forward time; the unstable manifold is defined as the set of all trajectories that tend to the invariant set in backward time. In this particular case, the invariant dynamical object is a fixed point (here, a saddle-focus equilibrium). The oscillations tend to approximately focus with spatial dynamics; however, the focus possesses only one unstable direction, which has the effect of driving the solution away from this plane before returning again to the oscillatory region (Fig. 3C). Thus, in this particular system W^u is one-dimensional, because the equilibrium has one real eigenvalue, λ_1, and W^s is 2D because of the spiral dynamics, dictated by a pair of complex conjugated eigenvalues $\lambda_{2,3}$. In this way, two eigenvalues $\lambda_{2,3}$ control the stable direction and a third eigenvalue λ_1 controls the unstable direction.

According to Shilnikov theorem (26), the nature of the overall dynamics of the system near this bifurcation depends on the saddle quantity s, defined by $s = \lambda_1 + R(\lambda_{2,3})$, where R is the real part of the eigenvalues. In the present case, s can have values that are strictly positive (approximately 15 in Fig. 2, and other positive values in Fig. 51). Consequently, Shilnikov's theorem applies: the existence of countably many saddles nearby, which is in evidence for chaos. Because there are many saddle-limit cycles dictated by the Shilnikov orbit, an orbit from an initial condition in this region will iterate along these many cycles, thus generating periodic orbits with an unpredictable number of spikes, N, at irregular intervals.

The classic Shilnikov theorem implies that the unstable direction is associated with the real eigenvalue and that the stable one is associated with the complex conjugate eigenvalues. In case of having directions opposite to the classic case (i.e., stable for the real eigenvalue and unstable for the complex conjugate eigenvalues), the positivity of the saddle quantity does not imply chaos. In any case, the absolute value of the real eigenvalue has to be bigger than the absolute value of the real part of the complex conjugate eigenvalues, which is equivalent to the positivity of the saddle quantity in the classic Shilnikov scenario (i.e., the one we report here), and to its negativity in the scenario with opposite directions.

Two-Parameter Continuation for Computation of the Chaotic Region. To estimate the volume in parameter space containing chaotic dynamics, we used a numerical strategy based on an extended boundary-value problem, pseudo-arclength continuation (22). We computed a two-parameter family of approximate Shilnikov homoclinic orbits (similar to that shown in Fig. 3C) together with its associated saddle-focus equilibrium. More specifically, we use the module HOMCONT, part of the software package AUTO (44), which performs these types of computations, which were not possible with XPPAUT. In this way, we were able to compute the saddle quantity s associated with the saddle-focus equilibrium for every couple of parameter values along the computed family. For a saddle-focus equilibrium of a 3D vector field, this quantity is defined as the sum of its real eigenvalue and the real part of its complex conjugated eigenvalues. A major theoretical result states that if s is strictly positive, then the chaotic dynamics extend to a neighborhood around the parameter value of the Shilnikov homoclinic bifurcation (25).

ACKNOWLEDGMENTS. J.M.C. is supported by Ikerbasque, the Basque Foundation for Science. This work was supported by Junta de Andalucia Grant P09-FQM-4682 (to J.M.C. and M.A.M.), the Howard Hughes Medical Institute, and Office of Naval Research Grant N000141210299 (to R.V. and T.J.S.).

Supporting Information

Cortes et al. 10.1073/pnas.1316071110

SI Text

1. Jacobian, Equilibrium, and Characteristic Equation of the Tsodyks and Markram Model. The stability of the equilibrium point is analyzed by ensuring that the linearized version of the standard Tsodyks and Markram (TM) model satisfies the Grobman–Hartman theorem (1). Consequently, the Jacobian matrix gives

\[
J = \begin{pmatrix}
-\frac{1+Ju'x'g(Jux'E'+I_0)}{\tau} & \frac{Ju'E'g(Jux'E'+I_0)}{\tau} & \frac{Ju'E'g'(Jux'E'+I_0)}{\tau} \\
-\frac{u'x'}{\tau} & -\frac{1}{\tau_T+u'E'} & -x'E' \\
U(1-u') & 0 & -\frac{1}{\tau_F+U'E'}
\end{pmatrix},
\]

[S1]

where \(E', u', \) and \(x'\) are the values of \(E, u, \) and \(x, \) respectively, at the equilibrium point defined by the conditions

\[
\begin{align*}
E' &= g(Jux'E'+I_0), \\
\frac{u'}{U+\tau_T U E'} &= E \neq -\frac{1}{U \tau_T}, \\
x' &= \frac{1}{1+\tau_T u'E'}, \quad E \neq -\frac{1}{U \tau_T}
\end{align*}
\]

[S2]

From the expression of the eigenvalues given in Eq. S4, one immediately sees that the equilibrium is a saddle focus provided

\[
-J = \begin{pmatrix}
\lambda & \frac{Ju'E'g(Jux'E'+I_0)}{\tau} & \frac{Ju'E'g'(Jux'E'+I_0)}{\tau} \\
-\frac{u'x'}{\tau} & -\frac{1}{\tau_T+u'E'} & -x'E' \\
U(1-u') & 0 & -\frac{1}{\tau_F+U'E'}
\end{pmatrix} = \lambda.
\]

To solve this, we write that \(|J - \lambda I| = \sum_{i=1}^{n} a_i C_{ij}, \) where \(C_{ij}\) is the cofactor of \(a_{ij} \) defined by \(C_{ij} = (-1)^{i+j} M_{ij} \) and \(M_{ij}\) is the minor of all entries \(a_{ij}. \) This operation results in

\[
\lambda^3 + \lambda^2 \left(E(u+U) + \frac{1}{\tau_T} + \frac{1}{\tau_F} + \frac{1-Jauxg(JauxE+I_0)}{\tau} \right) + \lambda \left[E^2 u + E \left(\frac{U}{\tau_T} + \frac{u+U-Jauxg'(JauxE+I_0)}{\tau} \right) \right.
\]

\[
+ \frac{1}{\tau_T} + \frac{1}{\tau_F} + \frac{1}{\tau_T+\tau_F} \left(1-Jauxg'(JauxE+I_0) \right) + \frac{1}{\tau_T \tau_F}
\]

\[
+ E \left(\frac{U}{\tau_T} + \frac{u}{\tau_F} \right) \left(Jauxg'(JauxE+I_0) \right) \left(\frac{u}{\tau_T} + U \right) + \frac{uE^2 U}{\tau} = 0.
\]

[S3]

The condition \(Re(\lambda) = 0\) provides the local bifurcations of the system dynamics. Recall that the roots of a cubic polynomial \(f(x) = x^3 + a_2 x^2 + a_1 x + a_0 = 0 \) are

\[
\lambda = \frac{-S+T}{2} < \frac{a_2}{3} < S+T \quad \text{if} \quad S+T > 0 \quad \text{[S5]}
\]

\[
S+T < \frac{a_2}{3} < -\frac{S+T}{2} \quad \text{if} \quad S+T < 0 \quad \text{[S6]}
\]

\[S \neq T. \quad \text{[S7]}
\]

When this saddle focus has a Shilnikov homoclinic connection, the saddle quantity \(\sigma\) associated with it is defined as the sum of its real eigenvalue and the real part of its complex conjugated eigenvalues. As already mentioned, the Shilnikov theorem states that if \(\sigma > 0\) then there exists a chaotic attractor in the system. In the present case, we obtained...
\[
\sigma = \lambda_1 + \text{Re}(\lambda_2) = -\frac{2\alpha_2}{3} + \frac{S + T}{2}.
\]

[S8]

In this way, we have an explicit condition for chaotic dynamics (i.e., positive saddle) to occur in this system, that is

\[
S + T > \frac{4\alpha_2}{3}.
\]

[S9]

2. Stochastic Network Model. We have modeled a stochastic process that has a mean field description corresponding with the TM model. In concrete, we have considered a stochastic network model composed of N neurons with intrinsic noise as constructed in ref. 2. Each neuron can only assume two states: quiescent (Q) or active (A); the number of active nodes is labeled \(n \). The transition rates, specifying the dynamics, are chosen in such a way that the TM deterministic equations are recovered in the large N limit; in particular, the transition rates for positive and negative one-step jumps are

\[
T_+(n, t) = N N S Ju(t)x(t) \left(\frac{n}{N} + I_0 \right) / \tau,
\]

\[
T_-(n, t) = -n / \tau
\]

where \(S \) is a bounded increasing positive function. Eq. S10 is defined between jumps of \(n \) during which \(x, u \) evolve deterministically, obeying the same equations as in the TM model:

\[
\begin{aligned}
\dot{x}(t) &= \tau_1^+ (1 - x(t)) - u(t)x(t)n(t)/N \\
\dot{u}(t) &= -\tau_1^- (u(t) - U) + U (1 - u(t))n(t)/N.
\end{aligned}
\]

[S10]

The process \(n(t) \) and the Eq. S10 were simulated using a time-independent Gillespie algorithm (3). Hence, we compute the transition times of \(n \) using the Gillespie method and we update the variables \(x, u \) between the transition times according to Eq. S10.

Let us write \(P(n, t) \), the probability of having \(n \) active neurons at time \(t \). This probability satisfies the following master equation:

\[
\frac{d}{dt} P(n, t) = T_+(n-1)P(n-1, t) + T_-(n+1, t)P(n+1, t)
\]

\[
- \left[T_+(n) + T_-(n, t) \right] P(n, t).
\]

[S11]

In the limit of large \(N \) and writing \(z = n/N \), the Kramers–Moyal expansion of the master equation gives the Fokker–Planck equation for the following stochastic differential equation:

\[
\begin{aligned}
\tau dz &= A(z, x, u) dt + \frac{1}{\sqrt{N}} B(z, x, u) dW(t) \\
\frac{dx}{dt} &= \tau_1^+ (1 - x(t)) - u(t)x(t) \\
\frac{du}{dt} &= -\tau_1^- (u(t) - U) + U (1 - u(t)).
\end{aligned}
\]

[S12]

with

\[
\begin{aligned}
A(z, x, u) &= S Ju x + I_0 - z \\
B(z, x, u) &= SJu x + I_0 + z,
\end{aligned}
\]

[S13]

where \(W \) is a Brownian motion. More precisely, these equations are found by rewriting the master equation:

\[
\frac{d}{dt} P(z, t) = N(T_+(z - 1/N)P(z - 1/N, t)
\]

\[
+ T_-(z + 1/N)P(z + 1/N, t) - [T_+(z) + T_-(z)]P(z, t).
\]

[S14]

and performing a Taylor expansion of the right-hand side to second order in \(1/N \).

Eq. S12 shows that in the limit \(N \to \infty \), the birth–death process above, can be described by

\[
\begin{aligned}
\tau \dot{E}(t) &= -E(t) + S(Ju(t)x(t)E(t) + I_0) \\
\dot{u}(t) &= \tau_1^+ (1 - x(t)) - u(t)x(t)E(t) \\
\dot{u}(t) &= -\tau_1^- (u(t) - U) + U (1 - u(t)).
\end{aligned}
\]

This stochastic model requires a bounded nonlinearity \(S \). To reproduce the same behavior as the TM model with the parameter values simulated here, we first have chosen for \(S \) a rectification of \(g \), namely \(S(z) = g(z) \) if \(g(z) < 1 \) and \(S(z) = 1 \) otherwise. Then, to have the same results as those achieved by \(g \), we ensured that the variable \(E \) was not too large; otherwise, the rectification might change the results. Hence, we rescaled the system \(E \to E/E_{\text{max}} \) with a large constant \(E_{\text{max}} = 1.500 \) so that the new variable \(E \) was not too big and strictly smaller than 1. The rescaled system with the bounded nonlinearity \(S \) has exactly the same bifurcation diagram as the standard TM model analyzed in this paper.

3. Synaptic Delays Effect. We consider the effects of synaptic delays that take into account the synaptic transmission time and the spike initiation dynamics (4). The delay differential equation for this model reads:

\[
\begin{aligned}
\tau \dot{E}(t) &= -E(t) + S(Ju(t)x(t)E(t - D) + I_0) \\
\dot{u}(t) &= \tau_1^+ (1 - x(t)) - u(t)x(t)E(t) \\
\dot{u}(t) &= -\tau_1^- (u(t) - U) + U (1 - u(t)).
\end{aligned}
\]

where \(D \) is the synaptic delay. The bifurcation diagrams are computed for different values of the delay \(D \) in the millisecond range using a software, Knut (5), that is specifically designed to deal with delays. In these diagrams, the HO bifurcations were validated by checking that the period of the limit cycle becomes infinitely large right at the bifurcation points. The saddle quantities were analyzed and the chaotic HO bifurcations are indicated in Fig. S2. The synaptic delays have strong effects on the dynamics. First, they reduce the amplitude of the stable oscillations. Second, they decrease the distance between the two Hopf bifurcations so that the parameter region where the oscillations are stable shrinks. Upon increasing the delay, the two homoclinic bifurcations coalesce in a branch connecting the two Hopf bifurcations. On this branch, there is a sequence of period doubling bifurcations (not shown in the figure).

Fig. S1. Positivity of the saddle quantity through two-parameter continuation. This figure shows the evolution of the Shilnikov homoclinic orbit together with its associated saddle-focus equilibrium (A and B) in the \((J,\tau_F)\) space for fixed \(I_0 = -2.3\) and (C and D) in the \((J,I_0)\) space for fixed \(\tau_F = 1.5\). (A and C) Saddle quantity \(\sigma\) along the two-parameter continuation curve. For clarity, we marked two different points in red and blue on the continuation curve as well as the \(\sigma\) value evaluated at the saddle focus corresponding to each of these points. (B and D) Curve of two-parameter continuation; each point in the curve corresponds to a particular Shilnikov orbit (and an associated saddle-focus equilibrium) for particular values of \(J\) and \(\tau_F\) in B and \(J\) and \(I_0\) in D. From the figure one can see that the two-parameter continuation curve has been computed along order 1 ranges of each of the parameters and that the saddle quantity remains positive through these ranges of \(J, \tau_F, I_0\), which indicates chaos.
Fig. S2. Bifurcation diagram of the delayed short-term synaptic plasticity dynamics. Numerical continuation of E when varying parameter I_0. Changes in solutions stability occurred at bifurcation points: saddle node (SN), Hopf (H), saddle node of a periodic solution (SNP), period doubling (PD), and homoclinic bifurcation (HO). When the homoclinic bifurcation leads to chaotic behaviors, it is indicated in red; otherwise, it is in black. Different classes of states (fixed points) describing the network dynamics are depicted with different colors: down-state fixed point (blue), up-state fixed point (black), periodic state (red, for the maximum oscillation amplitude), and periodic solution branching from PD (violet). The bifurcation diagrams were calculated for $J=3.07$. Note that the list of PDs is not exhaustive.

Table S1. Parameters used in the TM model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>Time constant for rate dynamics</td>
<td>13 ms</td>
</tr>
<tr>
<td>τ_F</td>
<td>Time constant for synaptic facilitation</td>
<td>1,500 ms</td>
</tr>
<tr>
<td>τ_D</td>
<td>Time constant for synaptic depression</td>
<td>200 ms</td>
</tr>
<tr>
<td>U</td>
<td>Baseline for facilitation variable</td>
<td>0.3</td>
</tr>
<tr>
<td>J</td>
<td>Strength of recurrent connections</td>
<td>3.07</td>
</tr>
<tr>
<td>I_0</td>
<td>External inhibitory input</td>
<td>$[-2,-1]$</td>
</tr>
<tr>
<td>α</td>
<td>Normalization factor in the gain function</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Values of parameters have been taken from those published in ref. 1. The only difference is that in ref. 1 the strength of recurrent connections was considered $J=4.0$ instead of $J=3.07$. However, we have simulated a wide range of values of J, including the case of $J=4$, and in all cases the Shilnikov chaos existed (Fig. S1).