Correction

NEUROSCIENCE
Correction for “CDK5 activator protein p25 preferentially binds and activates GSK3β,” by Hei-Man Chow, Dong Guo, Jie-Chao Zhou, Guan-Yun Zhang, Hui-Fang Li, Karl Herrup, and Jie Zhang, which appeared in issue 45, November 11, 2014, of Proc Natl Acad Sci USA (111:E4887–E4895; first published October 20, 2014; 10.1073/pnas.1402627111).

The authors note that the following statement should be added to the Acknowledgments: “This work was also supported by the Research Grants Council (RGC) of Hong Kong (GRF660813) (to K.H.).”

www.pnas.org/cgi/doi/10.1073/pnas.1510490112
CDK5 activator protein p25 preferentially binds and activates GSK3β

Hei-Man Chow, Dong Guo, Jie-Chao Zhou, Guan-Yun Zhang, Hui-Fang Li, Karl Herrup, and Jie Zhang

A Division of Life Science and the State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong; b Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, People’s Republic of China; and c Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854

Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved September 23, 2014 (received for review February 12, 2014)

Glycogen synthase kinase 3β (GSK3β) is a proline-directed serine/threonine kinase, CDK5 is a widely expressed protein. As a proline-directed serine/threonine kinase, CDK5 is known to phosphorylate a number of cytoskeletal proteins (e.g., MAP1b, tau, neurofilament, nestin, DCX, CRMP2), synaptic proteins (e.g., PSD95, synapsin-I, E-cadherin), and transcription factors (MEF2) in postmitotic neurons (9, 10); its two activator proteins are p35 (GSK3β) and p39. p35 and p39 resemble cyclins in their 3D structures and are almost exclusively detected in the nervous system; this restricts CDK5 activity largely to brain (11). CDK5 plays a pivotal role in neuronal development where its activity is required for normal neuronal migration and differentiation (12). CDK5 also contributes to neuronal health and survival after the developmental period has ended. Cdk5-deficient neurons are more vulnerable than wild-type cells to Aβ toxicity in culture (12, 13), more sensitive to DNA-damaging agents (14), and more susceptible to excitotoxic death (15). Our team has also recently reported that cytoplasmic CDK5 can attenuate Aβ-activated cell death (16).

Though clearly a positive influence on neurons in many different situations, the full picture of CDK5 action is more complicated because dysregulated CDK5 activity is also believed to contribute to neuronal death. When internal calcium concentrations rise, the calcium-dependent protease calpain is activated, resulting in the cleavage of p35 into p25. Although the levels of p25 are generally low in tissues, interaction with p25 has been reported to promote CDK5 stability and enhance its kinase activity (17), resulting in the abnormal phosphorylation of substrates such as tau (18). These data and others have led to the suggestion that CDK5 is potentially dysregulated in AD and that CDK5 inhibitors might have potential value as AD therapeutics (19).

GSK3β is another proline-directed serine/threonine kinase, originally identified as a key enzyme in regulating glycogen metabolism (20). GSK3β expression is ubiquitous, but its highest levels are found in the CNS, where it is recognized as a key regulator of neurogenesis (21), cellular polarization (22), neurite growth (23), and synaptic plasticity (24). In transgenic mouse models, constitutive GSK3β expression is found to be critical for neuronal viability (25). GSK3 activity is regulated at different levels. Phosphorylation of Tyr279/276 on GSK3/β is important for enzymatic activity (26), whereas inactivation can be achieved through phosphorylation of Ser21/Ser9 residues. GSK3 activity is regulated in part by the WNT signaling pathway. In the absence of WNT, GSK3β interacts with AXIN and adenomatous polyposis coli (APC) to form a multiprotein complex (the destruction complex) that binds to and phosphorylates β-catenin (27).

Significance

CDK5 and GSK3β are recognized as interrelated kinases; they share a strong structural resemblance, and both are known tau kinases that contribute to the etiology of Alzheimer’s disease. We report here that p25 but not p35, the normal cyclin-like activator of CDK5, unexpectedly binds to GSK3β in the AXIN-binding region. The binding of p25 increases GSK3β activity and alters its substrate specificity. Results, both in vivo and in vitro, suggest that many of the effects of p25 previously assumed to be due to hyperactivation of CDK5 must now be reexamined for the potential role of altered GSK3β activity. This result carries important implications for how we approach disease-modifying strategies for the treatment of Alzheimer’s and other neurodegenerative diseases.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence may be addressed. Email: jiezhang@xmu.edu.cn or herrup@ust.hk.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1402627111//DCSupplemental.
Despite these important roles in CNS development and maintenance, dysregulation of GSK3β activity, like that of CDK5, has been implicated in the progression AD; one obvious reason is that GSK3β is also known as tau protein kinase-1, and elevated levels of GSK3β activity are found in postmortem AD brains (28).

So far the effect of p25 on CDK5 function has been studied in vitro and in vivo, but remains poorly understood (17). It also has been previously reported that there is functional interaction between CDK5 and GSK3β (29). Based on the structural similarities between CDK5 and GSK3β, and previous data showing that CDK5 interacts with cyclins as well as with p35 and p39 (30), we asked whether these same regulator proteins were able to interact with and alter the activity or substrate specificity of GSK3β. Here we report that p25, but not p35 or other cyclins, binds directly to GFP-p10 in the T-loop and AXIN-binding channel in the C terminus of GSK3β. We find that p25 prefers binding to GSK3β over CDK5 when the three proteins are overexpressed together. Binding of p25 aberrantly activates the GSK3β kinase and alters its substrate specificity. The resulting aberrant activity severely reduces both neuritic arborization and synaptic density in cultures of cortical neurons. Targeted silencing of Gsk3β with siRNA protects neurons from these destructive effects more effectively than that specific for Cdk5. Our data show that p25 is a GSK3β regulator, and that this activity may contribute to the process of neurodegeneration.

Results

GSK3β Specifically Interacts with p25 But No Other Cyclins in Multiple Subcellular Locations. According to the human kinome, GSK3β and CDK5 belong to the CMGC kinase family (31), and share similar structural elements and arrangements with other CDKs, including the PSTAIRE/helix αC and an activation T-loop (32) (Fig. S1). We therefore speculated that GSK3β might also interact with activators of CDK5 or cyclins. We coexpressed HA-tagged GSK3β with green fluorescent protein-tagged p35 (GFP-p35), directly to GFP-p10 in the T-loop and AXIN-binding channel (co-IP) with antibodies against HA (GSK3β) followed by Western blots of the immunoprecipitate with GFP showed that only p25, but not p35 or p10, can complex with GSK3β (Fig. 1A). This interaction appears to be specific for the CDK5 activator p25; neither cyclin A nor cyclin D1 showed evidence of meaningful binding to GSK3β (Fig. 1B). The failure to observe GSK3β interaction with cyclin A is significant because this cyclin has been noted to be similar to p25 in 3D structure (33).

To explore whether the GSK3β:p25 interaction was direct or indirect, we turned to FRET, which can only be achieved if the two fluorophores are located within a few nanometers of each other (34). We generated a set of GFP-tagged constructs for CDK5, GSK3β, and mitogen-activated protein kinase 1 (MAPK1/ERK2) and an additional set of p25 and p35 with a mCherry-tag. GFP- and mCherry-tagged constructs were cotransfected into cultured primary embryonic (E16.5) mouse neurons grown for 14 d in vitro (DIV14). Consistent with our co-IP results, cotransfection of GFP-tagged GSK3β with mCherry-p25 resulted in highly significant FRET, whereas GFP-GSK3β overexpressed with mCherry-p35 led to no transfer above background (Fig. 1C and D). As expected, control cultures in which GFP-CDK5 was overexpressed with mCherry-p25 (or mCherry-p35) displayed significant energy transfer in both cytoplasm and nucleus (Fig. S1B). GFP-tagged MAPK1 (ERK2) was used as a negative control because it is also a member of the CMGC kinase family (31); with either p25 or p35 revealed no significant FRET in our assay (Fig. S1B, rows 3 and 4). Thus, the interaction we observed between GSK3β and p25 is direct and specific. The results thus far were found in the neuronal cell body. We also examined GSK3β:p25 FRET in distal neurites. Even in this area of the neuron, GSK3β:p25 displayed significant FRET (Fig. 1D), as it did with CDK5:p35 and CDK5:p25 (Fig. S1B). The negative control, ERK2, produced no FRET signal with either p35 or p25 (Fig. S1B). Thus, the interaction between p25 and GSK3β is independent of subcellular localization.

Fig. 1. GSK3β interacts with p25. (A) Potential interactions between GSK3β and p35/p25/p10 were detected by co-IP followed by Western blot (n = 3 experiments). (B) Although cyclin A and cyclin D1 are both similar to p25 structure, co-IP followed by Western blot failed to detect interaction with GSK3β (n = 3 experiments). (C and D) FRET by acceptor photobleaching in DIV14 E16 embryonic neurons cotransfected with GFP-tagged GSK3β/CDK5/ERK2 (donor) and mCherry-tagged p35/p25 (acceptor). Acceptor photobleaching was performed (Fig. 1B) initial magnification 630x). Samples were compared by one-way ANOVA with Bonferroni post hoc test. *P < 0.05 vs. ROI 002–ROI 005 groups; n = 30 in three experiments.
phenylalanine at position 293 of GSK3β and the tryptophan at position 190 of p25 (1.89 Å; Fig. S2B, Bottom). In fact, this region of GSK3β is of particular interest because phosphorylation of the nearby tyrosine at position 216 (Y216) can lead to activation of the kinase (40). When the two proteins are associated, Y216 on GSK3β is predicted to form a hydrogen bond with the aspartate residue at position 259 on p25 (1.92 Å; Fig. S2B, Top). These data, together with the docking results, offer a compelling rationale for the strength of the observed biochemical affinity between GSK3β and p25.

p25 Binding Enhances GSK3β-Primed Phosphorylation Activity and Leads to Aberrant Tau Phosphorylation. According to the literature, GSK3β is a serine/threonine kinase that has a unique choice of substrate preference (41); it is one of the few kinases that prefer prior phosphorylation of its substrate before it can further phosphorylate the protein at the “primed” motif: (S/T-XXX-S/T[P]). We next explored the effects of p25 binding on GSK3β kinase activity in vitro. To visualize GSK3β activity in living cells, we used a GFP-GSK3-MAPK reporter (42). DIV14 primary neuronal cultures from wild-type B6 mice were transfected with mCherry-p35 or mCherry-p25, along with the reporter and assayed after 24 h. In the presence of active GSK, the phosphorylation of the marker should lead to a loss of GFP fluorescence in the transfected cells (Materials and Methods); this was the result we observed with p25, especially in cells expressing higher levels of mCherry-p25 (Fig. 3A, third row, asterisk-marked cell). By contrast, when p35 was transfected, the GFP reporter signal stayed strong in the mCherry-positive cells (Fig. 3A, second row); this is the result expected if p35 does not change the activity of GSK3β. The p25 effect on GSK3β kinase activity is independent of CDK5, because we obtained similar results when the same experiment was conducted with DIV14 neurons isolated from E16 embryonic cortex of Cdk5 knockout mice (Fig. 3A, rows 4–6). As further evidence of this model, cells transfected with a phosphorylation-resistant GSK3β reporter protein showed no loss of fluorescence when transfected with either p35 or p25 (Fig. S3A).

Unlike other protein kinases, GSK3β is constitutively active in resting conditions and is inhibited in response to cellular signals (43). We found that phosphorylation of the serine 9 (Ser9) residue of Gsk3β was significantly reduced in N2a cells overexpressing p25, suggesting that a blockage of Ser9 phosphorylation might be the cause of the enhanced primed-phosphorylation activity observed with p25 (Fig. 3B). Consistent with this suggestion, the intensity of immunostaining for phospho-Gsk3β (Ser9) was found to be significantly reduced in cortices of embryonic brains after induced ectopic expression of p25 by in utero electroporation (Fig. 3C) and in mature brains from bitransgenic CK-p25 mice in which the forebrain expression of p25 was induced for 8 wk beginning at 2 mo of age by removal of deoxycycline from drinking water (Fig. 3D; for details, see Materials and Methods). As a final independent confirmation, we performed stereotactic injection of kainic acid (KA) into the hippocampus. This excitotoxicity model has enhanced cleavage of p35, resulting in elevated levels of p25 (44). Both Western blots and immunohistochemistry with brain tissues isolated from these mice further support the inverse correlation between the levels of p25 protein and phospho-GSK3β (Ser9) (Fig. S3B).

Aberrant activity of GSK3β by interaction with p25 may also affect the phosphorylation status of its substrates such as tau, which is implicated in neurodegeneration (45); to test this, N2a cells were transfected with HA-GSK3β and GFP-p35. When the HA immunoprecipitates were assayed for tau kinase activity, we observed little to no tau phosphorylation at sites threonine-181 (Thr181) or serine-396 (Ser396) in vitro. By contrast, in cells overexpressing HA-GSK3β and GFP-p25, the immunoprecipitate demonstrated a modest (twofold) increase in tau phosphorylation at these sites (Fig. 4A and Fig. S4A). To verify that these observations were a result of aberrant GSK3β activity, tau phosphorylation was measured in p25-expressing N2a cells that
Fig. 3. GSK3β activity is altered by p25, which correlated with a loss of phosphorylation at serine 9. (A) The activity of GSK3β was visualized in both wild-type and Cdk5−/− DIV14 primary neurons overexpressing p25 or p35, with a GFP-GSK3-wtMAPK reporter. p25 activates Gsk3β in both wild-type and Cdk5−/− neurons (15 repetitions from three independent experiments). (B–D) Phosphorylation levels of serine 9 residue on Gsk3β in the presence of p25 were demonstrated by immunoblotting (B) and immunohistochemistry (D). (B) Phosphorylation of serine 9 on Gsk3β was reduced in N2a cells with ectopic expression of p25 but not p35 (n = 3 experiments). (C) Immunohistochemistry showed introduction of p25 constructs into embryonic cortices by in utero electroporation resulted in reduced levels of phosphorylated Gsk3β at serine 9 (n = 3 experiments). (D) Cortices of adult transgenic mice with ectopic p25 showed similar results by immunohistochemistry and immunoblotting. Serine 9 phosphorylation was reduced, whereas total Gsk3β level remained similar (n = 3 animals in each group).

were also treated with Cdk5 or Gsk3β siRNA. Immunoblotting showed that Gsk3β knockdown could significantly reverse the p25 effect on tau phosphorylation level, but only a modest reversal was observed with Cdk5 knockdown (Fig. 4B). The effect of aberrant activity of GSK3β toward tau can also be seen in the brains of various mouse models of Alzheimer’s disease in which the levels of p25 have been shown to be increased (46, 47). We harvested brain cortical lysates from mouse models of 3xTg (B6;129-Psen1tm1MpmTg(APPswe,tauP301L)1Lfa/Mmjax) and its corresponding background control 129S (B6129SF2/J), together with those from PS1/APP (B6.Cg-Tg(APPswe,PSEN1dE9)85Dbx/Mmjax) mice. Immunoblotting data confirmed that endogenous p25 levels were significantly elevated in aged mice of both 3xTg (12 mo) and PS1/APP models (14 mo) compared with their corresponding controls (Fig. 4C). Though the mechanisms leading to elevated p25 likely differ, Western blotting showed that tau phosphorylation at both the PHF1 (Ser396/Ser404) and AT8 (Ser202/Thr205) epitopes was significantly increased (Fig. 4C), consistent with our model.

Fig. 4. p25 Binding Alters the Stability of β-catenin by Blocking Formation of the GSK3β/Axin/APC Complex. It has been reported that tau phosphorylation is accompanied by decreased β-catenin phosphorylation and accumulation of the protein (48). Consistently with this finding, the levels of total β-catenin were dramatically increased in N2a cells overexpressing p25, but not in those overexpressing p35 (Fig. 5A). Such increase was not associated with altered transcription (Fig. S4B) but was a result of enhanced stability of the β-catenin protein induced by dephosphorylation of Ser33/37/Thr41 (Fig. 5B). This effect is most likely based on the actions of Gsk3β in the cytoplasm (Fig. 5B, lanes of GFP-p25-NLS). When p25 was directed into the nucleus with a nuclear localization signal (NLS; Fig. 5B), phosphorylation of β-catenin returned to a level comparable to controls. Directing p25 to the cytoplasm with a nuclear export signal (NES) was as effective as wild-type p25 in reducing β-catenin phosphorylation. These findings suggest that the cytoplasmic interaction of p25 with GSK3β plays a key role in determining the stability of β-catenin.

β-catenin is recognized part of the canonical WNT signaling pathway. When the WNT receptor (frizzled) is activated, the “destruction complex” composed of GSK3β, Axin, and APC dissociates (49), and this results in the failure of GSK3β to find
its β-catenin substrate, blocking catenin phosphorylation and preventing its targeting to the proteasome for degradation. Because our docking data predicted that the p25 interaction site on GSK3β is located within the AXIN-binding channel (Fig. 2 C–E), we speculated that the loss of β-catenin phosphorylation might be caused by the breakup of the AXIN/APC/GSK3β complex. Support for this hypothesis comes from comparing co-IP assays with and without ectopic expression of GFP-p25 in N2a cells. The presence of exogenous p25 blocked the physical interactions between Gsk3β with both Axin and Apc (Fig. 5C). A similar loss of the Axin/Apc/Gsk3β complex was also observed in brain cortical lysates from the two AD mouse models (Fig. 5D). These observations suggest that p25 interaction with GSK3β hinders the formation of the AXIN/APC/GSK3β destructive complex both in vivo and in vitro, leading to reduced β-catenin phosphorylation.

The GSK3β:p25 interaction site on the Aβ-catenin substrate, blocking catenin phosphorylation and preventing its targeting to the proteasome for degradation. Because our docking data predicted that the p25 interaction site on GSK3β is located within the AXIN-binding channel (Fig. 2 C–E), we speculated that the loss of β-catenin phosphorylation might be caused by the breakup of the AXIN/APC/GSK3β complex. Support for this hypothesis comes from comparing co-IP assays with and without ectopic expression of GFP-p25 in N2a cells. The presence of exogenous p25 blocked the physical interactions between Gsk3β with both Axin and Apc (Fig. 5C). A similar loss of the Axin/Apc/Gsk3β complex was also observed in brain cortical lysates from the two AD mouse models (Fig. 5D). These observations suggest that p25 interaction with GSK3β hinders the formation of the AXIN/APC/GSK3β destructive complex both in vivo and in vitro, leading to reduced β-catenin phosphorylation.

Discussion

CDK5 and GSK3β have both been proposed to play a pathogenic role in AD, in large part by contributing to the hyperphosphorylation of tau, one of the pathological hallmarks of the disease. GSK3β has been shown to colocalize with dystrophic neurites and neurofibrillary tangles (51, 52). Active GSK3β appears in neurons with pretangle changes (28), and increased activity is detected in frontal cortex (53) and hippocampus (54) of AD patients. In the present study, we report that p25, a well-known coactivator of CDK5, interacts with GSK3β by directly binding to its T-loop and AXIN-binding channel. The affinity of p25 for GSK3β is higher than for CDK5, and p25 binding aberrantly activates GSK3β and alters its substrate specificity. In vitro, GSK3β:p25 is highly neurotoxic; both neurite arborization and the density of synaptic puncta are significantly reduced in primary neurons expressing p25 plus GSK3β (Fig. 6), and was significantly worse than that induced by p25 plus CDK5. Consistent with previous findings (22, 50), our data therefore suggests aberrant activity of GSK3β can also lead to loss of neurite arborization.

The GSK3β:p25 induced neurotoxicity, was confirmed in cultured neurons by the reduction in staining intensity for the presynaptic marker synapsin-I. As expected, we observed a significant reduction in the density of puncta (defined as overlap of synapsin-I and fluorescent marker staining of the transfected cells) in primary neurons coexpressing GFP-CDK5 plus mCherry-p25. Intriguingly, overexpression of p25 alone induced an even more significant synaptic loss than that seen when it was coexpressed with CDK5, which suggests that the inclusion of CDK5 partially buffered the effects triggered by p25 alone (Fig. 7 A and B). The significance of this finding was further enhanced by our observation that primary neurons coexpressing p25 plus GSK3β suffered the most dramatic synaptic loss of all (Fig. 7 A and B). Using in utero electroporation, we produced similar results in the neurons of the embryonic mouse cortex (Fig. 8 A and B). In this case, however, the density of postsynaptic puncta (defined as overlap of PSD95 and fluorescent marker staining of transfected cells), revealed no significant changes among the treatments (Fig. S5).

We confirmed the GSK3β dependence of this effect by using specific siRNA against Cdk5 or Gsk3β. Cells were pretreated with siRNA for 24 h followed by transfection of GFP-p25 for another 24 h prior to fixation. Treatment with Cdk5 siRNA resulted in modest improvement in both neuritic morphology and synaptic density in cells expressing p25 (Fig. 9 A, C, and D). In cultures pretreated with Gsk3β siRNA, however, the improvements in these two parameters were far more substantial (Fig. 9 B–D). Collectively, our data provided evidence that p25-activated GSK3β is a significant part of the pathological impact on neurons when p25 levels are elevated.
that p25 exerts its effects by interaction with CDK5 (56). Our data suggest a reexamination of this assumption is needed, however, and a potential role of GSK3β should also be considered. The in vitro data forms a significant part of this argument—in particular, the demonstration that knockdown of Gsk3β with siRNA is much more effective at blocking the p25-induced neurodegeneration than is the Cdk5 siRNA. The in vivo data deserve special consideration, however, because they carry important implications for the etiology of various neurodegenerative conditions.

Our data show that overexpression of p25 in vivo as well as in vitro drives tau hyperphosphorylation (Fig. 4 and Fig. S4) accompanied by a severe loss of neurites and presynaptic puncta (Figs. 7 and 8). These findings are in accord with earlier results, but extend them considerably. Though earlier findings were logically interpreted as reflecting the interaction of the exogenous p25 with CDK5, our data demonstrate that p25 elevation in vivo, whether caused directly by the expression of a p25 transgene or indirectly by the altered environment of human APP overexpression, leads to the increased appearance of hyperphosphorylated tau. What our data also show, however, is that elevated p25 in vivo is also associated with evidence for enhanced GSK3β activity, as reflected by decrease in protein phosphorylation level.

Our present findings demonstrate that in the presence of p25, both CDK5 and GSK3β are activated. Evidence from the PC12 cell line suggests that AKT binds to the AXIN:GSK3β complex and phosphorylates GSK3β at serine 9, reducing its activity (58).

Although there is conflicting evidence on whether p25 levels are elevated in AD, there is clear evidence that exogenous Aβ is able to increase p25 production in neurons (56). Further, mice that conditionally overexpress p25 show synaptic loss and learning deficits (57). The traditional view of these data assumes
Combined with our data showing that GSK3β preferentially binds to p25 over AXIN, we speculate that p25 binding may prevent GSK3β from being inhibited by AKT-mediated phosphorylation. Our Western blotting results reveal the levels of phosphorylated serine 9 on GSK3β are substantially reduced in the presence of p25, both in vitro in cycling N2a cells and in vivo in neurons (Fig. 3 B–D). Our data suggest that of the two kinases, p25 has a higher affinity for GSK3β than for CDK5, which would imply that p25 preferentially alters the activity of GSK3β. In support of this, we observed that neurons co-overexpressing GSK3β and p25 show severe neurodegeneration—more severe than those overexpressing p25 alone. Indeed, co-overexpression of CDK5 with p25 in nerve cells is somewhat protective and leads to the mildest phenotype of all (Figs. 6–8 and Fig. S5).

Our data add to the appreciation that there is substantial cross-talk between the CDK5 and GSK3β kinases. In this vein, we find it noteworthy that CDK5 is able to phosphorylate AXIN at threonine 485. Phosphorylated AXIN binds to GSK3β and inhibits its activity, leading the authors of this study to suggest that CDK5 serves as a modulating influence and, through its targeting of AXIN, functions normally to prevent GSK3β over-activation (58). In conjunction with the data presented here, however, we would speculate that in the presence of p25, this interaction is blocked (Fig. 5 C and D). GSK3β is no longer under inhibitory regulation and thus becomes aberrantly activated. This model is consistent with our gene knockdown studies showing that inhibition of GSK3β is far more effective than inhibition of CDK5 in blocking the neurite and synapse loss following p25 expression.

We propose that in most in vivo situations, the action of p25 is twofold; it alters both GSK3β and CDK5 activities. In healthy mature postmitotic neurons, nuclear CDK5 suppresses the re-entrance into the cell cycle by forming a complex with p35 and E2F1 (13, 59). Enriched neuronal p25 in disease conditions may act as a competitor of p35-E2F1, and eventually prevent CDK5 from suppressing the cell cycle inside the nucleus. At the same time, our data show that β-catenin is stabilized in the presence of p25. We consider it plausible that these elevated levels of β-catenin may lead to its interaction with non-GSK3β bound phosphorylated AXIN. Therefore, we propose that AXIN binding to GSK3β and CDK5 may provide a link between the cell cycle and Wnt signaling in neuronal injury and disease. Our data implicate AXIN as a common mediator of these two pathways.

Our data add to the appreciation that there is substantial cross-talk between the CDK5 and GSK3β kinases. In this vein, we find it noteworthy that CDK5 is able to phosphorylate AXIN at threonine 485. Phosphorylated AXIN binds to GSK3β and inhibits its activity, leading the authors of this study to suggest that CDK5 serves as a modulating influence and, through its targeting of AXIN, functions normally to prevent GSK3β over-activation (58). In conjunction with the data presented here, however, we would speculate that in the presence of p25, this interaction is blocked (Fig. 5 C and D). GSK3β is no longer under inhibitory regulation and thus becomes aberrantly activated. This model is consistent with our gene knockdown studies showing that inhibition of GSK3β is far more effective than inhibition of CDK5 in blocking the neurite and synapse loss following p25 expression.

We propose that in most in vivo situations, the action of p25 is twofold; it alters both GSK3β and CDK5 activities. In healthy mature postmitotic neurons, nuclear CDK5 suppresses the re-entrance into the cell cycle by forming a complex with p35 and E2F1 (13, 59). Enriched neuronal p25 in disease conditions may act as a competitor of p35-E2F1, and eventually prevent CDK5 from suppressing the cell cycle inside the nucleus. At the same time, our data show that β-catenin is stabilized in the presence of p25. We consider it plausible that these elevated levels of β-catenin may lead to its interaction with non-GSK3β bound phosphorylated AXIN. Therefore, we propose that AXIN binding to GSK3β and CDK5 may provide a link between the cell cycle and Wnt signaling in neuronal injury and disease. Our data implicate AXIN as a common mediator of these two pathways.
phosphorylated-AXIN and thus become activated inside the nucleus (60). Whether β-catenin activity in the postmitotic mature neurons serves as antiapoptotic force or eventually drives the cells to reenter the cell cycle awaits additional studies. Our results provide a new direction for future studies on p25- and GSK3β-mediated neuronal atrophy associated with the pathophysiological mechanisms underlying Alzheimer’s and other neurodegenerative diseases.

Materials and Methods

Animal Maintenance, Cortical Brain Tissue Isolation, and Primary Neuronal Culture. C57BL/6, 3TxG-AD [B6;129-Psen1tm1Mkiy/APPSwe,tauP301L]1Lfa/Mmjx], and P1-tAPP [B6.C3-Tg(PPSwe.PSEN1.E935D.B6.Mmjx) mice obtained from Jackson Laboratories, Yonkers, NY (P7122), C57BL/6-Tg(mCherry-p25/ mCherry-p35) are generous gifts from Li-Huei Tsai, Massachusetts Institute of Technology, Cambridge, MA, and B6;129-Cdk5tm1Kul/J is a generous gift from Nancy Yuk-Yu IP, Hong Kong University of Science and Technology, Hong Kong, were maintained and bred in the Animal and Plant Care Facility of The Hong Kong University of Science and Technology (HKUST). A colony of Cdk5−/− mice was maintained on a mixed (C57BL/6J X 129/SV) background and bred in the Animal Care Core Facility of Xiamen University. All animal experimental protocols were approved both by the Animal Ethics Committee at HKUST (and their care was in accord with the institutional and Hong Kong guidelines) and by the Xiamen University Institutional Animal Care and Use Committee. Cortical brain tissue and embryonic cortical neurons were isolated by standard procedures as reported previously (12).

FRET–Acceptor Photobleaching. Primary neuronal culture at DIV12–13 cultured in a 35-mm glass-bottom culture dish (MatTek Corporation) were cotransfected with two constructs (GFP-GSK3β/GFP-CDK5/GFP-ERK2 or mCherry-p25/mCherry-p35) using Lipofectamine LTX with Plus Reagent (Life Technologies) as described. After incubation for 24 h, cell images in the green and red channels were acquired, and FRET-AB analysis was performed using a TCS SP8 confocal microscope (Leica Microsystems Inc.).

Immunocytochemistry and Immunohistochemistry. For immunostaining, N2A cells and primary neuronal cultures were grown on 13-mm coverslips (Marienfeld) in 24-well plates, Twenty-four hours after transfection (with or without treatment), cells were harvested, fixed with fresh 4% (wt/vol) paraformaldehyde (Sigma-Aldrich) for 10 min, and permeabilized by treatment with 0.3% Triton X-100 in PBS for 10 min. After blocking with 5% (wt/vol) BSA in PBS for 1 h (blocking solution), primary antibodies were added and incubated overnight at 4 °C. Coverslips were washed 10 min three times with PBS, and secondary antibodies applied for 1 h at room temperature. After three additional washes with PBS, coverslips were mounted with ProLong Gold Antifade Reagent (Life Technologies). Immunofluorescence was analyzed and 2-stack maximum projected images were photographed using a TCS SP8 confocal microscope (Leica Microsystems Inc.).

Acknowledgments. We thank Prof. Edward De Robertis (University of California, Los Angeles) for sharing the reporter constructs for measuring GSK3β activity, Prof. Li-Huei Tsai (Massachusetts Institute of Technology) for the transgenic mice (C57BL/6-Tg(mCherry-p25/mCherry-p35), and Prof. Nancy Yuk-Yu IP (Hong Kong University of Science and Technology) for sharing the CDKS knockout mice (B6;129-Cdk5tm1Kul/J). We thank Mr. Jenkin Chan, Mr. Thomas Hui, Ms. Aifang Cheng, Mr. Yang Zhang, Ms. Xuting Shen, Ms. Beika Zhu, and Ms. Toni Man (Hong Kong University of Science and Technology) for their efforts in preparing primary neuronal culture and for routine laboratory support. We also thank Mr. Samuel Lai (Imperial College London), who volunteered as a summer student and assisted in the blinded counting of neurites and synaptic punctas, and Mr. Bob Tang (Leica Microsystems Hong Kong) for his tireless help in providing regular technical training and support. This work was supported by the 985 Project from Xiamen University (U.Z.), National Key Basic Research Program of China Grant 2013CB530900 (to K.H.), National Science Foundation in China Grant 81271421 (to J.Z.), National Science Foundation of Fujian Province Grants 013010147 and 2014J06019 (to J.Z.), and the Hong Kong University of Science and Technology, and the Program for New Century Excellent Talents in University (U.Z.). Support for the early phases of this work was provided by National Institutes of Health Grant NS20591 and Rutgers University.

For neurite arborization and synapse quantification in Figs. 8 and 9, constructs that cloned into either pLVX-TRE3G-ZsGreen1 or pLVX-TRE3G-mCherry vectors were used because the presence of an internal ribosome entry site (IRES) allows coexpression of heterologous gene products (i.e., gene of interest and fluorophore tag) by a message from a single promoter; therefore, localization of the fluorophore protein is independent to the localization of the protein derived from inserts. Z-stacked maximum projected images were used for all counting. Quantification and related statistical analyses were performed blind using ImageJ (NIH) and Photoshop CS6 (Adobe Systems Inc.). For immunohistochemistry, antigens on cryosections were first unraveled with heated citrate buffer at 95 °C for 15 min followed by cooling down at room temperature for 1 h. Sections were rinsed in PBS, blocked with 5% (vol/vol) donkey serum/PBS for 1 h, and immunostained according to the above protocol.

In Silico Automated Protein–Protein Docking and Contact Area Analysis. Docking of ligand protein to receptor protein, energy filtering, clustering, and ranking were done using the ClusPro 2.0 web server (cluspro.bu.edu/login.php, (37, 61)). Structures of GSK3β (PDB id code 1Q4L, chain A), p25 (PDB id code TUNL, chain D), and CDKS (PDB id code TUNL, chain A) were obtained from Protein Data Bank to perform docking. As a positive control, we simulated CDKS and p25 interaction with ClusPro 2.0 using hydrophobic-favored mode, and the same set of parameters were used to simulate the interaction between GSK3β and p25. Representative structures for the cluster were obtained from each simulation, and docking energy center scores of the first ranked cluster conformation were compared. For contact area analysis, ICM-Browser Pro (Molsoft) was used to analyze the key interacting residues and potential presence of interacting bonds of the most favorable conformation obtained from ClusPro 2.0 docking.

For more experimental details, please see SI Materials and Methods.

