BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis

Shu-Wen Qian, Yan Tang, Xi Li, Yuan Liu, You-You Zhang, Hai-Yan Huang, Rui-Dan Xue, Hao-Yong Yu, Liang Guo, Hui-Di Gao, Yan Liu, Xia Sun, Yi-Ming Li, Wei-Ping Jia, and Qi-Qun Tang

Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People’s Republic of China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China; Division of Endocrinology and Metabolism, Department of Internal Medicine, Huashan Hospital, Fudan University Shanghai Medical College, Shanghai 200040, People’s Republic of China; Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, People’s Republic of China; and Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, People’s Republic of China

Edited by M. Daniel Lane, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved January 17, 2013 (received for review September 5, 2012)

Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces “white adipocytes” with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown-like fat changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4’s role in altering insulin sensitivity by affecting WAT development.

Both white adipose tissue (WAT) and brown adipose tissue (BAT) function in the energy homeostasis of humans and other mammals. WAT stores energy in form of triglycerides during periods of excessive caloric intake for later use when energy demand exceeds intake (1). In contrast, brown adipose tissue (BAT) uses “stored triglycerides” to generate energy in the form of heat, most notably when environmental temperature falls (2).

The excessive accumulation of body fat in WAT is the result of both hypertrophy and hyperplasia of white adipocytes (3). Such changes give rise to insulin resistance, type-2 diabetes, and an inflammatory response, thus implicating white adipocytes in the etiology of these conditions (4, 5). In contrast, promotion of BAT activities helps prevent genetic obesity, insulin resistance, and diabetes (6).

Unlike the expansive mass of brown adipocytes in the interscapular region, brown adipose tissue mass in the normal adult human is proportionally smaller and previously was believed to be functionally less important. Recently, however, by using [18F]-2-fluoro-2-deoxy-d-glucose PET, metabolically active regions were detected in the cervical, supraclavicular, axillary, and para-vertebral regions of adult human subjects (7–9). The metabolically active areas were found to consist of an admixture of brown-like adipocytes in WAT (10) which increase dramatically following cold exposure or treatment with antidiabetic drugs, thiazolidinediones, or adrenergic activators (11–13). These cells recently have been designated as “beige” (14) or “brite” (15, 16) cells derived from lineages different from classical brown fat cell precursors. Moreover, the number of BAT-like cells is inversely correlated with body mass index (BMI) in humans (17). Identification of the factors that induce brown-like fat cells in WAT could provide an approach for the prevention and/or treatment of obesity and its metabolic complications.

Recently, mouse models have become available with specific genetic manipulations that produce a lean phenotype with lower WAT mass and enhanced insulin sensitivity (18–20). The WAT of these mice possesses some characteristics of BAT, notably increased mitochondrial biogenesis and metabolic rate. Perturbed mitochondrial oxidation in muscle and liver is thought to cause insulin resistance and type 2 diabetes in several human studies (21–23). Adipose tissue of obese (ob/ob) mice exhibits decreased mitochondrial gene expression and mitochondrial mass that can be reversed by treatment with the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (12). These findings indicate that mitochondrial remodeling and increased energy expenditure in white fat also can affect whole-body energy homeostasis and insulin sensitivity. As previously reported, PPARγ coactivator α (PGC1α) is a key mitochondrial-related transcription factor that mediates coactivation of key nuclear hormone receptor-dependent gene transcription as well as mitochondrial biogenesis (24–28), which is known to be involved in glucose and fatty acid metabolism.

Down-regulation of PGC1α is associated with obesity and increased risk of diabetes mellitus in the human population (29). Several members of the bone morphogenic protein (BMP) family have been reported to act differently on adipocyte lineages. BMP7 induces the brown preadipocytes to differentiate but has no effect on white preadipocytes (30). More recently, BMP5 was found to function in mature brown adipocytes to increase lipase activity, which facilitates a thermogenic response (31).

Our previous studies show that BMP4 induces multipotent mouse C3H10T1/2 stem cells to become a cell type with characteristics identical to those of 3T3-L1 white preadipocytes in culture (32). In the present study, we show that BMP4 is expressed at an elevated level in WAT of lean human subjects.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: qqtang@shmu.edu.cn.

See Author Summary on page 3223 (volume 110, number 9).

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215236110/-/DCSupplemental.
Our findings with adipose-targeted BMP4 overexpression and knockout in mice suggest that BMP4 can regulate WAT remodeling and induction of brown adipocyte-like cell structure and function. These alterations lead to increases in whole-body metabolic rate and insulin sensitivity. We found that PGC1α acts as a key regulator that is transactivated by activating transcription factor 2 (ATF2) mainly through the BMP4-p38/MAPK signaling pathway. Our findings reveal a role for BMP4 in regulating adipogenesis and metabolism.

Results

Elevated Expression of BMP4 in WAT Correlates with a Lean Phenotype. Our previous studies showed that BMP4 induces commitment of stem cells to the adipocyte lineage in mice (32).

As shown below, expression of BMP4 also alters the WAT phenotype in mice. The question arises whether BMP4 functions similarly in humans. As illustrated in Fig. 1A and B, BMP4 is expressed both in human subcutaneous and visceral WAT. Moreover, the level of expression of BMP4 in human WAT is inversely correlated to adiposity, i.e., BMI. These results suggested that BMP4 might regulate adipocyte development and its metabolic consequences.

Induced Expression of BMP4 in WAT Produces a BAT-Like Phenotype. To assess the effect of expressing BMP4 in adipocytes, transgenic (TG) mice were generated using the adipose tissue-specific fatty acid-binding protein 4 (Fabp4) promoter to drive the expression of BMP4 (Fig. S1A). As shown in Fig. 1C and Fig. S1B, BMP4

Fig. 1. High expression of BMP4 remodels WAT and produces a lean phenotype. (A and B) Linear regression analysis between BMI and BMP4 mRNA levels in subcutaneous (n = 32) (A) and visceral (n = 22) (B) adipose tissue. (C) Western blot analysis of BMP4 expression levels in WAT and BAT from WT and Fabp4-BMP4 TG mice. (D) Comparison of inguinal WAT, gonadal WAT, and BAT from WT (Left) and TG (Right) mice. (E) Fat index (percentage of fat pad weight relative to the whole body weight) of inguinal WAT, gonadal WAT, and BAT from WT and TG mice (n = 4). (F) H&E staining of inguinal WAT, gonadal WAT, and BAT from WT and TG mice. (Scale bar: 20 μm.) (G) Quantification of adipocyte diameter of inguinal WAT, gonadal WAT, and BAT from WT and TG mice. (Data were collected from H&E-stained sections from three individual mice, five fields per mouse, 10–15 cells per field in each group, using Image J software). (H) qRT-PCR data showing the fold induction of indicated genes with expression normalized to the housekeeping gene 18S in inguinal WAT of WT and TG mice (n = 8). Data from 2-mo-old mice on a normal chow diet are expressed as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
expression was increased in both WAT and BAT of the TG mice. Expression of BMP4 in the stromal vascular fraction (SVF) was not affected by the transgene (Fig. S1C). Although the Fabp4 promoter has been shown to be active in the brain (33), the BMP4 mRNA level was not elevated in brain by the transgene (Fig. S1D). There was no significant difference in BMP4 expression in muscle and liver tissue of TG relative to control mice (Fig. S1E). Thus, expression of BMP4 in the TG mice was limited to adipose tissue.

The amount of gonadal (visceral) WAT was reduced markedly by the BMP4 transgene in both male and female mice (Fig. 1D and E; and Fig. S1F). However, the amount of inguinal (subcutaneous) WAT obviously remained unchanged (Fig. 1D and 1E and Fig. S1F). Moreover, the inguinal WAT tissue acquired a reddish appearance characteristic of BAT (Fig. 1D and F). The amount of interscapular BAT increased slightly (Fig. 1D and E and Fig. S1F). The size of both inguinal and gonadal adipocytes was reduced in the BMP4 TG mice, and the cells lost their unilocular morphology and acquired a multilocular appearance (Fig. 1F and G). These results indicated that the expression of a high level of BMP4 in WAT led to a BAT-like appearance. Furthermore, the expression of beige adipocyte markers or factors reported to be highly expressed in beige/brite adipocytes (14–16), i.e., CD137, transmembrane protein 26 (TMEM26), transcription factor T-box 1 (Tbx1), transcription factor T-box 15 (Tbx15), and homeobox C9 (Hoxc9),

Fig. 2. Increased mitochondrial biogenesis of WAT in Fabp4-BMP4 TG mice. (A) Transmission electron microscopy showing mitochondrial morphology of WAT and BAT from WT and Fabp4-BMP4 TG mice. (Scale bar: 500 nm.) (B) Mitochondrial number per nucleus was determined from electron micrographs of 20 cells from each type of adipose tissue. (C) Mitochondria (120–150) were randomly selected, and mitochondrial diameter was determined with a ruler. (D) qRT-PCR data showing the fold induction of the expression of indicated genes normalized to the housekeeping gene 18S in inguinal WAT of WT and TG mice (n = 4–6). (E) qRT-PCR data showing the fold induction of the expression of indicated genes normalized to the housekeeping gene 18S in gonadal WAT of WT and TG mice (n = 4–7). (F) qRT-PCR data showing the fold induction of the expression of indicated genes normalized to the housekeeping gene 18S in BAT of WT and TG mice (n = 4–7). (G) Arrest of postconfluent growth. 3T3-L1 preadipocytes were induced to differentiate by treatment with monocyte differentiation-inducing factors (MDI) with or without 20 ng/mL BMP4. Adipocytes differentiated from 3T3-L1 adipocytes at day 8 after MDI induction are stained with Oil Red O. (H) Western blot analysis of lysates (30 μg) differentiated from 3T3-L1 adipocytes at day 6 after MDI induction with or without 20 ng/mL BMP4. (I) qRT-PCR of differentiated 3T3-L1 adipocytes for expression of indicated genes at day 6 after MDI induction with or without 20 ng/mL BMP4. Data from 2-mo-old mice on a normal chow diet are expressed as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
was examined. The mRNA levels of TMEM26 and CD137 did not increase significantly, but Tbx1, Tbx15, and Hoxc9 levels increased in the inguinal WAT of BMP4 TG mice (Fig. 1H).

Although the percentage of mature adipocytes relative to total cell number in the fat tissue mass in both WAT and BAT did not differ between the two types of mice (Fig. 1G), the number (based on DNA content) of inguinal white and brown adipocytes increased, whereas the number of gonadal white adipocytes remained unchanged (Fig. 1JH). Thus, both inguinal WAT and BAT underwent BMP4-induced hyperplasia.

Induced Expression of BMP4 Leads to Increased Mitochondrial Biogenesis and Key BAT Gene Expression in WAT. Because subcutaneous inguinal WAT of the BMP4 TG mice acquired the appearance of BAT, we investigated the possibility that mitochondrial biogenesis in WAT occurred. Immunohistochemical analysis showed more mitochondria staining immunopositive in both inguinal and gonadal WAT of TG mice (Fig. S2D). Transmission electron microscopy of inguinal WAT revealed a marked increase in the number and size of mitochondria (Fig. 2A–C). Although the diameters of mitochondrial organelles in gonadal WAT did not change significantly, the number did increase (Fig. 2A–C). PGC1α and PR domain containing 16 (PRDM16) are regarded as key inducers of brown adipocyte development (34–37). Real-time PCR analysis revealed that levels of PGC1α and uncoupling protein 1 (UCP1) (a target gene of PGC1α) were increased approximately ninefold and approximately 7.5-fold, respectively, whereas PRDM16 was increased approximately sixfold in inguinal WAT of BMP4 TG mice (Fig. 2D). Consistent with these changes, the levels of the mRNAs encoding mitochondrial cytochrome C (Cycs), mitochondrial transcription factor A (mtTFA), carnitine palmitoyl-CoA transferase 1B (CPT1b), and medium-chain acyl-CoA dehydrogenase (MCAD) were elevated in BMP4 TG mice (Fig. 2D). Except for UCP-1, the expression of these brown adipocyte developmental- and mitochondrial-related genes also was increased in gonadal WAT (Fig. 2E). In BAT, however, the expression of these genes decreased in BMP4 TG mice (Fig. 2F), as did mitochondrial size. However, the number of mitochondria did not change (based on electron microscopic measurements; Fig. 2B and C), and fewer mitochondrial branching points were observed as assessed by immunohistochemical analysis (Fig. S2D).

Although BMP4 treatment during terminal differentiation in the 3T3-L1 preadipocyte culture model did not affect differentiation efficiency significantly, as indicated by the expression of adipocyte marker proteins CCAAT/enhancer-binding protein α (C/EBPα) and PPARγ or by Oil Red O staining of adipocytes (Fig. 2G and H). Moreover, the accumulated lipid droplets were smaller in the BMP4-treated cells than in controls as determined by the appearance of micrographic images after Oil Red staining (Fig. 2G). In addition, the BMP4-treated 3T3-L1 adipocytes also acquired the brown adipocyte gene expression phenotype, including the expression of PGC1α and PRDM16 (Fig. 2H and I) as well as downstream genes, i.e., mtTFA, Cycs, CPT1b, MCAD, and glutamate transporter type 4 (GluT4) (Fig. 2F). The expression of UCP-1 could not be detected readily by Western blotting or with a high cycle threshold value (>30) by real-time PCR. Although the relative level of expression of PGC1α was high, the level of UCP-1 expression was unexpectedly low.

Elevated Expression of BMP4 in Adipose Tissue Increases Whole-Body Oxygen Consumption, Insulin Sensitivity, and Protection from Metabolic Disorders Induced by a High-Fat Diet. Basal oxygen consumption rates of BMP4 TG mice were increased substantially relative to those of control mice (Fig. 3A and B). The mean respiratory exchange ratio (RER) of TG mice was 0.72 and that of WT mice was 0.83, indicating that the TG mice were oxidizing primarily fat, whereas the WT mice were oxidizing a mixture of carbohydrate and fat (Fig. 3C). Consistent with this shift to fat as primary fuel, the circulating levels of both triglycerides and free fatty acid decreased substantially in the BMP4 TG mice compared with control mice (Fig. 3D). Serum cholesterol levels were unchanged by expression of the transgene (Fig. 3D).

The increase in fat metabolism by WAT in BMP4 TG mice and the associated reduction in the levels of circulating fat metabolites suggested that the BMP4 TG mice might be more insulin responsive (38). To test this possibility, metabolic studies were performed in which BMP4 TG and WT mice were fed either a normal or a high-fat diet (HFD) from age 6–24 wk. Of interest, the BMP4 TG mice consumed slightly more of both diets than control mice (Fig. 3E). Body weights of the mice fed the chow diet began to diverge at approximately age 8 wk, with the TG mice gaining somewhat more weight than control mice between age 10 and 24 wk (Fig. 3F). Nonetheless, the size of the inguinal WAT fat pad increased (Fig. S2E), and the fat cells were small in size and were multilocular at age 24 wk (Fig. S2F). The difference in body weight was less pronounced in TG and control mice on the HFD (Fig. 3F). Although the fat pads of TG mice increased in size upon exposure to the HFD, the increase was less than in control mice, and fewer lipids accumulated in the liver (Fig. S2E and F).

When mice were maintained on the chow diet, the BMP4 TG mice exhibited lower fasting serum glucose and insulin levels than control mice (Fig. 3G and H). The fasting glucose and insulin levels were significantly increased in mice on the HFD (Fig. 3G and H), whereas the levels of serum glucose and insulin were significantly reduced in BMP4 TG mice relative to controls (Fig. 3G and H), suggesting increased insulin sensitivity. When challenged with an i.p. glucose load, the BMP4 TG mice on both chow and HFD displayed significantly improved glucose tolerance. Intraperitoneal insulin tolerance tests also showed improved insulin sensitivity in Fabp4-BMP4 mice (Fig. 3I and J). Finally, i.p. injection of insulin resulted in a more pronounced activation of the insulin-signaling pathway in WAT of the BMP4 TG mice, as indicated by the relative increase in the level of phosphorylated Akt (phospho-Akt) (Fig. 3K).

PGC1α Mediates BMP4-Induced Conversion of White Adipocytes into Brown Fat-Like Adipocytes. PGC1α is an important transcriptional coactivator for the expression of the UCP1 gene (39), for the biogenesis of mitochondria, and for energy expenditure in BAT and other tissues (24, 26). To determine whether the increased energy expenditure and improved insulin sensitivity of the BMP4 TG mice is dependent on PGC1α, recombinant adenovirus expressing PGC1α shRNA was injected s.c. adjacent to one inguinal fat pad site. As a control, recombinant adenovirus expressing LacZ shRNA was injected in the contralateral site. Injection of adeno-PGC1α-shRNA into the white fat pads of BMP4 TG mice caused a significant decrease in PGC1α mRNA level compared with the contralateral control. Likewise, CPT1b, MCAD, and phosphoenolpyruvate carboxykinase 1 (Pck-1) were down-regulated (Fig. 4C). The knockdown of PGC1α expression in the fat pads produced a lighter color than in the reddish contralateral control fat pads (Fig. 4A) as well as enlargement of the fat cells and fat droplets (Fig. 4B). Thus, the phenotype induced in the BMP4 TG mice was reversed by knocking down the expression of PGC1α. Finally, activation of the insulin-signaling pathway also was inhibited by PGC1α knockdown (Fig. 4D). Moreover, regression analysis revealed a positive association between BMP4 and PGC1α mRNA expression in both subcutaneous (n = 32) and visceral (n = 22) adipose tissue of human subjects (Fig. 4E and F).
creased the phosphorylation state of both p38/MAPK and phosphorylated Samd1/5/8 (p-Samd1/5/8) (Fig. 5A). Because ATF2 lies downstream of p38/MAPK, its expression level also was assessed by Western blotting. Both phosphorylated ATF2 (P-ATF2) and ATF2 protein levels were up-regulated in WAT of BMP4 TG mice (Fig. 5A), suggesting that BMP4 plays a role not only in the activation of ATF2 but also the expression of the protein itself (Fig. 5A). Moreover, knockdown of ATF2 expression in inguinal WAT of BMP4 TG mice reversed the effect of BMP4 on WAT, causing fat cell enlargement and decreased expression of PGC1α.

Fig. 3. Energy expenditure and glucose metabolism in BMP4 TG mice. (A and B) Whole-body oxygen consumption rate (VO2) of WT and TG mice during a 12-h dark/12-h light cycle measured in a metabolic cage (A) and the average values for the 24-h period (B). n = 8. (C) The average values of RER in WT and TG mice calculated from data from the metabolic cage (n = 8). (D) Fasting serum triglycerides (n = 6), free fatty acid (FFA) (n = 9), and cholesterol (n = 6) levels in WT and TG mice. (E) Daily food intake of WT and Fabp4-BMP4 TG mice maintained on chow or an HFD. Mice were weighed each week for 4 wk. n = 12 mice per group. (F) Body weight gain of WT and TG mice maintained on chow or an HFD. n = 4 mice per group. (G and H) Fasting serum glucose (n = 6) (G) and insulin concentrations (n = 6) (H) in WT and TG mice maintained on chow or an HFD. (I and J) Glucose concentrations during an i.p. glucose tolerance test (n = 8) (I) or an insulin tolerance test (n = 7) (J) in WT and TG mice maintained on chow or an HFD. (K) Western blot analysis of insulin-stimulated phosphorylation of AKT in inguinal WAT extracts from WT and TG 6-mo-old mice maintained on chow. Data are expressed as means ± SEM. For WT vs. TG mice fed chow: *P < 0.05, **P < 0.01, ***P < 0.001; for WT vs. TG mice fed a high-fat diet: *P < 0.05, **P < 0.01, ***P < 0.001. (Twenty-four-week-old mice were maintained on chow or were fed an HFD beginning at age 6 wk.)
and UCP-1 in fat pads injected with adeno-AFT2 shRNA compared with contralateral control fat pads (Fig. 5 B and C). The activating signaling by BMP4 on WAT was recapitulated in terminally differentiating 3T3-L1 cells in culture (Fig. 5D). Together these findings showed that activation of the p38/MAPK/ATF2 pathway and the activation of PGC1α expression by BMP4 play important roles in the induction of WAT into BAT-like tissue. Although a different phenotype was induced by the BMP4 transgene in WAT, BMP4 overexpression in BAT also activated the p38/MAPK/ATF2 pathway (Fig. S2D). The BMP4 mRNA expression by BMP4 play important roles in the induction of WAT into BAT-like tissue. Although a different phenotype was induced by the BMP4 transgene in WAT, BMP4 overexpression in BAT also activated the p38/MAPK/ATF2 pathway (Fig. S2D).

Fig. 4. Active metabolic WAT in Fabp4-BMP4 TG mice is dependent on PGC1α. Adenovirus expressing PGC1α shRNA was injected weekly s.c. adjacent to one side of the inguinal fat pad, and LacZ shRNA was injected at the contralateral site as a control for 4 wk beginning at age 4 wk. (A) Comparison of inguinal WAT fat pads in the TG mouse after treatment with PGC1α or Lac Z shRNA. (B) H&E staining of the inguinal WAT fat pad in the TG mouse after treatment with PGC1α or Lac Z shRNA. (C) qRT-PCR showing the fold induction of the expression of the indicated genes normalized to the housekeeping gene 18S in the inguinal WAT fat pad in the TG mouse after treatment with PGC1α or Lac Z shRNA (n = 4). (D) Western blot analyzing insulin-stimulated phosphorylation of AKT from the inguinal WAT fat pad in the TG mouse after treatment with PGC1α or Lac Z shRNA. (E and F) Linear regression analysis between BMP4 and PGC1α mRNA levels in subcutaneous (n = 32) (E) and visceral (n = 22) (F) adipose tissue.

Discussion

Recent studies have shown that adult humans possess a pool of metabolically active brown fat that is susceptible to changes in environmental temperature (7–9). It follows that the identification of factors that induce BAT-like changes in WAT could lead to therapeutic strategies for treating obesity and its consequences. The present investigation reveals a connection between BMP4 and the transition of WAT to a tissue possessing characteristics of brown fat cells, to the recently described beige (14) and brite (15, 16) adipocyte cell types.

Qian et al. PNAS Published online February 6, 2013 | E803
BMP4 is known to induce the commitment of pluripotent stem cells to the adipocyte lineage (32). Here we identify an additional role for BMP4 as a factor that produces BAT-like changes in WAT. Because the level of BMP4 in human WAT is inversely associated with fat mass (Fig. 1A and B), its expression in WAT may serve as a therapeutic target. As shown in the present study, overexpression of BMP4 in adipose tissue in vivo in the mouse increases not only the number of SVF cells but also the number of adipocytes in both subcutaneous WAT and BAT. These results indicate that BMP4 stimulates proliferation as well as stem cell commitment to the adipocyte lineage (Fig. S1G and H), most likely by an autocrine/paracrine mechanism, as was shown during commitment of multipotent C3H10T1/2 stem cells to preadipocytes in cell culture (32, 41).

It is noteworthy that we found that BMP4 also regulates adipose tissue remodeling, mitochondrial biogenesis, and metabolism. Driven by the adipocyte-specific Fabp4 promoter, overexpression of BMP4 in TG mice during terminal differentiation provoked acquisition of BAT characteristics in WAT (Figs. 1D and F and 2). Furthermore, BMP4 treatment during terminal differentiation of 3T3-L1 preadipocytes induced similar changes (Fig. 2G–I). These findings differ from previous reports in which humans and rodents were subjected to cold environment or noradrenergic stimulation and in which foci of UCP1-immunoreactive brown adipocytes appear in WAT. With noradrenergic stimulation, the foci were thought to involve direct transformation of adult white adipocytes (42–44) or de novo differentiation of committed brown adipocytes (45). It should also be noted that manipulation of certain genes that increased mitochondrial biogenesis in white adipocytes resulted in improved energy metabolism (18–20, 46). Likewise, overexpression of BMP4 in WAT promoted mitochondrial biogenesis as well as the expression of genes required for glucose and lipid metabolism, including Glut4, Pck-1, MCAD, and CPT1b (Fig. 2). These changes were associated with increased oxygen consumption, decreased blood levels of free fatty acid and triglycerides, and increased insulin responsiveness (Fig. 3). This phenotype also was verified in BMP4-knockout mice (Fig. 6). In contrast, in BMP4 TG mice lipid droplets in brown adipocytes were larger than in control mice (Fig. 1F), mitochondrial size decreased (Fig. 2C), and expression of genes of mitochondrial biogenesis and the enzymes for oxidative phosphorylation declined (Fig. 2F). These findings are consistent with the previous research showing that BMP4 inhibited UCP-1 expression of brown preadipocytes, differing from the role

Fig. 5. Active metabolic WAT in Fabp4-BMP4 TG mice was regulated by the p38/MAPK/ATF2 pathway. (A) Western blot analysis of the expression level of molecules involved in the BMP-signaling pathway in inguinal WAT from 2-mo-old WT and Fabp4-BMP4 TG mice maintained on a chow diet. (B) H&E staining of inguinal WAT in the TG mouse after treatment with ATF2 or Lac Z shRNA. (Scale bar: 20 μm.) (C) qRT-PCR showing the fold induction of the expression of the indicated genes normalized to the housekeeping gene 18S in the inguinal WAT of the TG mouse after treatment with ATF2 or Lac Z shRNA (n = 4). The method of ATF2 shRNA adenovirus treatment was the same as the treatment with PGC1α shRNA in Fig. 4. (D) Western blot analysis of lysates (30 μg) from differentiated 3T3-L1 adipocytes at day 4 after MDI induction with or without BMP4 (20 ng/mL).
of BMP7 in brown adipocytes (30). The larger fat droplets in TG brown adipocyte BMP4 may have resulted from the diminished lipid dissipation.

Although expression of the typical BAT molecular marker UCP-1 was increased in the subcutaneous WAT of BMP4 TG mice, the level was somewhat lower than in typical interscapular brown adipose tissue (31). Quantification of cell size of inguinal WAT, gonadal WAT, and BAT in BMP4+/+ and BMP4−/− mice (n = 7–8). (C) H&E staining of inguinal WAT, gonadal WAT, and BAT from BMP4+/+ and BMP4−/− mice. (Scale bar: 20 μm.) (D) Quantification of adipocyte size in WAT. (E) Fasting serum triglycerides (n = 6) (E), free fatty acid (FFA) (n = 7) (F), cholesterol (n = 8) (G), and leptin in BMP4+/+ (n = 7) and BMP4−/− (n = 5) (H) mice. Data from 6-mo-old mice on a normal chow diet are expressed as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 6. BMP4-knockout mice had increased adipose tissue mass and reduced insulin sensitivity. (A) Comparison of inguinal WAT, gonadal WAT, and BAT in BMP4+/+ (Left) and BMP4−/− (Right) mice. (B) Fat index (percentage of fat pad weight relative to the whole body weight) of inguinal WAT, gonadal WAT, and BAT in BMP4+/+ and BMP4−/− mice (n = 7–8). (C) H&E staining of inguinal WAT, gonadal WAT, and BAT from BMP4+/+ and BMP4−/− mice. (Scale bar: 20 μm.) (D) Quantification of cell size of inguinal WAT, gonadal WAT, and BAT in H&E-stained sections from three individual mice, five fields per mouse, 10–15 cells per field, using Image J software. (E–H) Fasting serum triglycerides (n = 6) (E), free fatty acid (FFA) (n = 7) (F), cholesterol (n = 8) (G), and leptin in BMP4+/+ (n = 7) and BMP4−/− (n = 5) (H) mice. (K and L) Glucose concentrations during an i.p. glucose tolerance test (n = 5) (K) or an insulin tolerance test (n = 5) (L) in BMP4+/+ and BMP4−/− mice. BMP4+/+, Fabp4-cre-BMP4+/+; BMP4−/−, Fabp4-cre-BMP4loxP/loxP. Data from 6-mo-old mice on a normal chow diet are expressed as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
of adipose tissue development to meet metabolic demands at different points in development and metabolism (Fig. S3G).

It should be noted that in creating TG mice little control is exerted over the resulting level of expression of the transgene, which in most cases is high. The BMP4 transgene was expressed at a relatively high level (Fig. 1C), so the effects of the transgene may be exaggerated. However, this limitation is obviated, at least in part, by assessing the effect of disrupting the BMP4 gene. Of note, the BMP4 knockout was incomplete. As shown in Fig. S3B, a small, but significant, level of BMP4 was expressed in the BMP4-knockout mice. Also, as shown in Fig. S3E, the levels of expression of UCP-1, PGC1α, Cysc, CPT1b, and MCAD were all partially reduced in the BMP4-knockout mice, although the reductions did not achieve statistical significance. It is important that this group of genes was coordinately reduced. Had the knockout been total/complete, the relative levels of these reductions would have been expected to be greater.

Subcutaneous WAT and visceral WAT exert different levels of metabolic risks. Increased intraabdominal/visceral fat appears to exert a higher risk than subcutaneous fat. Hence, subcutaneous fat in the thighs and hips exhibits little risk of metabolic disease and even may have a protective effect (48, 49). Although PGC1α expression and mitochondrial biogenesis are increased in both tissue sites, inguinal WAT and gonadal WAT exhibit different phenotypes in terms of expression. Overexpression of BMP4 in gonadal WAT led to reduced adipocyte size and a reduction in the size of fat pads in mice between 2 and 6 mo of age (Fig. 1D–F and Fig. S2E). In contrast, inguinal WAT mass did not change significantly between 2-mo-old and 6-mo-old in BMP4 TG mice (Fig. 1 D and E and Fig. S2E). Each of the molecules that uniquely affect BMP4 needs to be investigated further, especially those related to BMP4 and the insulin-signaling pathway. This alteration in fat mass suggests BMP4’s protective role in metabolic disease and offers an opportunity for intervention in the control of excessive obesity.

Materials and Methods

Human Adipose Tissue Samples. Subcutaneous (n = 32) and visceral (omental) (n = 22) adipose tissues were obtained from patients who underwent surgery irrelevant to metabolic disease in Shanghai Jiaotong University Affiliated Sixth and Ninth People’s Hospital. This study was approved by the ethics committees of Fudan University Shanghai Medical College and was in accordance with the principle of the Helsinki Declaration II. Written informed consent was obtained from each participant.

Generation of TG Mice Overexpressing Adipose Tissue-Specific BMP4 and BMP4-Knockout Mice. To generate mice with BMP4 specifically overexpressed in adipocytes, BMP4 cDNA (GenBank accession NM_007554) was cloned downstream of the 5.4-kb Fabp4 promoter/enhancer promoter and upstream of an SV40 intron/pol(A) sequence (50). The construct was microinjected into fertilized mouse (C57BL/6J × CBA/J) F1 (C57/BL6J) oocytes. BMP4 TG mice were screened by PCR using primers that specifically detect the transgene but not endogenous BMP4 (Fabp4-BMP4: 5′-taggtgattcaggggagacc-gcctcagagcagattgct-3′). The TG founders were maintained by mating hemizygous animals to C57BL/6J mice. Control mice were non-TG littermates. To generate mice with an adipocyte-specific knockout of BMP4, Bmp4-LoxP/LoxP mice (generously provided by Brigid Hogan, Department of Cell Biology, Duke University Medical Center, Durham, NC) were crossed with mice expressing Cre recombinase under the control of the adipocyte-specific promoter Fabp4 (Jackson Laboratory) (50).

Genotyping was performed by PCR. Studies were performed in Fabp4-Cre-Bmp4+/+ and Fabp4-Cre-Bmp4−/− mice. NPCs were isolated from the brains of 129/J × C57BL/6J mixed background and plated in the presence of B27 supplements. NPCs were plated on coverslips and stained with the neuronal marker MAP2 on day 7. NPCs were used at passages 4 to 6.

Metabolic Studies. Three-month-old mice were housed and monitored individually in a metabolic cage (Columbia Instruments) with free access to regular chow and drinking water for 48 h. Each cage was monitored for metabolic parameters (including oxygen consumption and carbon dioxide production) at 25-min intervals throughout the 48 h period. Parameters of oxygen consumption (mL kg⁻¹ h⁻¹), carbon dioxide production (mL kg⁻¹ h⁻¹), and RER (CO₂/VO₂) were calculated for each mouse divided by its body weight. Representative graphs of oxygen consumption and RER represent data for eight mice from each group.

Measurements of Blood Parameters. Mice at different ages were fasted overnight, and blood samples were collected by retroorbital bleeding methods. Sera were prepared and used for measurements. Glucose, triglycerides, and cholesterol levels were determined using the Systex Chemex-180 automatic biochemical analysis device (Systex Infosystems). ELISA kits were used to determine leptin (Raybiotech), insulin (Mercodia), and free fatty acid (Lengton Bioscience) levels in mouse sera.

H&E Staining and Cell Size Quantification. Standard H&E staining was performed on 5-μm paraffin sections of WAT and interscapular brown adipose tissue. Cell diameter was measured in the H&E-stained sections of three individual samples in each group using Image J.

Isolation of SVF and Adipocytes from Adipose Tissue. Adipose tissue was harvested and the SVF cells were isolated by enzymatic digestion (collagenase VIII, Sigma). The digested tissue was filtered through a 100-μm mesh filter to remove debris and was centrifuged. The adipocytes floated above the supernatant. The cellular pellet involving the SVF was resuspended with an ammonium chloride lysis buffer to remove red blood cells.

Oil Red O and Nile Red Staining for Lipid. In vitro differentiated cells were fixed for 20 min in buffered formalin and stained with Oil Red O for 60 min. Isolated cells were resuspended in PBS, Nile red stock (0.5 mg/mL in acetone) was added to the preparation to effect a 1:100 dilution, and cells were incubated for 5 min for flow cytometry.

Cell Culture and Induction of Adipogenesis. 3T3-L1 preadipocytes were plated at low density and cultured in DMEM containing 10% (vol/vol) calf serum. Two days postconfluence (designated day 0), cells were induced to differentiate with DMEM containing 10% (vol/vol) FBS, 1 μg/mL insulin, 1 μM dexamethasone, and 0.5 mM 3-isobutyl-1-methyl-xanthine until day 2. Cells then were fed with DMEM supplemented with 10% (vol/vol) FBS and 1 μg/mL insulin for 2 d, after which they were fed every other day with DMEM containing 10% (vol/vol) FBS. For BMP4 treatment, 20 ng/mL of purified recombinant BMP4 (R&D Systems) was added to the medium during the differentiation from day 0 to day 8.

qRT-PCR. Total RNA was analyzed in a Sequence Detector (Qiagen) with specific primers and SYBR Green PCR Master reagents (ABI). The relative abundance of mRNAs was calculated with 18S rRNA as the invariant control. The primers were from PrimerBank (http://pga.mgh.harvard.edu/primerbank/) or as described in refs. 14–16, 20, and 51.

Antibodies and Immunoblotting. WAT and BAT or cultured cells were homogenized in lysis buffer containing 2% (wt/vol) SDS and 60 mM Tris HCl (pH 6.8) and were loaded onto the gel for electrophoresis. Proteins were then transferred onto nitrocellulose membrane and immunoblotted with specific antibodies. For determination of insulin-stimulated p-AKT, inguinal WAT was dissected from mice 5 min after i.p. injection of insulin. Antibodies used were Bmp4 (Millipore), p38/ MAPK, phos-p38/MAPK, Smad1, p-Smad1/5/8, Akt, and p-hr473-Akt (Cell Signaling Technology), actin (Sigma-Aldrich), PGC1α and HSP90 (Santa Cruz Biotechnology), and PRDM16 and UCP-1 (Abcam).
Supporting Information

Qian et al. 10.1073/pnas.1215236110

Fig. S1. Characteristics of adipose tissue in mice overexpressing bone morphogenic protein 4 (BMP4). (A) Structure of transgenic (TG) DNA for the FABP4-BMP4 TG mouse. (B) Quantitative RT-PCR (qRT-PCR) determining the relative levels of BMP4 mRNA in white adipose tissue (WAT) and brown adipose tissue (BAT) from WT and TG mice (n = 5). (C) Western blot analysis of lysates (30 μg) from adipocytes and stromal vascular fraction (SVF) of inguinal WAT using BMP4 antibody. (D) qRT-PCR determining the relative levels of BMP4 mRNA in whole brain from WT and TG mice (n = 8). (E) Western blot analysis of lysates (30 μg) from muscle and liver using BMP4 antibody for BMP4 expression level. (F) Fat index (percentage of fat pad weight relative to the whole-body weight) of inguinal WAT, gonadal WAT, and BAT for female WT and TG mice (n = 4–6). (G) Percentage of adipocytes in the total dissociated cells from inguinal WAT, gonadal WAT, and BAT from WT and TG mice (n = 4) n.s., not significant. (H) Total amount of DNA of the whole inguinal WAT, gonadal WAT, and BAT fat pad from WT and TG mice (n = 5–6). Data from 2-mo-old male (B–E, G, and H) and female (F) mice on a normal chow diet are expressed as means ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001.
Fig. S2. Brown-like phenotype in WAT of BMP4 TG mice. (A–C) qRT-PCR showing the relative mRNA level of uncoupling protein 1 (UCP1) (A), peroxisome proliferator-activated receptor γ coactivator α (PGC1α) (B), and PR domain containing 16 (PRDM16) (C) normalized to the housekeeping gene 18S in WAT and BAT. n = 4–8. (D) Immunohistochemical analysis of inguinal WAT and BAT from WT and BMP4 TG mice showing mitochondria (brown) with anti-mitochondria antibody (Abcam). (Scale bar: 25 μm.) Immunohistochemistry was carried out on 4-μm paraffin sections with the avidin-biotin-peroxidase (ABC) method (Vector Labs). (E) Fat index of inguinal WAT, gonadal WAT, and BAT from 6-mo-old mice maintained on chow or a high-fat diet (HFD). *P < 0.05, **P < 0.01, and ***P < 0.001. NS, not significant. (F) H&E-stained paraffin-embedded sections of inguinal WAT, gonadal WAT, BAT, liver, and muscle from 6-mo-old mice maintained on chow or an HFD. (Scale bar: 20 μm.) (G) Western blot analysis of the expression level of molecules involved in the BMP signaling pathway in BAT from 2-mo-old WT and Fabp4-BMP4 TG mice maintained on chow. BMP4, Bone morphogenetic protein 4; ATF2, Activating transcription factor 2; Smad1,1/5/8, mothers against decapentaplegic homolog 1,1/5/8; HSP90, heat shock protein 90.
Fig. S3. Mice with BMP4 knockout in adipose tissue gained more body weight. (A) Scheme of the FABP4-cre-BMP4loxP/loxP mouse model. (B) Western blot of lysates (50 µg) from inguinal WAT of 6-mo-old BMP4-knockout and control mice with BMP4 antibody. (C) qRT-PCR determining the relative level of BMP4 mRNA in whole brain from BMP4+/+ and BMP4−/− mice (n = 5). ns, not significant. (D) Growth curve of BMP4-knockout and control male mice from 8 to 24 wk (n = 8). (E) qRT-PCR data showing the fold induction of indicated genes with expression normalized to the housekeeping gene 18S in inguinal WAT of BMP4+/+ and BMP4−/− mice (n = 6). (F) Western blot analysis of the expression level of the p38/ATF2 pathway in inguinal WAT from 2-mo-old BMP4+/+ and BMP4−/− mice maintained on chow. (G) Schematic model of the role of the BMP signaling pathway in adipocyte development. BMP4+/+, Fabp4-cre-BMP4+/+; BMP4−/−, Fabp4-cre-BMP4loxP/loxP. Data are expressed as means ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001.