Corrections

PERSPECTIVE

The author notes that, on page 1, middle column, lines 11–16 “Fewer accidental resonances mean less energy sharing and so less statistical behavior with a consequence that they are in equilibrium with the population of accessible states of O_3^* at low pressures, as discussed later.” should instead appear as “Fewer accidental resonances mean less energy sharing and so less statistical behavior with a consequence of a shorter lifetime of O_3^* at low pressures, as discussed later.”

On page 2, middle column, first full paragraph, lines 11–14 “This major difference in the pressure effect indicates a difference in the role of the collisions in these two distant phenomena.” should instead appear as “This major difference in the pressure effect indicates a difference in the role of the collisions in these two distinct phenomena.”

On page 3, middle column, first paragraph, lines 4–7 “The overall deviation from statistical theory for the recombination rate constant was (N. Ghaderi) perhaps a factor of 2.” should instead appear as “The overall deviation from statistical theory for the recombination rate constant was (N. Ghaderi) less than a factor of 2.”

On page 3, middle column, first full paragraph, lines 22–26 “Any chaos in the form of higher-order resonances within a volume element \hbar^V would be coarse gained and so presumably contribute to quantum chaos.” should instead appear as “Any chaos in the form of higher-order resonances within a volume element \hbar^V would be coarse gained and so presumably not contribute to quantum chaos.”

Both the online article and the print article have been corrected.

ENVIRONMENTAL SCIENCES

The authors note that upon publication their conflict of interest statement was not complete. The updated disclosure statement is as follows, “Jennifer Miskimins holds a joint appointment with Barree & Associates and the Colorado School of Mines. She has also served as an advisor to Nexen in 2012. David T. Allen served as a consultant for the Eastern Research Group and ExxonMobil in 2012, and is the current chair of the Science Advisory Board for the EPA. John H. Seinfeld has served as a consultant for Shell in 2012. David T. Allen, Matthew Harrison, Charles E. Kolb, and Robert F. Sawyer variously serve as members of scientific advisory panels for projects supported by Environmental Defense Fund and companies involved in the natural gas supply chain. These projects are led at Colorado State University (on natural gas gathering and processing), Washington State University (on local distribution of natural gas), and the University of West Virginia (on CNG fueling and use in heavy duty vehicles).”

Both the online article and print article have been corrected.

www.pnas.org/cgi/doi/10.1073/pnas.1318658110
PHYSIOLOGY
Correction for “mitoBKCa is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location,” by Harpreet Singh, Rong Lu, Jean C. Bopassa, Andrea L. Meredith, Enrico Stefani, and Ligia Toro, which appeared in issue 26, June 25, 2013, of Proc Natl Acad Sci USA (110:10836–10841; first published June 10, 2013; 10.1073/pnas.1302028110).

PNAS notes that a conflict of interest statement was omitted during publication. PNAS declares that “The editor, Ramon Latorre, is a recent coauthor with the authors of this publication, having published a paper with them in 2012.”

Additionally, the authors note:

“Although Figs. 1 and S1 display the same sequence template, the analyses of LC/MS/MS data were performed against the respective databases, rat for Fig. 1, and mouse for Fig. S1. Sequence alignment of rat (NCBI:Q62976.3; UniProtKB: Q62976-1 V.3, which differs by 3 amino acids near the N terminus with that of Figs. 1 and S1) and mouse (NCBI: NP_001240298.1) isoforms show 98.9% amino acid identity with differences circumscribed to the extreme N and C termini. Peptides identified by LC/MS/MS have the exact sequence in rat and mouse as shown in Figs. 1 and S1.”

“Although Figs. 1 and S1 display the same sequence template, the analyses of LC/MS/MS data were performed against the respective databases, rat for Fig. 1, and mouse for Fig. S1. Sequence alignment of rat (NCBI:Q62976.3; UniProtKB: Q62976-1 V.3, which differs by 3 amino acids near the N terminus with that of Figs. 1 and S1) and mouse (NCBI: NP_001240298.1) isoforms show 98.9% amino acid identity with differences circumscribed to the extreme N and C termini. Peptides identified by LC/MS/MS have the exact sequence in rat and mouse as shown in Figs. 1 and S1.”

“In published Fig. 7, panels E and F show slices of the same heart in each condition; to better display the infarcted vs. healthy portions, these images were scaled to approximately the same size. We noticed that some data points in panel G were slightly moved during figure preparation. The revised Fig. 7 now shows heart slices at their original magnification (E and F) and the correct panel G. The corrected figure and its legend appear below.”

![Fig. 7. BKCa protects the heart from ischemic injury.](https://www.pnas.org/cgi/doi/10.1073/pnas.1316210110)
The discovery of the mass-independent fractionation (MIF) of isotopes in ozone formation by Thiemens and Heidenrich in the laboratory in 1983 (1, 2) is a well-recognized milestone in the study of isotope effects and a subject of papers in this journal issue (cf. also several reviews, refs. 3–6). In the present article, we note that there is also a very interesting zero-point energy difference (ΔZPE) effect (7) that is well understood in terms of RRKM (Rice-Ramsperger-Kassel-Marcus) theory (8–12). Instead, we focus on the MIF, considering it in terms of a deviation from statistical behavior. We recall that a factor η (the “η-effect”) was introduced by Hathorn and Marcus (8, 9) and explored further by Gao and Marcus (10, 11) and Gao, Chen, and Marcus (12) to treat many aspects of the MIF involving four recombination rate constants and an equilibrium constant, for each trace isotope, seven rate constants in all and two equilibrium constants. A conceptual shortcut is noted. Experimental and computational information that may provide added insight into the MIF mechanism and tests is described.

Isotopic Enrichment

We first recall that the isotopic enrichment η of an isotope Q of oxygen in the formation of ozone is defined in mils (22, 23):

$$\eta = \frac{(Q/O) \text{ in ozone}}{(Q/O) \text{ in oxygen}} - 1. \tag{1}$$

Eq. 1 can be rewritten in terms of the amounts of the molecular species as

$$\frac{Q\eta}{1000} = \left[\frac{Q\text{OO} + Q\text{OO}}{3O_3} \right] - 1, \tag{2}$$

where Q denotes 17O or 18O throughout. The expression for $Q\eta$ in terms of the O + O$_2$ recombination rate constants is given by (8, 9)

$$\frac{Q\delta}{1000} = \frac{k_{6q,66}}{2k_{6q,66} + k_{6q,65} + k_{qq,65}k_{6q,66}} - 1, \tag{3}$$

where s denotes the isotopically symmetric isotopologue QOO and QQ and as is the asymmetric isotopologue OOO. When formed from O and QO, it has a rate constant $k_{6q,67}$ and when formed from Q and OO, it has a...
rate constant \(k_{6,6} \). \(K_{eq} \) denotes the equilibrium constant \([Q][O_2]/[QO][O] \). In the MIF phenomenon the \(\delta^2 \) is the same for \(Q = O^17 \) and \(Q = O^18 \).

Key Experimental Results to be Explained by an MIF Theory

In attempting to understand the \(\eta \)-effect (MIF) in physical terms, we first recall several experimental results that a theory for the MIF should explain, results that would also constitute a test of any theory:

i) It is now well known that there are two distinct isotope effects in the MIF literature, one being the MIF. The other is an effect arising from the difference of zero-point energies of the two exit channels of a dissociating \(ABB^\# \) formed from \(A + BB \), where \(A \) and \(B \) are different isotopes of \(O \). In this second isotope effect (24, 25) the low-pressure recombination rate constants for the formation of ozone isotopologues \(ABB^\# \) from \(A + BB \) are studied under “isotopically unscrambled conditions” (8), namely, where an effort is made to avoid complications from follow-up reactions of the products of the dissociated \(ABB^\# \) with other species. It was shown (8–12) that this very interesting \(\Delta ZPE \) effect cancels under conditions (“isotopically scrambled conditions”) where the MIF is studied experimentally and cancels for a physically understood reason. We return to this point later.

ii) As seen in Eq. 3, four recombination rate constants and one equilibrium constant are needed to relate the MIF to individual recombination rate constants (8). The results for both \(Q = O^17 \) and \(O^18 \) trace isotopes are needed to distinguish from some small mass-dependent component (24, 25) that also occurs. To calculate the \(^17O \) and \(^18O \) enrichment using some existing theory, for example ref. 26, one would need to pursue any such calculation further, because only three of the seven required rate constants were computed. This remark applies, of course, to other calculations in the literature as well.

iii) One major feature of the MIF is that it is a low-pressure phenomenon that disappears at higher pressures (6, 27, 28). At these low pressures, an equilibrium exists between \(O + O_2 \) and the accessible states of \(O_3^\# \) for all isotopologues present. It was shown in ref. 8 that the particular combination of rate constants in Eq. 3 can be rewritten in terms of the steady-state density of accessible quantum states accessible by at least one of the atom-diatom channels of the excited ozone isotopologues. That work showed that the final expression for \(Q \) is independent of the \(\Delta ZPE \) effect.

iv) The effect of pressure in reducing the MIF (6, 27, 28) occurs at pressures that are considerably lower than the “Lindemann fall-off pressure” for the formation of ozone from \(O + O_2 \) (6, 29, 30) for the same added gases. (The Lindemann fall-off pressure is the pressure at which the unimolecular dissociation rate constant, and hence the bimolecular recombination rate constant, is 50% of its high-pressure value.) This major difference in the pressure effect indicates a difference in the role of the collisions in these two distinct phenomena.

v) For any ozone isotopologue the MIF is largely independent of the isotopic masses, as seen in the experiments of Mauersberger and coworkers for all of the isotopologues (24, 28).

vi) The MIF decreases with decreasing temperature (28).

Although both types of isotope effects have been observed for ozone formation, one of them, the \(\Delta ZPE \) effect is, in our view, well understood both qualitatively and quantitatively in terms of transition state theory (RRKM theory) (8–12). It is an interesting effect and has also been the subject of a number of quantum mechanical scattering calculations (31–34). In the present overview of the MIF we confine our attention to the MIF effect itself. An excellent recent review of the isotopic fractionation of ozone for both effects is given by Feilberg et al. (6).

MIF, a Low-Pressure Effect

Some specific results on the effect of pressure of a third body \(M \) on MIF are available, although relatively sparse and in need of data at higher pressures. The difference between the pressure for the “50% Lindemann fall-off” of the rate constant for the three-body recombination or dissociation and the pressure of the same gas for the 50% decrease of the MIF from its low-pressure value is perhaps the most dramatic when the third body \(M \) is SF6. The 50% Lindemann fall-off pressure for \(M = SF_6 \) occurs at \(\sim 20 \) atm (30), whereas for the MIF the 50% value occurs at less than 0.5 atm (6). For \(M = O_2 \) or \(N_2/O_2 \) the respective numbers are \(\sim 100 \) atm for the recombination rate (29) and \(\sim 10 \) atm for the MIF (27, 28). Comparisons for other gases could also be made. The data are incomplete at the needed higher pressures. There is also some uncertainty in the 50% fall-off pressure for deactivation when additional complications occur at very high pressures (29), as judged by an unusual increase of the slope of one rate constant vs. the third-body pressure plot at high pressures (29).

From the existence of an MIF at low third-body pressures that greatly decreases with higher pressure we conclude that any theory of MIF should recognize both that it is a low-pressure phenomenon and that a quasi-equilibrium exists at low pressures, \(O + O_2 = O_3^\# \) between all isotopologues of \(O \) and \(O_2 \) and the accessible states of all isotopologues of \(O_3^\# \). Accordingly, any theory of the MIF needs to consider not only the forward step in \(O_3^\# \) formation, but also the dissociation, to have a quasi-equilibrium at low pressures between the accessible states of all transient isotopic species.

Because the MIF \(\eta \)-effect is a low-pressure phenomenon, it can have one of two possible origins (8, 9): (i) an isotopic symmetry effect on the low-pressure \(O + O_2 = O_3^\# \) quasi-equilibrium constant associated with the quantum states of \(O_3^\# \) accessible from \(O + O_2 \) or (ii) a difference in deactivation collisional cross-sections of the third body with symmetric compared with asymmetric isotopologues. The difference in collisional effect on recombination rate constants for isotopically symmetric and asymmetric molecules was calculated (35), but the theory was too approximate to draw conclusions for this possibility. Eventually, more accurate computations of the role of deactivating collisions would be of interest, particularly on what we later term “symmetry-changing collisions”.

Accordingly, we focus on an intramolecular source of an MIF and consider it together with the possibility of explaining the large difference in pressure fall-off regions for the recombination and for MIF. One possibility for the latter is a difference in cross-sections between deactivating and symmetry-changing collisions. We return to this topic later. We first consider, briefly, several classical, semiclassical, and quantum aspects of intramolecular dynamics of isolated molecules (15–19) relevant to discussing a role of symmetry in the onset of “chaos” in intramolecular dynamics and in the MIF.
Classical, Semiclassical, and Quantum Intramolecular Dynamics

When the classical internal motion of a molecule is quasiperiodic ("regular"), a molecule having \(n \) coordinates and \(n \) momenta for the given energy lies in an \(n \)-dimensional subspace, a torus, at any given energy \(E \), instead of on a phase space of \(2n - 1 \) dimensions available to the corresponding chaotic (statistical) molecule. A special example of a molecule that is regular is one whose vibrations are harmonic, with \(n \) constants of the motion, the so-called action variables (the classical counterparts of quantum numbers), but the introduction of some anharmonicity can still leave the motion quasi-periodic and hence restricted to motion on the \(n \)-dimensional subspace (Kolmogorov, Arnold, and Moser theorem) (15–18).

An ozone molecule that is in a quasi-periodic state cannot dissociate, dissociation being aperiodic. Correspondingly, such states would not be accessible by the reverse process of recombination (microscopic reversibility). Such molecules have fewer accessible states when formed from \(O + O_2 \) and so from a statistical point of view have a shorter lifetime. As a consequence, with less time to undergo deactivating collisions their rate of formation of \(O_3 \) would be less. N. Ghaderi in our group, using classical trajectories and methods outlined in ref. 36, found that (classically) about 10–15% of the \(O_3^* \) phase space did not dissociate and so had quasi-periodic orbits. However, quantum mechanically this restriction is not as severe, because semiclassically the system can undergo tunneling between the phase space tori. For the present, we simply assume that internal resonances will favor statistical theory, but this is just an assumption, albeit dynamically based. We note that some nonstatistical behavior is a necessary but not a sufficient condition for the MIF and also that, as discussed in this paper, because of the role of symmetry, the MIF is a quantum phenomenon and so there is no immediate link between the 10–15% of nondissociating trajectories mentioned above and the magnitude of the MIF.

Siebert et al. found classical periodic orbits at energies above the dissociation limit (37). Periodic orbits are a special case of quasi-periodic orbits with all frequencies commensurate. These frequencies vary with the classical mechanical phase space action variables and so each periodic orbit in phase space is encircled by quasi-periodic orbits, the whole constituting a classical resonance. In Chirikov theory (20) the overlapping of classical resonances leads to classical chaotic and hence statistical behavior (more bifurcations); Coriolis effects have also been implicated in slow intramolecular energy exchange (5, 38, 39), contributing to some deviation from statistical theory. The overall deviation from statistical theory for the recombination rate constant was (N. Ghaderi) less than a factor of 2. So, classically, the statistical model is not quite right for \(O_3^* \) but not far wrong. For the \(n \)-effect deviations of only 10–15%, and so only a relatively small deviation from a statistical behavior, but of the right kind, are needed for this effect.

Corresponding quantum mechanically to overlapping of classical resonances is the overlapping of avoided crossings of vibrational–rotational eigenvalues (40–42) that in turn make a state unidentifiable in a spectrum. Vibrational spectra of ozone have been measured up to \(\sim 7,800 \text{ cm}^{-1} \), using cavity ring down spectroscopy, e.g., refs. 43 and 44, and numerous states identified for energies that are still substantially below the dissociation limit of \(\sim 8,400 \text{ cm}^{-1} \), where vibrational anharmonicity and mixing of regular states would occur even more. There are many earlier studies of internal resonances in ozone, albeit with less resolution, e.g., refs. 45–50. We note here that even in a nonstatistical classical model for the dissociation of \(O_3^* \), any ensemble of \(O_3^* \) molecules would not lie on a single torus, but rather would be distributed over many tori. A quantum state would occupy a phase space volume element \(h^N \) in \(N \)-dimensional phase space. Any chaos in the form of higher-order resonances within a volume element \(h^N \) would be coarse gained and so presumably not contribute to quantum chaos. In classical mechanics, in that volume element they may be many resonances and so many bifurcations of trajectories, yielding a classical chaos. In this case, quantum mechanics can yield regular states whereas the corresponding classical mechanics yield chaos.

This case would not be the first where an eigenvalue spectrum is more regular than that expected from classical trajectories. For example, Jaffe and Reinhardt (53) for the Henon–Heiles potential (52) used classical mechanical perturbation theory, a theory that tacitly assumes quasi-periodicity, to calculate semiclassical eigenvalues by calculating the classical mechanical vibrational action variables and quantizing them by semiclassical theory. They found good agreement with the quantum mechanical eigenvalues, even at high energies, where the system is classically chaotic, with pockets of quasi-periodicity. For the present we adopt the following model. Whereas overlapping resonances lead to statistical theory, nevertheless extensive resonances lead to extensive energy sharing and perhaps a largely statistical behavior. The higher the density of resonances, it is assumed, the more the overlap of resonances and so the more the statistical behavior. A laboratory experiment on the effect of density of states on the onset of chaos is given in Kim et al. (53).

We consider next the implications for isotopically symmetric and asymmetric ozone or other molecules. For isotopically symmetric isotopologues, one-half of the vibrational–rotational quantum states is forbidden by the Pauli exclusion principle. Because of this difference between the symmetric and the asymmetric isotopologues, there is a smaller density of states in the former, thereby a smaller number of resonances, and so (by assumption) a smaller amount of energy sharing. The simplest statistical interpretation is that those isotopically symmetric molecules have, thereby, shorter lifetimes and so are less apt to be deactivated by collisions before a redissociation.

One key question is whether such a model can explain the difference between the pressure effect for the MIF and that for the recombination rate. An isotopically symmetric \(O_3^* \) with identical isotopes for the end atoms is, in the presence of a nearby colliding gas molecule, no longer isotopically symmetrical and during the collision can change its rotational–vibrational state to permit the molecule to access otherwise nonaccessed states during its lifetime. E.g., if the rotational–vibrational state had one symmetry for the vibrations and, for the given isotopic spins, the appropriate symmetry for the rotations, then after the collisions these rotational–vibrational symmetries can be reversed. One can term the collisions “symmetry-changing collisions”. When they occur frequently enough during the lifetime of the \(O_3^* \), all vibrational states of any particular \(O_3^* \) can be accessed and not just one-half of them. If such state-changing collisions have a cross-section significantly larger than that for deactivating collisions, then the lower fall-off pressure for MIF compared with that for recombination can be understood. Clearly, relevant quantum mechanical computations on collision cross-sections will be instructive.

There has been extensive study of conventional energy transfer collisions (e.g. refs. 54 and 55), and perhaps these methods can be adapted to symmetry-changing collisions.

One feature not discussed thus far is the effect of temperature on the MIF (56, 57). In treating an effect of temperature on the recombination rate for the \(O + O_2 \) reaction Troe introduced a chaperon mechanism (29, 30, 58), in addition to the energy transfer...
mechanism, the importance of the charpentor component increasing with decreasing temperature. In this mechanism, the third body M serves as a charpentor closely bound to one of the reactants, e.g., O₂ + M = O₂M, followed by reaction O₂M + O → O₃ + M, the M carrying away some of the excess energy. The decrease of the MIF with decreasing temperature (56, 57), we suggested (59), may be due to an increasing contribution of the charpentor mechanism at low temperatures, because for a charpentor mechanism there is no long-lived quasi-equilibrium O + O₂ = O₃ and so in the present theory no MIF. It has been estimated that the major component of the three-body recombination at low temperature occurs via a charpentor mechanism (29, 58, 60). One can expect, as a consequence, that the discrepancy between the fall-off pressure for MIF and that for MIF will decrease when the temperature is decreased.

To learn more experimentally about the distribution of lifetimes of O₃*, molecules, one possibility would be pump-dump laser experiments in which a ground electronic state O₂ molecule is excited to a repulsive electronic state and then with a second laser is dumped into the ground electronic state of the molecule, but with enough energy to dissociate. One might explore testing whether all such isolated molecules dissociate, even the quasi-periodic ones because of tunneling, and particularly whether the decay is single exponential (statistical) or multi-exponential (nonstatistical) and whether there are some residual nonstatistical O₃* that do not dissociate.

There has been a start on quantum mechanical computations for MIF in ozone formation (59–62), and a mixed quantum-classical calculation is given in ref. 25. Rigorous computations are extremely demanding and presently incomplete. The full-scale quantum dynamics would treat MIF using the numerous angular momentum states of the colliding O + O₂ reactants, including a treatment of the newly formed long-lived O₃* living perhaps 100 ns at the pressures involved in MIF, which treats for the reaction system the appropriate symmetry restrictions, as well as the three-body collision aspect. Such a treatment is still on the horizon. Examples of some calculations are given in refs. 25, 34, and 61–63. A number of computational studies have been made, instead, of the quantum mechanics of the isotope ΔZPE effect. As noted earlier, this isotope effect cancels in “scrambled systems” (8), systems where the MIF effect is actually observed in experiments, and so theories of the ΔZPE effect are interesting in their own right but not revealing in my view for understanding the MIF. We noted that the ΔZPE effect cancels exactly for the MIF. The reason is that, at the low pressures involved, there is an equilibrium between the states of all the isotopologues of O₃ and the two sets of reactants in the two exit channels. Some of the O₃ states are accessed from one channel and some from the other, but there is quasi-equilibrium. As noted earlier to treat the MIF quantum mechanically four rate constants are involved for each of ¹⁷O and ¹⁸O enrichments (8, 9). Of particular value in MIF-focused quantum calculations is the treatment of A + AA collisions, because there is then no complication due to the unneeded ΔZPE. It is absent in this case. The effect of symmetry can be studied using the same masses for the three isotopes, but using distinguishing labels, and so investigating the pure symmetry effect in the absence of a ΔZPE. An example of subtle differences in symmetry effects is found in a detailed study of a much simpler system, the Ne₃ + H → 2Ne + H system (64).

In summary, we have considered a possible origin for the MIF in terms of the relative nonstatistical behavior of symmetric and asymmetric isotopologues and suggested potential experiments and computations.

ACKNOWLEDGMENTS. I thank Dr. Nima Ghaderi for extensive discussions on the results of his classical trajectory computations for ozone that have investigated different types of nonstatistical behavior. This research was supported in part by the National Science Foundation.
