ENVIRONMENTAL SCIENCES

The authors note that the following statement should be added to the Acknowledgments: “G.D. is a PhD student funded by the Teagasc Walsh Fellowship scheme and jointly supervised by K.S.B., and HM Grogan, Teagasc, Ireland.” The authors also note that an additional affiliation for Greg Deakin should be listed; the additional affiliation is Mushroom Research Group, Crops, Environment, and Land Use Programme, Teagasc, Ashtown. Dublin 15, Ireland. The corrected author and affiliation lines appear below. The online version has been corrected.

The authors note the following: “We have recently become aware that errors were introduced into Figs. 1 and 2 during their composition. In Fig. 1, the control panels were reused in Fig. 1A and Fig. 1F, and the incorrect MTA1 panel was used in Fig. 1J. We have now replaced the panels with correct panels from the original experimental results. In Fig. 2, the ER panel in Fig. 2C was reused in Fig. 2H. We have now replaced the panel with the correct panel in Figure 2H. Additionally, the RT-PCR panels of Fig. 2E and 2F were originally spliced together. We have now replaced these RT-PCR panels with results from repeat experiments. These errors do not change the original scientific conclusions and validity of the result remains the same.”

The corrected figures and their corresponding legends appear below.

Fig. 1. Recruitment to the regulatory region and modulation of BCAS3 by MTA1. (A) MTA1-associated chromatin from MCF-7 cells associates with regulatory region of BCAS3. (B) Levels of BCAS3 and MTA1 in MCF-7/MTA1 (T11 clone) and MCF-7/pcDNA cells. (C) Effect of MTA1 knockdown by RNAi on the levels of BCAS3. (D) Effect of T7-MTA1 or pCDNA on the BCAS3-luc activity in MCF-7 cells. Inset, expression of transfected T7-MTA1. (E) Status of BCAS3-luc activity in MCF-7/MTA1 and HC11/MTA1 clones with respective controls. (F) Recruitment of MTA1 onto BCAS3 regulatory region upon E2 stimulation. (G) BCAS3-luc reporter activity in MCF-7 cells transiently transfected with T7-MTA1 and treated with E2. (H and I) Effect of E2 treatment on BCAS3-luc activity and BCAS3 protein in MCF-7/pcDNA and MCF-7/MTA1 cells. Luciferase activity is represented as fold induction by E2 as compared to control (n = 3). (J) Effect of MTA1 depletion on BCAS3 expression in MCF-7 cells treated with or without E2 (n = 3).
Correction for “TRIM39 regulates cell cycle progression and DNA damage responses via stabilizing p21”, by Lei Zhang, Yang Mei, Nai-yang Fu, Li Guan, Wei Xie, Hui-hui Liu, Chun-dong Yu, Zhenyu Yin, Victor C. Yu, and Han You, which appeared in issue 51, December 18, 2012, of Proc Natl Acad Sci USA (109:20937–20942; first published December 4, 2012; 10.1073/pnas.1214156110).

The authors note that, due to a printer’s error, the footnote “1L.Z., Y.M., and N.-y.F. contributed equally to this work” should instead appear as “1Y.M. and N.-y.F. contributed equally to this work.”

Additionally, within the author line, “Lei Zhang” should instead appear as “Lei Zhang.” The corrected author line appears below.

Lei Zhang, Yang Mei,1, Nai-yang Fu,1, Li Guan, Wei Xie, Hui-hui Liu, Chun-dong Yu, Zhenyu Yin, Victor C. Yu, and Han You

Correction for “PNAS introduces new magazine section,” by Inder M. Verma and David J. Harris, which appeared in issue 7, February 12, 2013, of Proc Natl Acad Sci USA (110:2427; first published January 30, 2013; 10.1073/pnas.1300186110).

The editors note that the author name Inder M. Verman should instead appear as Inder M. Verma. The corrected author line appears below. The online version has been corrected.

Inder M. Verma and David J. Harris

Fig. 2. Occurrence of BCAS3 enhancer module by ERα and regulation of gene expression. (A) E2 stimulation promotes ERα recruitment onto BCAS3 regulatory region in MCF-7 cells. (B) ERα occupancy of BCAS3 regulatory sequence upon E2 treatment. (C) Effect of ERα depletion upon E2 stimulation of BCAS3-luc activity in MCF-7 cells. (D) BCAS3-luc activity in HeLa cells transfected with ERα or vector and treated with E2. (E) Effect of E2 stimulation on BCAS3 mRNA in MCF-7 cells. (F) Inhibition of E2-induced BCAS3 expression by ICI-182780 in MCF-7 cells. (G) Effect of ERα knockdown on BCAS3 expression in MCF-7 cells treated with or without E2. (H) Recruitment of MTA1 onto BCAS3 regulatory region in response to E2 stimulation in ER-depleted MCF-7 cells. (Left) Status of ERα knockdown by RNAi (n = 3).

www.pnas.org/cgi/doi/10.1073/pnas.1300338110

CELL BIOLOGY

The authors note that, due to a printer’s error, the footnote “1L.Z., Y.M., and N.-y.F. contributed equally to this work” should instead appear as “1Y.M. and N.-y.F. contributed equally to this work.”

Additionally, within the author line, “Lei Zhang” should instead appear as “Lei Zhang.” The corrected author line appears below.

Lei Zhang, Yang Mei, Nai-yang Fu, Li Guan, Wei Xie, Hui-hui Liu, Chun-dong Yu, Zhenyu Yin, Victor C. Yu, and Han You

www.pnas.org/cgi/doi/10.1073/pnas.1300693110
PNAS introduces new magazine section

Inder M. Vermaa and David J. Harrisb
aEditor-in-Chief and bSenior Recruiting Editor

PNAS is one of the most widely read journals in the basic sciences around the world, and its online edition elicits well over 24 million hits per month. PNAS continues to be a leading player in the dissemination of the best that scientific research can offer. Until now, we’ve done this primarily through the ∼3,500 research papers per year that make up the core of this journal.

Over the years, however, the journal has expanded to include a “front section” that includes profiles of NAS scientists, QnAs with leading researchers around the globe, insightful commentaries, and topic-driven podcasts. We believe that PNAS has a special role in fulfilling the mission of the National Academy of Sciences—not only by contributing to the research enterprise, but also by informing the public about science.

With this issue, we relaunch the front matter of the journal in a magazine format, both in print and online. The new material will allow us to better explain science and to be part of the larger discussion that surrounds the core research published in the journal. We hope that the new content reaches an even broader audience than the scientific papers in the journal. Whether you are a scientist, a policy maker, or a fan of science, we will bring you stories that are engaging and accessible, requiring only an interest in science and an inquisitive mind to read.

Over time, we hope that this magazine section will evolve into a key component of the scientific discourse, in the same way that our research articles are a key part of the research enterprise. We don’t intend to offer full science news coverage as we believe that area is currently well served by other publications. However, we do plan to identify many of the interesting stories of science and the people who do it, and present them to you in fresh and original ways.

We fully recognize that the scope of science extends well beyond the borders of what we publish in PNAS so the stories we produce will cover science in its entirety, not only limited to the papers published in PNAS.

Five new sections will be produced in print and available free online with additional Web content including podcasts and video, and a “First look” blog that will introduce you to some of the PNAS papers we find particularly interesting and accessible.

“News features” present topical and trending issues in science ranging from in-depth looks at hot fields in science through discussions of policy implications for science.

“Core concepts” allow readers to gain an understanding of important topics that are central to science but are outside the reader’s field of expertise.

“Inner workings” show how scientists go about doing their jobs via a peek behind the scenes at the working lives, materials, and locations of science research.

“Science & culture” explores how science is pervading the rest of society’s interests with a focus on science and art.

“Opinions” allow thought leaders in science to engage in discussion with the rest of the scientific community on matters of topical importance.

To create the magazine content, we are engaging some of the best professional science writers, and we plan to solicit opinion pieces from the leading minds in science and beyond.

We invite you to comment on our new offerings, either by e-mail or in the comment section of the articles online. We also invite you to submit opinion pieces for consideration if you have something new to say in the discussion of issues relevant to the science community or on science-related public policy matters. While PNAS will first and foremost be a rigorous journal publishing original scientific discoveries, our goal for this new magazine section is to make it more accessible to a wider readership.