NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus

Lauren S. Rydera, Yasin F. Dagdasb, Thomas A. Mentlakc, Michael J. Kershawb, Christopher R. Thorntona, Martin Schustera, Jisheng Chenb, Zonghua Wangb, and Nicholas J. Talbota,1

aSchool of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and bDepartment of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

Edited by Jay C. Dunlap, Dartmouth Medical School, Hanover, NH, and approved January 10, 2013 (received for review October 7, 2012)

The rice blast fungus *Magnaporthe oryzae* infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2–NoxR complex spatially organizes a heterologeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics.

NADPH oxidases (Nox) are flavoenzymes that function by transferring electrons across biological membranes to catalyze reduction of molecular oxygen to superoxide (1, 2). In animal cells, Nox enzymes are implicated in cell proliferation, cell signaling, and apoptosis (1–3), whereas in plants Nox are necessary for programmed cell death (4), the response to environmental stresses (4), pathogen infection (5), and polarized growth of root hairs (6). In filamentous fungi, Nox are necessary for cellular differentiation during sexual reproduction and for developmental processes that involve transitions from nonpolarized to polarized cell growth, such as tissue invasion by mutualistic and pathogenic fungi, and fungal virulence (7–9). The underlying function of Nox enzymes in these diverse developmental processes remains unclear.

In this study we set out to investigate the role of reactive oxygen species (ROS) synthesis by Nox during plant infection by the devastating rice blast pathogen *Magnaporthe oryzae* (10). Rice blast disease is considered a major threat to global food security and remains difficult to control (11). Nox1 and Nox2 are necessary for an oxidative burst that is required for plant infection by the fungus (12), but why this is necessary for rice blast disease is not known. To infect rice plants, *M. oryzae* forms a specialized infection structure called an appressorium (10). This dome-shaped cell generates enormous turgor of up to 8.0 MPa (12), which is translated into physical force at its base to rupture the rice leaf cuticle using a narrow, rigid, penetration peg that invades plant tissue. Recently, it has been reported that septin GTPases scaffold cortical F-actin in the appressorium at the site of plant infection, acting via the ezrin-radixin-moesin (ERM) protein, Tea1, and specific phosphatidylinositol interactions at the fungal plasma membrane (13). *M. oryzae* septins assemble into a hetero-oligomeric ring that surrounds the appressorium pore, a region at the base of the infection cell from which the penetration peg emerges. This acts to scaffold and reorganize the F-actin cytoskeleton and as a partitioning diffusion barrier to localize Bin-Amphiphysin-Rvs (BAR)-domain proteins, implicated in membrane curvature and protrusion of the penetration peg through the rice leaf surface (13).

In this report, we show that NADPH oxidases play distinct, but essential, roles in F-actin remodeling during plant infection. The Nox2 complex, which includes the p67phox-like regulator NoxR, is necessary for assembly of septin GTPases at the appressorium pore, which is required for reorientation of the F-actin cytoskeleton at the point of plant infection. Consistent with this, Δnox2 mutants are unable to initiate penetration peg formation and cannot infect rice plants. We also show that Nox1 is required for correct organization of the toroidal F-actin network, acting after septin assembly. Δnox1 mutants therefore initiate penetration peg development but fail to elongate invasive hyphae to rupture the rice cuticle. These functions seem to require the regulated synthesis of ROS and are likely to be a direct consequence of the enzymatic activity of NADPH oxidases. Our results provide evidence that Nox complexes play critical roles in both initiation and maintenance of polarized growth by the rice blast fungus during plant infection.

Results

M. oryzae NADPH Oxidase Mutants Are Impaired in F-Actin Organization During Appressorium Development. To understand the role of NADPH oxidases during infection-associated development, we identified *M. oryzae NOXR* (MGG 05280.6), which shares 38% amino acid sequence similarity with *Homo sapiens* p67phox (Fig. S1) and generated a ΔnoxR null mutant (Fig. S2). We then introduced a LifeAct-RFP gene fusion (14) into isogenic *M. oryzae* Δnox1, Δnox2, Δnox1Δnox2 (15), and ΔnoxR mutants to observe organization of F-actin by live-cell imaging (13, 14). In the wild-type *M. oryzae* strain, Guy11, a large toroidal-shaped F-actin network (~5.9 μm in diameter) formed around the appressorium pore (13), which we visualized by live-cell imaging and topologically characterized using transverse line scan analysis of LifeAct-RFP fluorescence intensity in the appressorium (Fig. L4 and Movie S1). In Δnox1 mutants, the F-actin network was partially disorganized (Fig. 1 and Movie S3 and Movie S2). Individual actin cables were not observed and a dense, unorganized patch of actin instead accumulated at the appressorium pore (2.5 ± 0.4 μm in diameter, n = 20). In the Δnox2 mutant, F-actin accumulated at the appressorium pore in a dense, unorganized patch (3.8 ± 0.3 μm in diameter, n = 20), shown in Fig. L4 and Movie S3. A similar pattern was observed in both the Δnox1Δnox2 double mutant and in a Δnox1 mutant (4.2 ± 0.4 μm in diameter, n = 20).

The authors declare no conflict of interest.

1To whom correspondence should be addressed. E-mail: N.J.Talbot@exeter.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217470110/-/DCSupplemental.
To understand the nature of the F-actin network, we investigated its organization at the appressorium pore in *M. oryzae* requires Nox1, Nox2, and NoxR.

To investigate why Nox1 and Nox2/NoxR seem to play distinct roles in F-actin organization during appressorium maturation, we decided to express Nox1-GFP, Nox2-RFP, and GFP-NOXR gene fusions in *M. oryzae* (Fig. S4A and B). Nox1-GFP was predominantly localized at the plasma membrane during appressorium maturation (4–8 h), with evidence for subsequent endocytosis and internalization apparent at later times. By contrast, Nox2-RFP was initially found at the appressorium cortex (4 h) but was predominantly intracellular during appressorium maturation (8–12 h) and during cuticle penetration (Fig. S4B). Nox2-RFP was observed in intracellular vesicles throughout appressorium maturation. GFP-NOXR also showed intracellular localization with accumulation in the cytoplasm and vesicles. Transcriptional profiling analysis showed distinct patterns of gene expression, with NOX2 and NOXR genes showing much higher relative levels of expression during appressorium maturation (Fig. S4C). We conclude that Nox1 and Nox2/NoxR act at different subcellular locations during appressorium morphogenesis.

Nox2 Is Essential for Septin Ring Assembly at the Appressorial Pore.

We reasoned that Nox1 and Nox2 might act in distinct ways to regulate F-actin organization and decided to test this idea. In *M. oryzae*, four septin GTPases (Sep3, Sep4, Sep5, and Sep6) are known to form a hetero-oligomeric ring at the appressorium pore (~5.9 μm in diameter) (13), which is necessary for F-actin organization. We therefore expressed Sep5-GFP in Δnox1, Δnox2, Δnox1Δnox2, and ΔnoxR mutants. In Guy11 and the Δnox1 mutant, a Sep5-GFP septin ring was present at the appressorium pore (Fig. 24). In the Δnox2 mutant, however, Sep5-GFP formed a disorganized mass in the infection cell (3.2 ± 0.3 μm in diameter, n = 20; P < 0.05 compared with wildtype) (Fig. S5), which was also observed in a Δnox1/Δnox2 mutant (3.5 ± 0.6 μm in diameter, n = 20; P < 0.05) (Fig. 24). In

\[n = 20 \], where a dense, unorganized patch of actin was located at the appressorium pore (Fig. 1 and Fig. S3 and Movies S4 and S5). To understand the nature of the F-actin network, we investigated fluorescence recovery of LifeAct-RFP after partial photobleaching. We found 75% recovery of fluorescence after 3.5 min, consistent with the appressorium F-actin toroidal network’s being highly dynamic (Fig. 1C and Movie S6). We conclude that F-actin organization at the appressorium pore in *M. oryzae* requires Nox1, Nox2, and NoxR.
ΔnoxR mutants, aberrant septin rings formed, which were 19% smaller in diameter (mean = 4.76 μm, n = 20) than Sep5-GFP rings in Guy11 (Fig. 2). We also expressed a Chm1-GFP fusion in each of the Nox mutants. Chm1 is a protein kinase that in yeast is known to phosphorylate septins (16) and in M. oryzae is distributed in a ring conformation around the appressorium pore (14) (Fig. 2B). A Chm1-GFP ring was present in Guy11 and Δnox1 mutants but disorganized in Δnox2 and ΔnoxR mutants, consistent with a role for Nox2 in the regulation of septin assembly and Chm1 kinase localization (Fig. 2B). Quantitative analysis confirmed that Nox2 is essential for septin and Chm1 ring assembly, showing more severe disruption of septin ring assembly than Δnox1 or ΔnoxR mutants (Fig. S6 A and B). The N-WASP protein Las17, a component of the actin-polymerizing Arp2/3 complex, was observed by expression of a Las17-GFP fusion and localized as puncta in the appressorium pore in Guy11 (13) and the Δnox1 mutant, whereas in Δnox2 and ΔnoxR mutants Las17-GFP localization was disrupted, with the protein distributed diffusely in the cytoplasm and plasma membrane (Fig. S7). The ERM domain fusion protein Tea1-GFP, which localises as a ring of puncta at the appressorium pore in both Guy11 (13) and Δnox1 mutants, also showed abnormal localization in both Δnox2 and ΔnoxR mutants. The localization of Rvs167-GFP, a BAR-domain protein (13), was also affected in Δnox2 and ΔnoxR mutants, with puncta present in a misshapen appressorium pore (Fig. S7). We conclude that ERM–actin interactions at the appressorium pore, which are essential for linking cortical F-actin to the membrane to facilitate penetration peg emergence, require the Nox2/NoxR complex. Furthermore, the role of septins in spatially localizing the WASP/Arp2/3 complex component Las17 and BAR-domain protein Rvs167 to the appressorium pore—which mediate penetration peg emergence—is compromised in the absence of Nox2/NoxR.

Given the distinct function of Nox2 in regulating septin-mediated F-actin reorganization, we were interested in identifying other potential components of the Nox2 complex that might be involved in its recruitment to the appressorium pore. Studies in M. oryzae, Podospora anserina, and Botrytis cinerea have highlighted a connection between Nox2 (NoxB) and the transmembrane tetraspanin protein, Pls1 (17–19). Mutants lacking PLSS in these fungi strongly resemble nox2 (noxB) mutants, and there is a very close phylogenetic association between fungi possessing both Nox2 and Pls1 homologs (20). It has been proposed that Pls1 might therefore be associated with Nox2 activity or specific recruitment to its site of action (21). To test this idea, we therefore expressed LifeAct-RFP, Sep5-GFP, and Chm1-GFP in a M. oryzae Δpls1 mutant (Fig. 2C). Strikingly, we observed mislocalization of F-actin, septin, and Chm1 in the absence of the Pls1 tetraspanrin in the same manner as Δnox2 mutants.

Reactive Oxygen Species-Dependent Organization of the F-Actin Regulator Gelsolin in M. oryzae. We were interested in determining whether Nox-dependent cytoskeletal remodeling was due to regulated synthesis of ROS or a more indirect role in cell signaling. In mammalian systems, an increasing body of evidence suggests that ROS generation may affect F-actin dynamics during cell shape changes, migration, and cell motility (22), for example, in human sperm (23), low-density lipoprotein-induced stress fiber formation (24), endothelial cell mitogenesis, and during apoptosis (25). Antioxidants have been reported to exert a direct effect on F-actin cable elongation (26), and components of Nox complexes are also known to associate with F-actin (27) or actin-binding proteins (28). The actin-binding protein gelsolin, which regulates F-actin dynamics by uncapping free barbed ends to promote actin polymerization and by severing existing filaments (29), has, for example, been proposed as a likely target for regulation by ROS (22). We therefore expressed gelsolin-GFP in an M. oryzae Guy11 strain expressing LifeAct-RFP. We observed colocalization of gelsolin-GFP and LifeAct-RFP to the appressorium pore (Fig. 3A), consistent with gelsolin acting as an F-
actin regulator. In a Δnox1 mutant, gelsolin-GFP still organized into a ring structure, but in Δnox2 or ΔnoxR mutants gelsolin-GFP formed a disorganized patch at the appressorium base (Fig. 3B). To understand the nature of the gelsolin ring, we investigated fluorescence recovery after partial photobleaching. We found 83% recovery of fluorescence after 8 min, consistent with gelsolin turnover’s being associated with F-actin dynamics (Fig. 3C and Movie S7). To determine whether F-actin and septin dynamics in appressoria were directly influenced by ROS synthesis, we applied the flavoenzyme (Nox) inhibitor diphenyleneiodonium chloride (15) and the antioxidant ascorbate, both of which prevented formation of gelsolin-GFP and septin rings, resulting instead in aberrant smaller ring structures at the appressorium pore (Fig. 3D). This is consistent with ROS generation’s being required for both F-actin and septin ring assembly. We therefore applied the actin depolymerizing agent latrunculin A to M. oryzae appressoria, which (as expected) led to disruption of gelsolin-GFP organization. However, when we applied hydrogen peroxide (H2O2) in the presence of latrunculin A, this partially restored gelsolin-GFP ring formation (Fig. 3 E and F). The depolymerizing activity of latrunculin A can therefore be partially prevented by the presence of high concentrations of ROS. Latrunculin A treatment of mature appressoria (at 16 h) also inhibited appressorium-mediated cuticle penetration on rice epidermal strips (Fig. S8), but this was partially remediated by simultaneous addition of H2O2 (Fig. S9). We conclude that regulated synthesis of ROS by M. oryzae Nox proteins can directly affect F-actin dynamics.

Nox1 and Nox2 Play Distinct Roles During Plant Infection. Given the distinct phenotypes of Δnox1 and Δnox2 mutants with respect to F-actin and septin dynamics, we were interested to see how they differed in their ability to cause rice blast disease. Previously, Δnox1 and Δnox2 mutants have been shown to be nonpathogenic (15), and we confirmed that ΔnoxR and Δnox1/Δnox2 mutants were also unable to cause rice blast disease (Fig. 4A-D). Transmission electron microscopy of appressoria, however, showed that Δnox1 mutants still initiated penetration peg formation from the base of the infection cell (Fig. 4C). These short projections were unable to extend through the plant cell wall (Fig. 4B) and Δnox1 mutants were therefore unable to colonize rice tissue and cause disease. By contrast, appressoria of Δnox2, Δnox1/Δnox2, and ΔnoxR mutants were unable to repolarize at the appressorium pore and could not form penetration pegs (Fig. 4 D–F). We conclude that Nox2 and NoxR are necessary for septin-mediated initiation of polarized growth of the penetration peg at the appressorium base, whereas Nox1 is necessary for maintenance of penetration peg elongation.

Discussion
Regulated synthesis of ROS by NADPH oxidases is necessary for a wide variety of developmental processes in mammals, plants, and fungi (1, 3, 6). In filamentous fungi, ROS generation has, for example, been associated with hyphal tip growth, spore formation, infection structure development, conidial anastomosis tube generation, fruiting body formation, fungal–plant mutualistic interactions, and fungal virulence (1, 2). These diverse roles for ROS as signaling molecules in fungi are, however, still not well understood. The best understood NADPH oxidase is the mammalian phagocytic leukocyte gp91phox (or Nox2), which is necessary for the defensive oxidative burst during microbial attack. The gp91phox protein is part of a membrane-spanning complex (flavocytochrome b558) with the adaptor protein p22phox and interacts with the cytosolic regulatory proteins p40phc, p67phc, p47phc, and Rac GTPase (3). In total there are five Nox enzymes in humans, which have been implicated in a variety of cellular processes, including cell proliferation, apoptosis, and hormone responses. This has led to the suggestion that ROS production may be a ubiquitous signaling system controlling cellular differentiation in eukaryotes (3–6). Filamentous fungi possess up to three Nox enzymes. Nox 1 (or NoxA) and Nox2 (NoxB) are similar to gp91phox, whereas Nox3 (NoxC) enzymes have EF-hand domains that putatively bind Ca2+ in the same way as plant respiratory burst oxidases (8, 9) and human Nox5 (3). Fungal Nox complexes seem to involve interactions with cytosolic proteins, previously implicated in the regulation of polarity (1). A recent study of the plant-associated mutualistic fungus Epichloë festucae, for example, showed that NoxR interacts with homologs of the yeast polarity proteins Bem1 and Cdc24 (2) and that this requires the Phox and Bem1 (PBI) protein domain, which is also necessary for localization of these proteins to actively growing hyphal tips. E. festucae mutants that lack Bem1 are defective in hyphal morphogenesis and growth in culture whereas Cdc24 seems to be essential for viability (2). The study therefore provided evidence for an important role for fungal NADPH oxidases in the establishment of polarity and the control of cellular differentiation. This is consistent with recent findings in plant pathogenic fungi, such as Botrytis cinerea, Sclerotinia sclerotiorum, and Claviceps purpurea, in which Nox proteins have been shown to be necessary for fruit body formation and appressorium function (1, 25, 26),
and experiments in *Podospora anserina* that have implicated Nox proteins in polarity establishment and invasive growth (27).

In this report, we have provided evidence that the role of fungal Nox in polarized fungal growth is likely to be based on remodeling of the F-actin cytoskeleton. When considered together, our results are consistent with a model whereby the *M. oryzae* Nox2/NoxR complex is essential for septin-mediated F-actin assembly at the appressorium pore, which is a prerequisite for penetration peg formation and rice infection. In *Saccharomyces cerevisiae*, a recently identified Nox-encoding gene, YNO1, has also been implicated in actin cable formation (30), suggesting that regulation of F-actin dynamics may be one of the key underlying mechanisms by which Nox exert their diverse roles in cellular differentiation. Furthermore, Nox2 is regulated as part of a complex involving NoxR and is also known to interact with Rac1 (31), a small GTPase involved in polarized cell growth and also implicated in F-actin dynamics. Gelsolin is, for instance, a downstream effector of Rac1 (32). We also found evidence that the tetraspanin Psl1 may play a role in the Nox2 complex based on its effect on septin and F-actin organization at the appressorium pore. Nox1 is therefore essential for initiation of polarized growth from the appressorium. Remediation of the effects of the actin depolymerizing agent latrunculin A upon exposure to H2O2 further suggests that the role of Nox2 and NoxR in polarity establishment may be a direct consequence of the regulated synthesis of ROS by NADPH oxidases, perhaps acting directly on actin regulatory proteins such as gelsolin. It has been suggested, for instance, that ROS may increase the actin-severing ability of gelsolin by disulfide bond formation in the protein, leading to greater exposure of barbed ends and increased actin polymerization (22).

By contrast, we found that Nox1 is not required for septin ring assembly at the appressorium pore but is necessary for correct organization of the F-actin network that is scaffolded at this site. Furthermore, Δnox1 mutants are able to initiate penetration peg formation (and therefore establish polarized growth) but cannot elongate invasive hyphae, suggesting that the Nox1 complex may be required for maintenance of polarized growth, which is necessary for host cell entry and pathogenesis. Previously, it was shown that *Δnox1* mutants display increased resistance to calcium white, indicating a defect in cell wall organization affecting chitin deposition. The lighter pigmentation of *Δnox1* mutants also suggests a role in melanin biosynthesis or its polymerization in the cell wall. These phenotypes are notably absent in the other Nox mutants, suggesting that Nox1 may supply ROS to the cell wall for oxidative cross-linking of proteins, and this may be necessary for maintenance of polarized growth.

An important question that arises from this study is how two Nox complexes in the *M. oryzae* appressorium, which are likely to involve the same *p67phox* regulator, NoxR, can fulfill different functions. Our observations suggest that specificity may be due, at least in part, to their distinct subcellular locations. Nox1 occurs predominantly in the plasma membrane, resulting in extracellular ROS generation and consistent with its role in cell wall organization. Conversely, Nox2 is present intracellularly and is differentially expressed during appressorium maturation. Localization of Nox2 within membrane-bound vesicles is similar to localization patterns of NoxA and NoxB to the endoplasmic reticulum (ER) observed in *B. cinerea* (21). Furthermore, Yno1 in yeast (30) and mammalian Nox4 also localize to the ER, suggesting that this may be an important site to ROS generation (21). Although we have not yet verified whether Nox2 acts within the ER, its intracellular location and association with the Psl1 tetraspanin suggests that it does act in a very different manner from Nox1, generating ROS within the appressorium to regulate F-actin organization.

We conclude that infection of rice cells by *M. oryzae* therefore involves two separately operating Nox complexes that regulate the establishment of polarized growth by septin-mediated reorganization of F-actin at the appressorium pore and then maintain polarized growth of the penetration hypha and organization of cortical F-actin. These findings offer a potential target for rice blast disease control and, importantly, they may also provide insight into the action of NADPH oxidases in diverse developmental processes in fungi, plants and animals.

Materials and Methods

Fungal Strains, Growth Conditions, and DNA Analysis. The growth and maintenance of *M. oryzae* isolate, media composition, nucleic acid extraction, and fungal transformation were all as previously described (33). Gel electrophoresis, restriction enzyme digestion, gel blots, and sequencing were performed using standard procedures (34).

Plant Infection Assays. Pathogenicity assays were performed by spraying seedlings of rice (*Oryza sativa*) cultivar CO-39 with a suspension of 105 conidia/mL using an artist’s airbrush (33). Infection-related development was observed by incubating conidia on hydrophobic glass coverslips and allowing appressoria to form after 24 h. Cuticle penetration was measured as described ref. 35.

Generation of *M. oryzae* ΔnoxR Mutant and Strains Expressing GFP Fusions. Targeted gene replacement of the *NOXR* encoding gene was performed using the split-marker strategy. Vectors were constructed using a Hygromycin B-selectable marker, *hph*, for transformation of Guy11. The *hph* gene cassette was cloned into pBlueScript (Strategene) as a 1.4-kb EcoRI-XbaI fragment. To amplify the split *hph* templates the primers used were M13 3′ end plus HY and M13 R with YG, as described previously (36). *M. oryzae* NOXR was amplified using primers designed to conserve DNA regions identified from an alignment of nox1 sequences from *M. oryzae*, *E. festucae*, and *H. sapiens* (Table S1). The PCR product was cloned into the *M. oryzae* genome database of the Broad Institute at the Massachusetts Institute of Technology, Cambridge, MA (www.broad.mit.edu/annotation/fungi/magnaporth). The wild-type Guy11 was transformed with the *noxR:hph* deletion cassette. Transformants were selected in the presence of hygromycin B (200 μg/mL) and assessed by Southern blot analysis. For generation of translational GFP fusions of the ΔnoxR region cloning based on homologous recombination in *Saccharomyces cerevisiae* was used (37). Primers used are listed in Table S1. All translational GFP fusions were created using the native promoter and terminator sequences. Plasmids were transformed into Guy11, Δnox1, Δnox2, ΔnoxR, or Δpsl1 strains and single-copy transformants selected by Southern blot.

Analysis of Gene Expression Using High-Throughput SuperSAGE. A transcription profiling database (http://cogie.me.ex.ac.uk/supersage/) (38) was interrogated to determine the expression of *NOX1*, *NOX2*, and *NOXR* in Guy11 during appressorium development (4, 8, 16, and 16 h after spore germination). Expression was plotted relative to gene expression in *M. oryzae* mycelium (38).

Light and Epifluorescence Microscopy and Transmission Electron Microscopy. For epifluorescence microscopy conidia were incubated on coverslip/leaf sheath and observed at each time point using an IX-81 Olympus inverted microscope connected to a CoolSNAP HQ2 camera. Photobleaching experiments were performed using an IX-81 Olympus inverted microscope with VS-LM54 Laser-Merge-System and solid-state lasers (488 nm/70 mW and 561 nm/70 mW; VisiTron Systems) and a PlanApo 100×/NA 1.45 Oil TIRF objective (Olympus). The 405-nm/60-mW diode laser was modulated by use of a ND 0.6 filter, resulting in 15 mW of output power coupled into the light path by an OSI-IK 71 adapter (VisiTron Systems) and controlled by a UGA-40 controller (Rapp OptoElectronic GmbH) and VisiFRAP 2D FRAP control software for Meta Series 7.5.x (VisiTron Systems). For recovery curves, part of the LifeAct-RFP or Gelsolin-GFP ring was photobleached and the average intensity of the region was measured and normalized with an unbleached region of the ring. Three-dimensional projections were captured using a Zeiss LSM510 Meta confocal laser scanning microscope system. HeNe 543-nm lasers were used for excitation, and all images were recorded following examination under the 363× oil objective. LSM image browser (Zeiss) or Metamorph 7.5 (molecular devices) was used for image analysis. Ultra-thin sectioning and transmission electron microscopy was performed as described previously (15).

Fig. S1. Amino acid sequence alignment of *M. oryzae* NADPH oxidase isoform R protein. The amino acid sequence of NoxR was aligned with human p67^Phox^ and *E. festucae* NoxR. Sequences were aligned using ClustalW and shaded using GeneDoc version 2.6.02. Amino acid residues within a black background were identical among all listed proteins, dark gray residues were identical in two out of three of the listed proteins, and those shown on a white background do not show any similarity.
Fig. S2. One-step targeted gene replacement of the *M. oryzae* NOXR gene. (A) A 1.4-kb hygromycin B resistance gene cassette was introduced into the NOXR coding sequence using the split marker method. (B) Second-round PCR fragments were introduced into *M. oryzae* Guy11 and targeted deletion mutants selected on hygromycin B and identified by probing with a deleted 500-bp region of the NOXR coding sequence. Southern blot analysis was carried out and two putative gene replacement mutants, T3 and T6, were identified.

Fig. S3. LifeAct-RFP localization in NADPH oxidase mutants of *M. oryzae*. Micrographs showing expression of LifeAct-RFP in NADPH oxidase mutants during a time course of appressorium development by *M. oryzae*. Conidia were harvested from Guy11, Δnox1, Δnox2, Δnox1Δnox2, and ΔnoxR mutants expressing LifeAct-RFP, inoculated onto hydrophobic glass coverslips, and observed by epifluorescence microscopy. A toroidal F-actin network was observed in wild-type (Guy11) infection cells at the appressorium pore after 8 h. At 24 h the F-actin network was fully formed and individual actin cables could be distinguished. In Δnox1 mutants the F-actin network was distorted and by 24 h the ring-shaped structure at the appressorium pore was no longer intact. In Δnox2, ΔnoxR, and Δnox1 Δnox2 mutants the F-actin network was not observed. Instead, a disorganized accumulation of actin was detected in the center of the appressorium. (Scale bar, 10 μm.)
Live-cell imaging of Nox1-GFP, Nox2-RFP, and GFP-NoxR expressed during appressorium development by *M. oryzae*. Independent transformants were generated expressing *NOX1-GFP, NOX2-RFP, and GFP-NOXR* translational gene fusions expressed under control of their native promoters. Strains were inoculated onto hydrophobic glass coverslips and observed by epifluorescence microscopy. (A) Nox1-GFP was initially observed at the appressorium cortex from 4 h. After 12 h Nox1-GFP was also observed in the central appressorium vacuole. Nox2-RFP was initially observed at the periphery of the appressorium from 4 h. After 12 h, Nox2-RFP expression increased, forming punctate structures throughout the appressorium. GFP-NoxR expression was observed in the cytoplasm of both ungerminated conidia and appressoria. (Scale bar, 10 μm.) (B) On a yielding surface that could be ruptured by *M. oryzae* appressoria, similar localization patterns were observed. Conidial suspensions were inoculated onto sterile onion epidermis and observed for a 12-h period. (Scale bar, 10 μm.) (C) SuperSAGE analysis showing the expression of Nox genes in Guy11. Bar graphs show abundance of transcripts encoding each Nox gene in a Guy11 time course during appressorium development (4, 6, 8, 14, and 16 h).
Fig. S5. Graph to show the range of Sep5-GFP ring sizes observed in wild-type and Δnox2 mutants of M. oryzae during appressorium development. Live-cell imaging experiments were carried out by expression of SEP5-GFP in Guy11 or Δnox2 mutant. Triangles represent the diameter values of septin rings observed in Guy11. The black squares represent the diameter values of aberrant septin accumulations observed in the Δnox2 mutant. Long horizontal lines represent the mean diameter and short horizontal lines are the SEM. The y axis shows diameter in micrometers.

Fig. S6. Live-cell imaging of Sep5-GFP and Chm1-GFP in Δnox2 and ΔnoxR mutants. (A) Bar chart showing the percentage of appressoria with intact Sep5-GFP rings after 24 h. Values are mean ±2 SE for three repetitions of the experiment, n = 100. (B) Bar chart to show the percentage of appressoria containing intact Chm1-GFP rings after 24 h. Values are mean ±2 SE for three repetitions of the experiment, n = 100.
Fig. S7. Expression and localization of Las17-GFP, Tea1-GFP, and Rvs167-GFP in Δnox2 and ΔnoxR mutants of M. oryzae. Δnox1, Δnox2, and ΔnoxR mutants were independently transformed with LAS17-GFP, TEA1-GFP, and RVS167-GFP gene fusions, inoculated onto glass coverslips, and observed by epifluorescence microscopy. In Δnox1 mutants, Las17-GFP, Tea1-GFP, and Rvs167-GFP localized in the same pattern as Guy11. In Δnox2 and ΔnoxR mutants, Las17-GFP, Tea1-GFP, and Rvs167-GFP were mislocalized. Therefore, ERM–actin interactions at the appressorium pore, which are essential for linking cortical F-actin to the membrane to facilitate penetration peg emergence, require the Nox2/NoxR complex. (Scale bar, 10 μm.)
Exposure to latrunculin A prevents appressorium-mediated rice infection by *M. oryzae*. Micrographs of LifeAct-RFP localization in the presence or absence of latrunculin A. A conidial suspension of the Guy11 expressing LifeAct:RFP at 5×10^4 mL$^{-1}$ was inoculated onto the surface of rice leaf sheath and incubated in a moist chamber at 24 °C. (A) Deionized water or (B) 3 μg/mL latrunculin A was added to the conidial suspension after 16 h. Representative images were recorded using an IX-81 Olympus inverted microscope. A, appressorium; C, conidium; IH, invasive hypha. (Scale bar, 10 μm.) (C) Bar charts to show percentage of appressoria forming penetration pegs after 24 h ($n = 100$). The percentage of appressoria forming penetration hyphae following latrunculin A treatment was significantly reduced ($P < 0.001$) compared with water treatment. Values in C are means ±2 SE for three repetitions of the experiment.
Fig. S9. Addition of H$_2$O$_2$ partially remediates the effects of latrunculin A on appressorium-mediated plant infection by *M. oryzae*. A conidial suspension of wild-type Guy11 at 5 × 104 mL$^{-1}$ was inoculated onto the surface of rice leaf sheath and incubated in a moist chamber at 24 °C to form appressoria. At 16 h, deionized water, 3 μg/mL latrunculin A, 10 mM H$_2$O$_2$, or 3 μg/mL latrunculin A and 10 mM H$_2$O$_2$ was added to the developing appressoria. (A) Bright-field micrographs were recorded using an IX-81 Olympus inverted microscope. Ap, appressorium; Ih, invasive hypha. (Scale bar, 10 μm.) (B) Bar charts to show percentage of appressoria forming penetration pegs after 24 h (n = 100). A significant reduction in penetration peg formation was observed following latrunculin A treatment (P < 0.001) but simultaneous addition of 10 mM H$_2$O$_2$ restored the frequency of peg formation to almost wild-type levels. Pegs ruptured the leaf cuticle but did not develop into extensive invasion hyphae. Values are means ± 2 SE.
Table S1. Primers used in this study

<table>
<thead>
<tr>
<th>Primer name</th>
<th>DNA sequence (5′–3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoxR50.1F</td>
<td>GGACGCTACCCAGCTCCAACAT</td>
</tr>
<tr>
<td>NoxR50.1R</td>
<td>GTCGTGACTGGGAAAACCCCTGGGCTAAAATCAATCAACTCTCTTTT</td>
</tr>
<tr>
<td>NoxR30.1F</td>
<td>TTATTCCTGTGAGCTACTTCACTC</td>
</tr>
<tr>
<td>NoxR30.1R</td>
<td>TCCCTGCGAGAATTCTATCCCTTAAAGCGAGGATGGTGTGACTTC</td>
</tr>
<tr>
<td>Nox2-RFPF</td>
<td>CTTGTACCTTTTTCTGGTACTGCTGCTAACATGCTATGCTGGACGAGGAGCTG</td>
</tr>
<tr>
<td>Nox2-RFPR</td>
<td>CTGTACAGCTCGTCCATGCCGTG</td>
</tr>
<tr>
<td>NoxRpromF</td>
<td>CTTGTACTTTTTCTGGTACTGCTGCTCGCTCAGGACGAGGAGCTG</td>
</tr>
<tr>
<td>NoxRpromR</td>
<td>GTAAAATCAATCCTCTCTTTT</td>
</tr>
<tr>
<td>GFPF</td>
<td>CTAACAAAAAGAGAGTTGATTTTTATGGCGAGCAGGAGGAGCTG</td>
</tr>
<tr>
<td>GFPR</td>
<td>CGTCGTGACTGGGAAAACCCCTGGGCTAAAATCAATCACTCTCTTTT</td>
</tr>
<tr>
<td>NoxRORFF</td>
<td>CACGGCATGGACGAGCTGACAATGCTGCAAGCGACGGTACGTGCCTCCCTTCCAACGAAACCCCCACCC</td>
</tr>
<tr>
<td>NoxRORFR</td>
<td>TTGCTGACTTTTTCTGGTACTGCTGCTGCTAGTATGCTGGACGAGGAGCTG</td>
</tr>
<tr>
<td>Gelsolin-GFPF</td>
<td>CTTGTACCTTTTTCTGGTACTGCTGCTCGCTCAGGACGAGGAGCTG</td>
</tr>
<tr>
<td>Gelsolin-GFPR</td>
<td>GGGTAACAGGCTCCCTGGCCTCAGCAATATGCGCTGGCTGGCTCCCTTCCAACGAAACCCCCACCC</td>
</tr>
</tbody>
</table>

Movie S1. Three-dimensional rotational movie to show toroidal F-actin network at the appressorium pore in the wild-type *M. oryzae* strain Guy11.
Movie S2. Three-dimensional rotational movie to show misshapen F-actin network at the appressorium pore of the *M. oryzae* Δnox1 mutant.

Movie S2

Movie S3. Three-dimensional rotational movie to show distorted F-actin network in the appressorium of the *M. oryzae* Δnox2 mutant.

Movie S3
Movie S4. Three-dimensional rotational movie to show distorted F-actin network in the appressorium of the *M. oryzae* Δnox1Δnox2 mutant.

Movie S5. Three-dimensional rotational movie to show distorted F-actin network at the center of the appressorium of the *M. oryzae* ΔnoxR mutant.
Movie S6. Live-cell imaging to show recovery of LifeAct-RFP after partial photobleaching.

Movie S7. Live-cell imaging to show recovery of Gelsolin-GFP after partial photobleaching.