Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B₄ synthesis by inhibiting a calcium-activated kinase pathway

Gabrielle Fredman⁷,¹, Lale Ozcan⁵, Stefano Spolitu⁵, Jason Hellmann⁵, Matthew Spite⁸, Johannes Backs¹, and Ira Tabas⁶,¹

*Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University, New York, NY 10032; and ²Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202; and ³Laboratory for Cardiac Epigenetics, Department of Cardiology, Heidelberg University, and German Centre for Cardiovascular Research (DZHK), 69120 Heidelberg, Germany

Edited by Mauro Perretti, Queen Mary University of London, London, United Kingdom, and accepted by the Editorial Board August 26, 2014 (received for review June 13, 2014)

Imbalances between proinflammatory and proresolving mediators can lead to chronic inflammatory diseases. The balance of arachidonic acid-derived mediators in leukocytes is thought to be achieved through intracellular localization of 5-lipoxygenase (5-LOX): nuclear 5-LOX favors the biosynthesis of proinflammatory leukotriene B₄ (LTB₄), whereas, in cytoplasm, 5-LOX could favor the biosynthesis of proresolving lipoxin A₄ (LXA₄). This balance is shifted in favor of LXA₄ by resolvin D1 (RvD1), a specialized proresolving mediator derived from docosahexaenoic acid, but the mechanism is not known. Here we report a new pathway through which RvD1 promotes nuclear exclusion of 5-LOX and thereby suppresses LTB₄ and enhances LXA₄ in macrophages. RvD1, by activating its receptor formyl peptide receptor2/lipoxin A₄ receptor, suppresses cytosolic calcium and decreases activation of the calcium-sensitive kinase calcium-calmodulin-dependent protein kinase II (CaMKII). CaMKII inhibition suppresses activation P38 and mitogen-activated protein kinase-activated protein kinase-2 kinases, which reduces Ser271 phosphorylation of 5-LOX and shifts 5-LOX from the nucleus to the cytoplasm. As such, RvD1’s ability to decrease nuclear 5-LOX and the LTB₂₄:LXA₄ ratio in vitro and in vivo was mimicked by micromolecules lacking CaMKII or expressing S271A-5-LOX. These findings provide mechanistic insight into how a specialized proresolving mediator from the docosahexaenoic acid pathway shifts the balance toward resolution in the arachidonic acid pathway. Knowledge of this mechanism may provide new strategies for promoting inflammation resolution in chronic inflammatory diseases.

Results

RvD1 Suppresses AA-Stimulated LTB₄ by Blocking P38/MK2-Mediated 5-LOX Phosphorylation and Nuclear Localization. We first showed that 1 nM RvD1 enhanced AA-stimulated LXA₄ generation (Fig. 1A) and blocked LTB₄ formation in both bone marrow-derived macrophages and zymosan-elicited peritoneal macrophages (Fig. 1B and SI Appendix, Fig. S1 and S2A). We conducted an RvD1 dose–response experiment and found that the suppression of AA-stimulated LTB₄ generation was close to maximal at 1 nM RvD1.

Significance

Specialized proresolving mediators, such as resolvin D1 (RvD1), are endogenous molecules that both dampen inflammation without compromising host defense and promote tissue resolution. A prime example is RvD1’s ability to decrease the ratio of proinflammatory leukotriene B₄ (LTB₄) to proresolving lipoxin A₄ (LXA₄), but the mechanism is not known. We have discovered a new calcium kinase signaling pathway through which RvD1 lowers the nuclear:cytoplasmic ratio of 5-lipoxygenase (5-LOX), the common enzyme for LTB₄ and LXA₄ biosynthesis. This shift in 5-LOX localization dampens LTB₄ production and enhances LXA₄ production. By providing a new mechanistic understanding of how RvD1 tempers inflammation to facilitate resolution, these findings can help devise new therapeutic strategies for diseases driven by nonresolving inflammation.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. M.P. is a Guest Editor invited by the Editorial Board.

Ferelay available online through the PNAS open access option.

¹To whom correspondence may be addressed. Email: iat1@columbia.edu or gf2269@columbia.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410851111/-/DCSupplemental.
RvD1 decreases nuclear localization of 5-LOX through inhibition of p38-MAPKAPK2 (MK2) signaling. (A and B) BMDMs were preincubated with vehicle control or RvD1 and then incubated with 10 μM AA for 5 min. Cell lysates were immunoblotted for phospho- and total p38 or MK2 and quantified by densitometry. (C) BMDMs were incubated with 10 μM RvD1 or vehicle for 1 h before sequential RvD1 and AA treatment. LTB4 was assessed by ELISA and expressed relative to the value for AA alone (n = 3; mean ± SEM; **P < 0.01 versus AA; n.s., nonsignificant). (D) BMDMs were incubated with 10 μM SB203580 or vehicle for 1 h before assayed for LXA4 by liquid chromatography (LC)-MS/MS (SI Appendix, Fig. S5) and AA-stimulated LTB4 production (Fig. 2D) to a similar extent as RvD1, and the fact that SB203580 and RvD1 were not additive in blocking LTB4 suggested that RvD1 and P38 were in the same pathway. As more direct proof, we showed that RvD1 decreased AA-stimulated phospho-Ser271-5-LOX (Fig. 3A) showed that RvD1 decreased AA-stimulated phospho-Ser271-5-LOX (Fig. 3A).

Fig. 1. (D1) suppresses AA-stimulated LTB4 a in a receptor-dependent manner upstream of LTA4 hydrolase. (A, B, and D) BMDMs were preincubated with vehicle control, 1 nM RvD1, or 1 nM LXA4 for 15 min, followed by incubation with 10 μM AA for 40 min. The media were then assayed for LXA4 by liquid chromatography (LC-MS/MS (A) and LTB4 by ELISA (n = 6 for LC-MS/MS and n = 3 for ELISA; mean ± SEM; *P < 0.05 versus AA). In the experiment in A, LXB4 was not detected by LC-MS/MS. (C) As in B, but the cells were pretreated with IgG control (black bars) or anti-ALX/FPR2 IgG (gray bars) for 1 h at 37°C (n = 3; mean ± SEM; *P < 0.05 versus all other groups). (E) Scheme of LTB4 biosynthesis. (F) As in B, except 10 μM LTA4 was used instead of AA (n = 3; mean ± SEM; **P < 0.05 versus vehicle; n.s., nonsignificant). LTA4 showed no cross reactivity with the LTB4 ELISA.

We found that RvD1 blocked AA-stimulated phosphorylation of both kinases, which is a measure of their activation state (Fig. 2A and B). FPR2/ALX is a G protein-coupled receptor, which led us to explore the possible role of cAMP. We found that 8-bromo-cAMP blocked RvD1’s ability to decrease p-MK2, whereas the Rp-cAMP mimicked RvD1’s actions (SI Appendix, Fig. S4). These results are consistent with a receptor-mediated response involving Gi proteins, which is in line with previous studies exploring the mechanism of action of the FPR2/ALX ligand LXA4 (26, 27). Most important, the P38 inhibitor SB20380 blocked both 5-LOX nuclear localization (Fig. 2C and SI Appendix, Fig. S5) and AA-stimulated LTB4 production (Fig. 2D) to a similar extent as RvD1, and the fact that SB203580 and RvD1 were not additive in blocking LTB4 suggested that RvD1 and P38 were in the same pathway. As more direct proof, we showed that RvD1 decreased AA-stimulated phospho-Ser271-5-LOX (Fig. 3A). We then transfected 5-LOX-deficient (Alox5−/−) macrophages with 5-LOX, a product of 5-LOX, through the action of LTA4 hydrolase (Fig. 1E) (11). To help pinpoint the step in this pathway at which RvD1 was acting, we circumvented the 5-LOX step by incubating E(B) with 5-LOX, through the action of LTA4 hydrolase. These data prompted us to explore the hypothesis (SI Appendix, Fig. S3). These actions of RvD1 were mediated through its receptor formyl peptide receptor2/lipoxin A4 receptor (FPR2/ALX) (20), as both an FPR2/ALX blocking antibody (Fig. 1C) and the FPR2/ALX antagonist WRW4 (SI Appendix, Fig. S2B) blocked the ability of RvD1 to reduce AA-stimulated LTB4 generation. LXA4, another ligand for FPR2/ALX (26, 27), also blocked LTB4 generation (Fig. 1D). LTB4 is generated from LTA4, a product of 5-LOX, through the action of LTA4 hydrolase (Fig. 1F) (21, 22), also blocked LTB4 generation (Fig. 1D). LTB4 is generated from LTA4, a product of 5-LOX, through the action of LTA4 hydrolase (Fig. 1F) (21, 22), also blocked LTB4 generation (Fig. 1D). LTA4 was detected by LC-MS/MS. (C) As in B, but the cells were pretreated with IgG control (black bars) or anti-ALX/FPR2 IgG (gray bars) for 1 h at 37°C (n = 3; mean ± SEM; *P < 0.05 versus all other groups). (E) Scheme of LTB4 biosynthesis. (F) As in B, except 10 μM LTA4 was used instead of AA (n = 3; mean ± SEM; **P < 0.05 versus vehicle; n.s., nonsignificant). LTA4 showed no cross reactivity with the LTB4 ELISA.
macrophages with DYKDDDDK (FLAG)-tagged plasmids encoding either wild-type or S271A 5-LOX. Similar transfection efficiency for the two vectors was confirmed by anti-FLAG FACS (SI Appendix, Fig. S6). We found that S271A 5-LOX mimicked the ability of RvD1 to suppress nuclear 5-LOX and LTB4 in AA-treated macrophages, and the effects of RvD1 and the mutant were non-additive (Fig. 3 B and C). These data, along with the previously known role of nuclear 5-LOX in LTB4 biosynthesis (17), suggest that RvD1 limits LTB4 synthesis by blocking AA-stimulated P38-MK2 activation and the subsequent phosphorylation and nuclear localization of 5-LOX.

RvD1 Limits the P38/MK2/Nuclear 5-LOX/LTB4 Pathway by Suppressing AA-Induced CaMKII Activation. AA has been shown to rapidly increase intracellular calcium (Ca^{2+}) (28), which prompted us to investigate whether a calcium-signaling protein might play a role in this pathway. We were particularly interested in CaMKII because CaMKII has been shown to activate P38 and MK2 in other settings (29, 30). Stimulation of macrophages with AA led to an increase in phospho-CaMKII, the enzyme’s active form, and phospho-CaMKII was decreased by RvD1 in a FPR2/ALX-dependent manner (Fig. 4A). The FPR2/ALX ligand LXA4 also blocked AA-stimulated phospho-CaMKII and phospho-MK2 (SI Appendix, Fig. S7). As a possible mechanism for suppression of CaMKII activation, we found that RvD1 suppressed the rise in cytosolic calcium that occurs with AA treatment of macrophages (SI Appendix, Fig. S8 A and C).

To show causation related to CaMKII, we studied macrophages from Camk2γ^fl/−/LysMCre^+/− mice, which lack the CaMKII isoform, CaMKIγ (SI Appendix, Fig. S9). The increase in phospho-MK2 by AA was significantly decreased in CaMKII-deficient macrophages compared with control Camk2γ^fl/+ macrophages, indicating that CaMKII was upstream of MK2. Moreover, RvD1’s ability to limit phosphorylation of MK2 was abolished in CaMKII-deficient macrophages, suggesting that RvD1 acts in the same pathway as CaMKII (Fig. 4B). Most important, AA-stimulated 5-LOX nuclear localization and LTB4 production were decreased in macrophages lacking CaMKII, and the suppressive actions of RvD1 and CaMKII deficiency were not additive (Fig. 4 C and D). These data support the premise that RvD1 signals through CaMKII to limit LTB4 production.

To further prove causation, we transduced macrophages with an adenovirus expressing constitutively active T287D CaMKII (CA-CaMKII), which mimics autophosphorylation and is thus autonomously activated in the absence of bound calcium (31). Adenoviral transfection itself did not alter the pathway, as RvD1 blocked AA-stimulated MK2 phosphorylation in adeno-LacZ control cells to a similar degree as in nontransduced wild-type macrophages (SI Appendix, Fig. S10 A and earlier). In contrast to the situation with wild-type macrophages, RvD1 was unable to block AA-stimulated MK2 activation, 5-LOX nuclear localization, and LTB4 production in CA-CaMKII-transduced macrophages (SI Appendix, Fig. S10A–C), suggesting that RvD1 acts by blocking CaMKII activation.

RvD1 also blocked AA-stimulated phospho-MK2 and LTB4 generation in human monocyte-derived macrophages, and this effect was dependent on both FPR2/ALX and an RvD1 receptor unique to human cells, GPR32 (SI Appendix, Fig. S11 A–C). Moreover, human macrophages transduced with dominant negative K43A CaMKII (31) exhibited diminished AA-stimulated LTB4 production.
generation that was not further decreased by RvD1 (SI Appendix, Fig. S11D). These data suggest similar pathways of RvD1-mediated LTß4 suppression in mouse and human macrophages.

The RvD1-CaMKII–p38–MK2 Pathway Is Functional in Vivo. To examine whether the RvD1–LTß4 signaling pathway is operable in vivo, we used a model of acute zymosan-induced peritoneal inflammation in which controlled release of LTß4 by resident macrophages in the early stages of inflammation is a critical determinant for swift resolution (18). As predicted, RvD1 treatment decreased zymosan-induced LTß4 generation (SI Appendix, Fig. S12C) and polymorphonuclear neutrophil (PMN) infiltration (SI Appendix, Fig. S12D) (9). Most important, these events were accompanied by a decrease in phospho-p38 (SI Appendix, Fig. S12A) and phospho-MK2 (SI Appendix, Fig. S12B) in exudate macrophages.

We then compared these responses in Camk2γfl/flLysMCre+/− versus Camk2γfl/fl mice and found that macrophage-CaMKII deficiency led to decreases in both zymosan-stimulated LTß4 and PMN infiltration in a manner that was not additive with RvD1 (Fig. 5 A–C). Note that 5-LOX protein levels were not different between the two groups of mice (SI Appendix, Fig. S13). To investigate whether the suppression of LTß4 and PMNs by RvD1 was through phosphorylation of 5-LOX at Ser271 in vivo, we injected Alox5−/− mice with plasmids encoding wild-type 5-LOX or S271A 5-LOX. Flow cytometry verified successful transfection of peritoneal macrophages (SI Appendix, Fig. S14). We found that S271A 5-LOX-transfected mice exhibited significantly reduced LTß4 generation and PMN infiltration and that this decrease was not additive with RvD1 (Fig. 5 D and E). These combined data demonstrate that RvD1 limits excessive LTß4 production in vivo by suppressing CaMKII activation and 5-LOX phosphorylation.

Discussion

An important process in inflammation resolution is the dampening of proinflammatory molecules in a manner that does not compromise host defense (2). Thus, it is essential to understand at a molecular-cellular level how this critical process is achieved. We provide here a new pathway (SI Appendix, Fig. S15) that applies to a previously recognized example of SPM-mediated inflammation suppression; namely, the ability of RvD1 to decrease LTß4 levels (9). Moreover, we show here that RvD1 increases the level of LXA4, which is consistent with the hypothesis that intracellular 5-LOX localization affects the balance of LTß4 and LXA4. In this context, the most likely scenario is that LXA4 is released and then acts in a paracrine and autocrine manner via FPR2/ALX.

Our results indicate that the target of RvD1 in AA-treated macrophages is a new CaMKII pathway that promotes p38–MK2 activation and LTß4 production. RvD1 suppressed CaMKII activation, most likely by blocking calcium entry into the cytosol, as RvD1 blocked the increment in cytosolic calcium effected by AA, ATP, and iMet-Leu-Phe (SI Appendix, Fig. S6). In this regard, RvD1 was recently reported to block histamine-stimulated intracellular calcium in goblet cells in a receptor-dependent manner (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LL-37 (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33). Interestingly, another study showed that LL-37 stimulated intracellular calcium in goblet cells (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LLGDFRKSKE (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LL-37 (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33).

We provide here a new pathway (SI Appendix, Fig. S15) that applies to a previously recognized example of SPM-mediated inflammation suppression; namely, the ability of RvD1 to decrease LTß4 levels (9). Moreover, we show here that RvD1 increases the level of LXA4, which is consistent with the hypothesis that intracellular 5-LOX localization affects the balance of LTß4 and LXA4. In this context, the most likely scenario is that LXA4 is released and then acts in a paracrine and autocrine manner via FPR2/ALX.

Our results indicate that the target of RvD1 in AA-treated macrophages is a new CaMKII pathway that promotes p38–MK2 activation and LTß4 production. RvD1 suppressed CaMKII activation, most likely by blocking calcium entry into the cytosol, as RvD1 blocked the increment in cytosolic calcium effected by AA, ATP, and iMet-Leu-Phe (SI Appendix, Fig. S6). In this regard, RvD1 was recently reported to block histamine-stimulated intracellular calcium in goblet cells in a receptor-dependent manner (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LLGDFRKSKE (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33).

Interestingly, another study showed that LL-37 stimulated intracellular calcium in goblet cells (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LL-37 (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33).

We provide here a new pathway (SI Appendix, Fig. S15) that applies to a previously recognized example of SPM-mediated inflammation suppression; namely, the ability of RvD1 to decrease LTß4 levels (9). Moreover, we show here that RvD1 increases the level of LXA4, which is consistent with the hypothesis that intracellular 5-LOX localization affects the balance of LTß4 and LXA4. In this context, the most likely scenario is that LXA4 is released and then acts in a paracrine and autocrine manner via FPR2/ALX.

Our results indicate that the target of RvD1 in AA-treated macrophages is a new CaMKII pathway that promotes p38–MK2 activation and LTß4 production. RvD1 suppressed CaMKII activation, most likely by blocking calcium entry into the cytosol, as RvD1 blocked the increment in cytosolic calcium effected by AA, ATP, and iMet-Leu-Phe (SI Appendix, Fig. S6). In this regard, RvD1 was recently reported to block histamine-stimulated intracellular calcium in goblet cells in a receptor-dependent manner (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LL-37 (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33).

Interestingly, another study showed that LL-37 stimulated intracellular calcium in goblet cells (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LLGDFRKSKE (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33).

We provide here a new pathway (SI Appendix, Fig. S15) that applies to a previously recognized example of SPM-mediated inflammation suppression; namely, the ability of RvD1 to decrease LTß4 levels (9). Moreover, we show here that RvD1 increases the level of LXA4, which is consistent with the hypothesis that intracellular 5-LOX localization affects the balance of LTß4 and LXA4. In this context, the most likely scenario is that LXA4 is released and then acts in a paracrine and autocrine manner via FPR2/ALX.

Our results indicate that the target of RvD1 in AA-treated macrophages is a new CaMKII pathway that promotes p38–MK2 activation and LTß4 production. RvD1 suppressed CaMKII activation, most likely by blocking calcium entry into the cytosol, as RvD1 blocked the increment in cytosolic calcium effected by AA, ATP, and iMet-Leu-Phe (SI Appendix, Fig. S6). In this regard, RvD1 was recently reported to block histamine-stimulated intracellular calcium in goblet cells in a receptor-dependent manner (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LL-37 (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33).

Interestingly, another study showed that LL-37 stimulated intracellular calcium in goblet cells (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LLGDFRKSKE (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33).

We provide here a new pathway (SI Appendix, Fig. S15) that applies to a previously recognized example of SPM-mediated inflammation suppression; namely, the ability of RvD1 to decrease LTß4 levels (9). Moreover, we show here that RvD1 increases the level of LXA4, which is consistent with the hypothesis that intracellular 5-LOX localization affects the balance of LTß4 and LXA4. In this context, the most likely scenario is that LXA4 is released and then acts in a paracrine and autocrine manner via FPR2/ALX.

Our results indicate that the target of RvD1 in AA-treated macrophages is a new CaMKII pathway that promotes p38–MK2 activation and LTß4 production. RvD1 suppressed CaMKII activation, most likely by blocking calcium entry into the cytosol, as RvD1 blocked the increment in cytosolic calcium effected by AA, ATP, and iMet-Leu-Phe (SI Appendix, Fig. S6). In this regard, RvD1 was recently reported to block histamine-stimulated intracellular calcium in goblet cells in a receptor-dependent manner (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LL-37 (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33).

Interestingly, another study showed that LL-37 stimulated intracellular calcium in goblet cells (32), and the SPM resolvin E1 was shown to block intracellular calcium initiated by the antimicrobial peptide LLGDFRKSKE (KIGKEFKRIVQIKDFLRNLVPRTES) (LL-37) in PMNs (33).

We provide here a new pathway (SI Appendix, Fig. S15) that applies to a previously recognized example of SPM-mediated inflammation suppression; namely, the ability of RvD1 to decrease LTß4 levels (9). Moreover, we show here that RvD1 increases the level of LXA4, which is consistent with the hypothesis that intracellular 5-LOX localization affects the balance of LTß4 and LXA4. In this context, the most likely scenario is that LXA4 is released and then acts in a paracrine and autocrine manner via FPR2/ALX.
which excessive CaMKII-p38-MK2 activation or LTβR underlies the pathology.

Materials and Methods

LTβR Detection in Vivo. Bone marrow-derived macrophages (BMDMs) were harvested from female C57BL/6J mice (6–8 wk of age) and cultured in DMEM, 10% (vol/vol) FBS, 20% (vol/vol) L cell media containing macrophage colony stimulating factor, glutamine, and penicillin/streptomycin for 7 d. For individual experiments, 3 × 10⁶ macrophages in 300 μL PBS containing calcium and magnesium were incubated with 1 nM RvD1 for 20 min at 37 °C (45), followed by AA (10 μM) or LTA4 (10 μM) stimulation. After 40 min, the cells were placed on ice and the media were subjected to ELISA analysis. For FPR2/ALX receptor experiments, IgG or anti-FPR2 (10 μg/incubation, 37 °C 1 h) was added before RvD1 stimulation.

Confocal Microscopy for Intracellular Localization of S-LOX. BMDMs were plated on 8-well coverslips (LabTek) and incubated under various conditions, as described in the figure legends. After addition of 5% cold formalin, BMDMs were incubated for 60 min at 4 °C with permeabilization buffer (cat. no. 554715, BD Biosciences) containing anti-S-LOX antibody. Excess antibody was then removed, and the cells were incubated with Alexa 488 anti-rabbit-IgG for an additional 30 min at 4 °C. The cells were counterstained with Hoechst to identify nuclei, viewed on a Nikon A1 confocal microscope, and analyzed using imageJ software.

Zymosan A-Stimulated Peritonitis. Six- to 8-wk-old female mice were administered 10 ng RvD1 per mouse by i.v. injection. After 15 min, 200 μg zymosan A per mouse was injected i.p. to induce peritonitis for 2 h, as in ref. 9. All procedures were conducted in accordance with the Columbia University Standing Committee on Animals guidelines for animal care (protocol no. AC-AAAF7107).

12. In Vivo Transfection.
Figure S1. Confirmation of LTB₄ identify in BMDMs. (A) Representative MRM chromatograms of authentic standards of d₄-LTB₄ (339>197), 6-trans-LTB₄, and LTB₄ (335>195), with retention times indicated. (B) Representative MRM chromatogram of LTB₄ and 6-trans-LTB₄ (335>195) in BMDMs stimulated with AA.
Fig. S2. RvD1 suppresses AA-stimulated LTB\(_4\) in elicited macrophages, requires FPR2/ALX, and enhances LXA\(_4\) upstream of LTA\(_4\) hydrolase. (A) Peritoneal macrophages were harvested from mice 72 h post i.p. zymosan and then incubated and assayed for LTB\(_4\) as in Fig. 1B (n = 3; mean ± SEM; *P < 0.05 vs. AA). (B) BMDMs were pre-treated the FPR2/ALX antagonist WRW4 (10 µM) for 20 min at 37°C and then incubated and assayed for LTB\(_4\) as above (n = 3; mean ± SEM; *P < 0.05 vs. AA and AA+D1+WR; n.s., non-significant). (C) BMDMs were incubated with 10 µM LTA\(_4\) instead of AA as in Fig. 1F, and LXA\(_4\) in the media was assayed (n = 3; n.s., non-significant). NB: In this experiment, a PLA\(_2\) inhibitor was included in all incubations ensure that LXA\(_4\) production was being driven by LTA\(_4\) rather than by AA released from cellular phospholipids.
Fig. S3. **RvD1 blocks AA-stimulated LTB$_4$ in a dose-dependent manner.** BMDMs were preincubated with vehicle control, 0.01, 0.1, 1 or 10 nM RvD1 15 min, followed by incubation with 10 mM AA for 40 min. The media were then assayed LTB$_4$ by ELISA ($n = 3$ for ELISA; mean ± SEM; ***$P < 0.001$ vs. AA).
Fig. S4. Suppression of MK2 phosphorylation by RvD1 is mimicked by Rp-cAMP and blocked by 8-bromo-cAMP. (A-B) BMDMs were preincubated for 15 mins with vehicle control (V), RvD1 (D1), Rp-cAMP (Rp), 8-bromo-cAMP (8-Br), or the indicated combinations. The cells were then incubated for 5 min with 10 µM AA. Cell lysates were immunoblotted for phospho-MK2 and β-actin.
Fig. S5. **RvD1 decreases nuclear localization of 5-LOX through inhibition of P38 signaling.** Incubations were carried out as in Fig 2C. BMDMs were viewed by confocal microscopy at 40x magnification; the macrophages in each image is outlined (bar = 5µM). 5-LOX is green and the nuclear DAPI stain is blue.
Fig. S6. Transfection of plasmids into macrophages. BMDMs were transfected with a complex of FLAG-tagged 5-LOX or S271A 5-LOX plasmids and Jet-Pei-Man reagent. After 72 h, the cells were subjected to flow cytometric analysis for anti-FLAG fluorescence. Representative flow cytometry histograms are shown.
Fig. S7. LXA4 suppresses activation of CaMKII and MK2 and decreases LTB4 synthesis. (A) BMDMs were incubated with 1 nM LXA4 or vehicle for 20 min at 37°C and then treated with 10 μM AA or vehicle for 5 min at 37°C. Cell lysates were subjected to immunoblotting for phospho-CaMKII and phospho-MK2 and quantified by densitometry (n = 3; mean ± SEM; #P < 0.001 vs. AA).
Fig. S8. RvD1 suppresses AA- or ATP-stimulated intracellular calcium increase. BMDMs were incubated with the calcium probe Fluo3 for 20 min in HBSS containing calcium, magnesium, 25 mM glucose, and 1:100 PowerLoad™, which helps solubilize the Fluo3 dye and contains probenecid for dye retention. Excess Fluo3 was removed, and BMDMs were then stimulated with 1 nM of RvD1 or vehicle control for another 20 min. 10 µM AA (A), 10 µM ATP (B) or 1 µM fMLP (C) was added, and intracellular calcium was monitored by flow cytometry. (D) Percent peak intracellular calcium was quantified relative to RvD1 alone (n = 3, mean ± SEM; ***P<0.0001, **P<0.01 vs. RvD1 alone).
Fig. S9. CaMKIIγ is the CaMKII isoform expressed in macrophages and is deleted in macrophages from Camk2g^{fl/fl}LysMC^{Cre^{+/−}} mice. Peritoneal macrophages were harvested from Camk2g^{fl/fl}LysMC^{Cre^{+/−}} and control Camk2g^{fl/fl} mice and assayed for the indicated isoforms of CaMKII by immunoblot. Mouse brain homogenate were used as a positive control for all four isoforms. GAPDH is the loading control.
Fig. S10. The suppressive action of RvD1 on AA-stimulated p-MK2 is abrogated in macrophages overexpressing constitutively active CaMKII. BMDMs were transduced with LacZ or a constitutively active CAMKII (CA-CaMKII). After 72 h, the cells were treated as indicated. (A) Top blot is a representative p-MK2 immunoblot for all groups; because this blot only shows 1 Veh lane for each group, a blot with multiple Veh lanes is shown underneath. Densitometric ratio quantification is shown in the bar graph. (B) BMDMs were permeabilized and stained with Alexa-488 anti-5-LOX antibody (green) and counterstained with the nuclear stain DAPI (blue). Cells were viewed by confocal microscopy at 40x magnification; the macrophage in each image is outlined (bar = 10 µm). Images were analyzed by ImageJ software for MFI of nuclear vs. non-nuclear 5-LOX staining in 5-7 cells per field. (C) LTB$_4$ was monitored by ELISA. For all bar graphs, n = 3 separate experiment; mean ± SEM; **P < 0.01 and *P < 0.05 vs. AA.
Fig. S11. RvD1 suppresses the CaMKII-MK2-LTB₄ pathway in human macrophages in a receptor dependent manner.

A Top panel, Human monocyte-derived macrophages were incubated with 1 nM RvD1 or vehicle for 20 min at 37°C and then treated with 10 μM AA or vehicle for 5 min at 37°C. Cell lysates were subjected to immunoblotting for phospho-MK2; the upper panel is a representative of 5 individual human donors, each analyzed in triplicate.

Bottom panel, Incubations and LTB₄ ELISA were carried out as in Fig 1B (n = 5 ; mean ± SEM; ***P < 0.001 vs. AA).

(B,C) Incubations were carried out as above except that the cells were pre-treated with antibodies against the FPR2/ALX and GPR32 receptors (n = 3 mean ± SEM; * P < 0.05 vs. all other groups).

(D) Human macrophages were transduced with adenoviruses containing LacZ or dominant-negative K43A-CaMKII (each at 400 MOI) for 60 h and then incubated and assayed for LTB₄ as above (n = 3 mean ± SEM; * P < 0.05 vs. AA).
Fig. S12. RvD1 decreases macrophage p-MK2 and p-P38, LTB₄, and PMNs in zymosan peritonitis. Mice were injected i.v. with 10 ng RvD1 per mouse or vehicle control, and 15 min later 200 µg zymosan A per mouse was injected i.p. to induce peritonitis. Peritoneal lavages were obtained 2 h later. (A,B) Leukocytes were collected and assayed for p-P38 and p-MK2 by flow cytometry (n = 3, mean ± SEM; *P < 0.05. (C,D) Exudates were assayed for LTB₄ and PMN numbers (n = 4-5 mice/group, mean ± SEM; *P < 0.05 or **P < 0.01).
Fig. S13. 5-LOX protein levels are similar in CamK2γ^{fl/fl} and CamK2γ^{fl/fl}LysMCRe+/- in zymosan-induced peritoneal exudate cells. Peritoneal exudate cells from zymosan-injected CamK2γ^{fl/fl} (Ctrl) and CamK2γ^{fl/fl}LysMCRe+/- (Cre) mice were analyzed by flow cytometry for anti-5-LOX fluorescence. Representative flow cytometry histograms and quantification of FITC-5-LOX expression are displayed (n = 3 separate mice, mean ± SEM; n.s., non-significant).
Fig. S14. In-vivo transfection is specific to macrophages. Mice were injected i.p. with a complex of FLAG-tagged Alox5 plasmid and Jet-Pei-Man reagent. After 42 h, mice were injected i.p. with zymosan or vehicle control, and 2 h later, peritoneal cells were subjected to flow cytometric analysis for anti-FLAG fluorescence in PMNs (Ly6G+) and macrophages (Ly6G-). Representative flow cytometry histograms and dot plots are shown.
Fig. S15. Proposed scheme of RvD1-CaMKII-P38/MK2-LTB4 pathway. RvD1, acting through the ALX or GPR32 receptor, decreases the increment in cytosolic calcium stimulated by AA, thereby decreasing activation of CaMKII. As a result, activation of the CaMKII-downstream kinases P38 and MK2 is suppressed, leading to decreased phosphorylation of 5-LOX. The decrease in p-5-LOX promotes its translocation from the nucleus to the cytoplasm, which leads to an decrease in LTB4 and an increase in LXA4. The scheme envisions the hypothesis, yet to be proven, that nuclear 5-LOX favors LTB4 due to proximity to LTA4 hydrolase, while cytoplasmic 5-LOX favors LXA4 due to proximity to 12/15-LOX.
Supplemental Methods

Immunoblots. BMDMs (0.2 x 10^6 cells/well) were plated in 24-well plates and placed in media containing 0.05% FBS. After 12 h, the media were removed, and the cells were incubated at 37°C in serum-free media containing either vehicle control or 1 nM RvD1 for 20 min, followed by incubation with 10 μM AA for 5 min. After removal of the media, the cells were flash-froze in liquid nitrogen. Extracts prepared from the frozen cells were electrophoresed on 4–20% gradient SDS-polyacrylamide gels and transferred to 0.45-μm nitrocellulose membranes. The membranes were blocked at room temperature for 1 h in Tris-buffered saline containing 0.1% Tween 20 (TBST) and 5% (w/v) BSA and then incubated sequentially with primary antibody in TBST/BSA at 4°C overnight and secondary antibody coupled to horseradish peroxidase. Proteins were detected by ECL Supersignal West Pico chemiluminescence (Pierce).

Zymosan A-stimulated peritonitis. Six-eight wk/o female mice were administered 10 ng RvD1 per mouse by i.v. injection. After 15 min, 200 μg zymosan A per mouse was injected i.p. to induce peritonitis as in (1). After 2 h, peritoneal exudates were collected by a lavage with 2.5 mL cold PBS. Exudate cells were quantified using trypan blue exclusion, and differential cell counts were assessed via flow cytometry using a FACS Canto flow cytometer. For these analyses, cells were stained with FITC-conjugated rat anti-mouse Ly-6G (clone 1A8), PE-conjugated F4/80, or rat IgG2c,κ isotype control. In parallel, cells were permeabilized and assayed for intracellular kinase activity, and peritoneal
exudate supernatants were subjected to LTB₄ ELISA analysis. All procedures were conducted in accordance with protocols approved by the Columbia University Standing Committee on Animals guidelines for animal care (Protocol # AC-AAAF7107).

Mice lacking macrophage CaMKIIγ. Camk2g^{fl/fl} mice were generated by flanking exon 1-2 with loxP sites and then crossed onto the C57BL/6J background. LysMCre^{+/−} mice were generated as described previously (2, 3). Camk2g^{fl/fl} and LysMCre^{+/−} mice were crossed to generate the macrophage-CaMKIIγ-deficient mice used for this study.

Identification and quantification of eicosanoids by LC-MS/MS. Inflammatory exudates or activated BMDMs were collected and combined with 2 volumes of cold (4°C) methanol. Samples were immediately frozen at -80°C to allow for protein precipitation. After addition of internal deuterium-labeled standards (d₄-LTB₄, d₈-5-HETE, d₄-PGE₂; Cayman Chemical), lipid mediators were extracted using solid-phase C18 columns. Butylated hydroxytoluene was added prior to extraction to prevent non-enzymatic oxidation of lipids during sample preparation. Methyl formate fractions were taken to dryness under N₂ gas and suspended in methanol for LC-MS/MS analysis. Lipid mediators of interest were profiled using an HPLC system (Shimadzu Prominence) equipped with a reverse-phase (C18) column (4.6mm x 50mm; 5.0µm particle size) coupled to a triple quadrupole mass spectrometer (AB Sciex API2000), which was operated in negative
ionization mode. The mobile phase consisted of water:acetic acid (100:0.1 v/v) and acetonitrile:methanol (4:1 v/v) at a ratio of 73:27, which was ramped to 30:70 over 11 minutes and to 20:80 over the next 10 min. After holding for 2 min, the mobile phase was ramped to 0:100 for 2 min before returning to 73:27. The flow rate was held constant at 300µL/min. Multiple reaction monitoring (MRM) was used to identify and quantify LTB$_4$ (335>195), 6-trans-LTB$_4$ (335>195), 20-hydroxy LTB$_4$ (351>195), 5-HETE (319>115), 12-HETE (319>179) and LXA$_4$ (351>115) (4). Quantification of lipid mediators was performed using external calibration curves for each mediator based on authentic standards (Cayman Chemical) and was normalized to recovery of internal deuterium-labeled standards (see above).

