Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

High-precision timeline for Earth’s most severe extinction

Seth D. Burgess, Samuel Bowring and Shu-zhong Shen
PNAS March 4, 2014. 111 (9) 3316-3321; published ahead of print February 10, 2014. https://doi.org/10.1073/pnas.1317692111
Seth D. Burgess
aDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sburgess@mit.edu
Samuel Bowring
aDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shu-zhong Shen
bState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Dennis Kent, Rutgers University and Lamont-Doherty Earth Observatory, Palisades, NY, and approved January 2, 2014 (received for review September 18, 2013)

This article has a correction. Please see:

  • Correction for Burgess et al., High-precision timeline for Earth’s most severe extinction
  • Article
  • Figures & SI
  • Authors & Info
  • PDF
Loading

Significance

Mass extinctions are major drivers of macroevolutionary change and mark fundamental transitions in the history of life, yet the feedbacks between environmental perturbation and biological response, which occur on submillennial timescales, are poorly understood. We present a high-precision age model for the end-Permian mass extinction, which was the most severe loss of marine and terrestrial biota in the last 542 My, that allows exploration of the sequence of events at millennial to decamillenial timescales 252 Mya. This record is critical for a better understanding of the punctuated nature and duration of the extinction, the reorganization of the carbon cycle, and a refined evaluation of potential trigger and kill mechanisms.

Abstract

The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms.

  • geochronology
  • evolution

The ability to examine the rock record at millennial to decamillennial time scales in rocks that are hundreds of millions of years old permits critical evaluation of the patterns and rates of climate change, biological response to environmental perturbations, and evolution in deep time. This knowledge can give context to our understanding of the scale and rate of current biologic and climate change. In this article, we show that the largest known extinction in the history of animal life occurred in tens of thousands of years, just after a short-lived and major reorganization of the global carbon cycle.

Mass extinctions have long garnered attention, as they are characterized by fundamental restructuring of marine and terrestrial ecosystems and reflect complex feedbacks between environmental change, extinction, and recovery. However, it is only rarely that environmental perturbation leads to global extinction. Proposed drivers of mass extinctions range from asteroid impact to flood basalt volcanism, which are thought to trigger kill mechanisms ranging from global ocean anoxia to high atmospheric pCO2 to high ocean and atmosphere temperatures, for example (1). Although the geologic record is replete with occurrences of all of these, very few lead to mass extinctions. Studying the temporal details of mass extinctions is crucial for understanding how they are triggered and may allow isolation and identification of processes that are associated with a characteristic timescale. These processes in turn may be relevant to current biological and climate change and the timescales of feedbacks between environmental change and extinction.

The last two decades have seen a great deal of interest in the largest Phanerozoic extinction, the end-Permian biotic crisis, and an increased understanding of the patterns and timing of extinction and recovery, the synchronous and rapid perturbation of the global ocean-atmosphere system, and plausible trigger(s) and kill mechanisms (1⇓⇓⇓⇓–6). Attempts to reconcile the patterns and rates of extinction in marine and terrestrial environments has led to some agreement on the nature of severe environmental changes, including increased atmospheric pCO2 and acidification of the oceans, as well as widespread euxinic/anoxic conditions and a sharp spike in sea surface temperature (4, 7⇓⇓⇓⇓–12), and inferentially, kill mechanism(s).

Since 1998, four major U-Pb geochronological studies have attempted to constrain the timing and duration of the extinction (3, 13⇓–15). To better understand the relationship between environmental perturbation and biotic response, accurate and precise age models that integrate geochronology, paleontology, and geochemistry must be developed (8, 11, 16, 17). Recognition of astronomically forced sedimentary cycles (Milankovitch cycles) in late Permian and Triassic sedimentary rocks tuned with available geochronology have been used to refine existing age models of the biotic crisis (18⇓–20). Published estimates of the extinction interval based on radioisotopic dates range from ∼1.5 Mya to approximately <200 ± 100 ka, whereas astrochronological interpretations range from ∼700 ka to as little as ∼10 ka (3, 14, 15, 18, 19). Most recently, Wu et al. (20) used Milankovitch cyclicity and previously published geochronology to constrain the maximum extinction interval at Meishan to 83 ka. Published geochronology is not sufficiently precise to test this estimate.

The geology, biostratigraphy, and chemostratigrahy of the Global Stratotype Section and Point (GSSP) for the Permian-Triassic boundary at Meishan, China, have been previously described in detail (3, 11, 21, 22), and the section contains volcanic ash beds interlayered with fossil-bearing carbonate rocks (Fig. 1 and Fig. S1). In this article, we use the significant progress made in U-Pb geochronology since the acquisition of the data published in Shen et al. (3) (SI Text) and present more precise and accurate dates on zircon crystals isolated from five volcanic layers (beds 22, 25, 28, 33, and 34) that span the main extinction event, the major negative excursion and oscillation in δ13Ccarb, the Permian-Triassic boundary at Meishan as defined by the first appearance datum (FAD) of the conodont, Hindeodus parvus, and the earliest Triassic period (Figs. 1 and 2 and Figs. S1 and S2).

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

Stratigraphy, geochronology, and carbonate carbon isotopic composition for the Permian-Triassic GSSP at Meishan, China. The Permian-Triassic GSSP from late Changshingian to Greisbachian showing weighted mean 206Pb/238U dates from this work adjacent to the stratigraphic column from Cao et al. (11). Datums between dated ash beds are calculated assuming constant sediment accumulation rates. Datum not bracketed by dated beds, such as the δ13Ccarb anomaly above Bed 34–2, is calculated using the sediment accumulation rate derived from the interval between the two stratigraphically closest ash beds. Uncertainty on interpolated dates is calculated using a Monte Carlo simulation, which exploits stratigraphic superposition of dated rocks (30). Uncertainty on durations/differences is added in quadrature from 2σ analytical uncertainty on dated beds.

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

Weighted mean calculated 206Pb/238U dates. Each vertical bar represents a single zircon analysis included in the weighted mean calculation for that sample. The height of each bar is proportional to the 2σ analytical uncertainty. The thin black line through each population of single grains is the weighted mean calculated date. Shaded horizontal bars above and below the weighted mean represent 1σ and 2σ analytical uncertainty. The shaded bar through all populations represents the maximum extinction interval. Light gray analysis is not included in the weighted mean calculation.

New Age Model

We rely on weighted mean 206Pb/238U dates as the best estimate of eruption/depositional ages for these volcanic rocks. For each sample, we determined a minimum of nine dates on single grains of zircon, allowing recognition of outliers due to either incorporation of older zircon or open system behavior, such as Pb loss (Fig. 2, Table 1, and Tables S1 and S2). The individual 206Pb/238U dates and the calculated weighed mean 206Pb/238U dates we present for beds 22, 25, and 28 are distinctly younger (up to 0.2%) and more precise than dates on the same ash beds published in Shen et al. (3) (Table S1 and Fig. S2). We also present a weighted mean 206Pb/238U date on bed 33, which did not yield a reliable date in the previous study (3). The differences in age and precision reported here reflect adoption of major improvements in the way our U-Pb isotopic data are acquired and reduced, including use of the precisely calibrated EARTHTIME 202Pb-205Pb-233U-235U tracer solution, changes in the isotopic compositions of standards used to calibrate the tracer, new error propagation algorithms, and improved data acquisition and reduction techniques (23⇓–25). Application of these improvements, discussed in detail in the SI Text, yields significantly improved accuracy and precision on the weighted mean and interpolated dates (Table S1 and Fig. S2). Uncertainties associated with weighted mean 206Pb/238U dates are reported as ±x/y/z, where x is the analytical (internal) uncertainties and y and z include the systematic uncertainties associated with tracer calibration (0.03%) and 238U decay constant (0.05%), respectively. If calculated dates are to be compared with other U-Pb laboratories not using the EARTHTIME tracer, then ±y should be used for each laboratory. If compared with other chronometers such as Ar-Ar or astrochronology, then ±z should be used.

View this table:
  • View inline
  • View popup
Table 1.

206Pb/238U weighted mean dates for Meishan ash beds, sediment accumulation rates, and calculated datum

The section at Meishan has long been recognized as being highly condensed, implying that calculated sediment accumulation rates may not accurately account for hiatuses between dated ash horizons (3). In agreement with Shen et al. (3), Jin et al. (26), and Wang et al. (27), we define the onset of extinction at the base of bed 25 and the end of the main extinction interval at bed 28. In other sections with higher accumulation rates such as Penglaitan (China) (3) and Gartnerkofel core (Swiss Alps) (28, 29), the extinction appears more abrupt; thus, our duration estimate between bed 25 and bed 28 at Meishan of 61 ± 48 ka is a maximum (Table 1, Fig. 1, and Fig. S1). This estimate is three times shorter than reported by Shen et al. (3) (Figs. S1 and S2) and is more consistent with the recent estimate derived from astrochronology of 83 ka (20).

The new geochronology permits a detailed examination of the relationships between the extinction, the isotopic composition of carbonate carbon, and its rate of change. The carbon isotope record is characterized by a negative shift in composition beginning just above the base of bed 23 (251.999 ± 0.039 Mya), 60 (−17/+56) ka before the beginning of the mass extinction interval, from +3–4‰ toward the lighter values (∼ −1‰) that characterize the earliest Triassic (Fig. 1 and Fig. S1). δ13C(carb) drops off rapidly in the upper 6 cm of bed 24e, from +2 to ∼ −4 ‰ (Fig. 1 and Fig. S1). In many sections that lack detailed paleontology and geochronology, this negative excursion is used to mark the onset of the extinction interval. The negative shift and subsequent rebound has a duration of between 2.1 and 18.8 ka depending on accumulation rate, slightly predating the beginning of the maximum extinction interval. Immediately following the initial large negative excursion, carbonate carbon isotopic composition oscillates (±1–2‰), until ∼1 m above bed 33. Using an accumulation rate derived from interpolating between dated beds 33 and 34, this period of oscillation lasts until 251.572 ± 0.069 Mya, a duration of 427 ± 79 ka. [Uncertainty on interpolated dates is calculated using a Monte Carlo simulation, which exploits stratigraphic superposition of dated rocks (30).] For the remainder of bed 34, ∼5 m of mudstone and micritic limestone, the δ13C(carb) is constant at ∼ −1‰, in contrast to the +3–4‰ that characterizes the preextinction interval (Fig. 1). The δ13C(carb) composition then rises gradually starting at ∼251.5, just below the dated ash within bed 34 and increases to the top of bed 39 where it is interrupted by a sharp, short-lived decrease calculated to have begun ∼251.4 Mya (Fig. 1). Above this perturbation, δ13C(carb) remains at ∼1‰ for the remainder of the Griesbachian. The negative excursion within bed 39 at Meishan was not recognized by Cao et al. (11) or Xie et al. (17) due to sample spacing, although more closely spaced sampling reported in Song et al. (31) recovers it. The second excursion is possibly correlative with one seen in the GK-1 core from the Carnic Alps (32), although this excursion cannot yet be confirmed as a global signal or to be useful in correlation. The total duration of volatility in the carbonate carbon record from the initial negative inflection within bed 23 to the relatively stable positive values in the top of bed 39 is a minimum of 500 ka. Significant changes in lithology above the dated bed suggest that the sediment accumulation rate calculated between beds 32 and 34 is likely not applicable for this interval. As such, the duration represented by this interval of rock is uncertain, and our estimated duration for the entire interval is a minimum (Fig. 1).

Sea surface paleotemperature increases ∼10 °C (∼23–33 °C) over the extinction interval (9, 33), beginning near the base of bed 25 and continuing into the early Triassic (Fig. S1). Sea surface temperatures are estimated to have reached ∼33 °C by bed 28, coinciding with the end of the mass extinction interval, and continued to rise until at least 251.583 ± 0.086 Mya (bed 33) (9). Calcium isotopic composition (δ44/40Ca‰ bulk earth) also varies over the extinction interval, and when coupled with apparent physiological selectivity of the extinction and an absence of reef builders in the early Triassic, these data have been interpreted to support rapid acidification of the surface ocean coincident with the mass extinction (4, 12).

Discussion

The efficacy of many proposed kill mechanisms, such as synchronous sea surface and atmospheric temperature increase, rapid rise in pCO2, and flooding of shelf areas with anoxic and euxinic waters, depends on rate of change and on precisely when they occur relative to the onset of extinction (9, 34, 35). For example, it is crucial to know whether the ∼10 °C increase in sea surface temperature close to the extinction interval slightly predates or postdates the onset of the mass extinction (9, 33) (Fig. S1). More detailed study of the relationship between temperature increase and extinction is needed from less condensed sections than Meishan to evaluate whether temperature leads or lags the extinction and the relationship between temperature rise and changes in the carbonate carbon isotopic record. Using the maximum extinction duration of ∼60 ka, this suggests an ∼1 °C increase per 6,000 y, comparable to the rate and magnitude of the increase at the Paleocene–Eocene Thermal Maximum (PETM) (36) and Pleistocene/Holocene postglacial warming (∼2 °C/5 ka) (37). Tracking with temperature increase is a negative shift in δ44/40Ca, interpreted as resulting in part from acidification of the ocean over this same interval and fluctuations in δ13C(carb), consistent with continued volatility in the carbon cycle after the initial spike toward lighter composition in the top of bed 24e (4, 12) (Fig. 1 and Fig. S1). Thus, in 80 ± 45 ka (base of bed 24e → base of bed 28), there was a short-lived episode of major light carbon addition to the oceans, a major mass extinction, a rapid, dramatic increase in marine and terrestrial temperature, isotopic and biological evidence for ocean acidification, and a major shift in δ13C(carb) composition from an average of approximately +3.5‰ in the late Permian to approximately −1‰ in the earliest Triassic, until 251.502 ± 0.056 Mya. The observation that the terrestrial and marine extinctions occurred simultaneously (3) and the suggestion that the sequence of extinction can be correlated with metabolic rate (1, 4) support the conclusion that rapidly elevated atmospheric pCO2 and ocean/atmosphere temperatures drove a combination of kill mechanisms. However, whether the temperature increase leads, is synchronous with, or postdates the extinction is not yet known with sufficient precision. Although recovery and diversification in Ammonoids began in the earliest Triassic, the broad effects of this short-lived extinction or ecological restructuring persist for 5–10 My after the main extinction interval, emphasizing the evolutionary irreversibility of the event (38⇓⇓–41).

Many have proposed that the end-Permian extinction was triggered by the eruption/intrusion of the Siberian Traps Large Igneous Province, which is hypothesized to have been of short (∼1–2 Ma) duration, to have occurred at approximately the same time as the extinction, and to have generated the large volume of volatiles via degassing of lavas and sediments required to drive such dramatic atmospheric and biotic response (2, 8, 42⇓⇓⇓–46). The end-Permian extinction event occurred suddenly and rapidly (61 ± 48 ka) in an interval much shorter than current estimates for the total duration of Siberian Traps magmatism, suggesting that, similar to the end-Triassic extinction event, a single pulse of magmatism may be the most critical for triggering dramatic environmental change (43, 47, 48). Current U-Pb and Ar-Ar constraints on the timing and tempo of Siberian Traps magmatism are less precise by an order of magnitude than our new constraints on the extinction. With current estimates, it can only be concluded that magmatism either overlaps with or postdates the extinction (43, 47, 49). Additionally, the potential for bias between chronometers and subtle differences in calculated dates generated by single or multiple laboratories using different U-Pb data acquisition and reduction protocols currently prohibits exploring the full details of a causal relationship.

Payne and Kump (45) and Song et al. (50) hypothesized that the large volatility in the carbon cycle that dominates the interval from the beginning of the Dienarian through the Spathian is distinct from the extinction interval represented at the GSSP and likely represents new injection of light carbon and global warming–driven anoxia related to continued activity of the Siberian Traps Large Igneous Province, ∼1 My after the extinction (Fig. 3). However, neither study had sufficient temporal control on the carbon isotope excursions or the age of Siberian volcanism to further evaluate this hypothesis. Here we demonstrate that upper bed 34 (mid-Griesbachian) is 251.495± 0.064, which predates the second negative excursion in δ13C(carb) at Meishan by ∼100 ka if the sediment accumulation rate between beds 32 and 34 is applied. The large positive oscillation in δ13C(carb) (+6) observed by Payne et al. (51) and Meyer et al. (52) in southern China begins at about the Griesbachian/Dienerian boundary and continues through the Dienerian before swinging to values of ∼ −2‰ near the top of the Smithian (Fig. 3). Existing geochronology on the lower Smithian includes an age of 251.22 ± 0.2 (53, 54) (Fig. 3). If correct, this requires the entire Dienerian and part of the Greisbachian to have been deposited in ∼300 ka. As shown here (see SI Text), use of the recalibrated EARTHTIME tracer and adoption of EARTHTIME protocols may in some cases result in dates that are 200–500 ka younger than those reported before adoption of these methods. Until dates from the Smithian are repeated using latest EARTHTIME protocols and tracer, it is probably unwise to combine/compare data. Nonetheless, we are confident that the large positive-negative oscillations that begin at the Griesbachian/Dienerian boundary are −251 Mya or younger, based on upward extrapolation from our dated ash beds at Meishan (Fig. 3). Thus, it is clear that these anomalies are ∼1 Mya or more younger than the main extinction event and separated from the volatility characterizing this interval by a relatively stable plateau of δ13C(carb) at ∼2‰ from the top of the second excursion in the Griesbachian to the Griesbachian/Dienerian boundary, whereupon the reservoir rises to values of 6‰ by the close of the Dinerian (Fig. 3). Meyer et al. (55) use coupled δ13Corg and δ13Ccarb records from South China to support a causal connection between carbon isotope stabilization and enhanced biotic recovery in Middle Triassic time. Whether postextinction carbon cycle dynamics are being driven by intrinsic (biological) or extrinsic (environmental) forces before final restructuring in the early Anisian (∼247 Mya) remains unclear. Integration of a calibrated carbon isotope record into the middle and late Triassic with an improved age model for the Siberian Traps will be required to evaluate this question.

Fig. 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 3.

Changshingian to Anisian carbonate carbon isotopic value from Meishan, China. Bed thickness, stratigraphic depth, lithology, and bed number from Cao et al. (11). Weighted mean 206Pb/238U dates are shown to the right of the stratigraphic column, and the maximum extinction duration is shaded in gray. Carbonate carbon isotopic composition in dotted gray line (11). Permian and Triassic conodont zones from Ogg (63). Stage/substage names are global standard chronostratigraphic units used by the International Commission on Stratigraphy.

When the end-Permian extinction is compared with other short-lived events such as the end-Triassic and end-Cretaceous extinctions and the PETM, we see in common, a short-lived perturbation of the carbon cycle followed by a rise in atmospheric pCO2 and temperature, evidence for ocean acidification, anoxia, and rapid extinction (10s of thousands of years) (48, 56, 57). Recovery or restructuring (±additional extinction) occurs over an ∼3-Mya timescale for the end-Triassic event and over as much as 5 Mya for the full recovery of marine fauna after the end Cretaceous, whereas full recovery from the end-Permian extinction may have taken as long as 5–10 My (39, 58, 59). A key question is whether the observed sequence is related to a common trigger such as volcanism or whether it less a function of mechanism and more fundamentally related to cascades of multiple feedbacks between intrinsic and extrinsic drivers. For all extinctions, understanding the timescales of extinction, the filling and restructuring of postextinction ecospace, and full recovery in different bathymetric and geographic settings is crucial and may be the key to understanding the truly singular and irreversible nature of the end-Permian event, as well as providing better context for the next millennium. We now have the geochronological tools to explore these feedbacks at the millennial to decamillenial timescales, which will in turn encourage higher-resolution chemostratigraphy to be obtained and allow detailed evaluation of more general models for mass extinction.

Conclusion

Our age model for the end-Permian extinction provides a precise and accurate timeline for the sequence of events at the end of the Permian, including carbon cycle reorganization, the main extinction event, a dramatic increase in global sea surface and atmospheric temperatures, possible ocean acidification, and a framework for exploring the cause and effects of the environmental changes and feedbacks that led to the greatest Phanerozoic mass extinction. The extinction had a duration of 61 ± 48 ka and was preceded by the onset of a rapid reorganization of the carbon cycle, including a rapid negative spike in δ13C(carb) of 3‰ lasting between 2.1 and 18.8 ka and a global shift in δ13C(carb) from approximately +4‰ το −1.5‰, with a duration of 427 ± 79 ka. This record represents a potentially characteristic δ13C(carb) topology for the end-Permian event, which will stimulate refined comparison with other Permian-Triassic sections, although the highly condensed nature of the Meishan section makes comparison with other sections difficult. The timing of the extinction and associated changes in environmental conditions are consistent with a very rapid biological response to environmental change followed by a complex recovery/restructuring period that took some 10 Ma for many species (38⇓⇓–41) and established the ecosystems that would dominate the Mesozoic. Further integration of the extinction timescale with detailed chemostratigraphic, cyclostratigraphic, and paleobiological data should allow many more insights into the dynamics and timing of extinction and restructuring. In addition, it is clear that more and higher precision geochronology from additional stratigraphic sections is needed. We predict that with further work will come the deconvolution of the end-Permian extinction into a cascade of smaller, shorter-lived extinction and recovery events, driven by differences in paleogeography, biology, and environmental degradation. The short-lived nature of the extinction, protracted nature of the recovery, and comparison with other extinction events suggests that environmental conditions preceding the largest of the Phanerozoic mass extinctions must have crossed a critical threshold or “tipping point” from which the biosphere was unable to recover or adapt quickly enough to survive.

Methods

Zircon crystals were separated from bulk samples using a combination of ultrasonic disaggregation and pulverization using a shatterbox, which was followed by magnetic separation, standard heavy-liquid separation, and careful selection of crystals under a microscope. Following thermal annealing at 900 °C for 60 h, each zircon crystal was placed into a 200-μL Teflon microcapsule and leached in 29 M hydrofluoric (HF) inside high-pressure Parr vessels held at 220 °C for 12 h, a procedure modified after the Chemical Abrasion partial-dissolution procedure of Mattinson (60). Grains were then transferred to 3-mL Savillex PFA beakers and rinsed with 16 M HNO3 and 6 M HCl and fluxed in the acid at 80 °C, followed by a 30-min ultrasonic bath. Between acid washes, grains were rinsed with Milli-Q water. Single zircon crystals were loaded with clean water into teflon microcapsules and spiked with the EARTHTIME 202Pb-205Pb-233U-235U (ET2535) tracer solution and dissolved in 29 M HF at 220 °C for 48 h. On dissolution, aliquots were dried down on a hotplate and redissolved under pressure in 6 M HCl overnight at 180 °C. Sample solutions were then dried and redissolved at 80 °C in 3 N HCl. Lead and U were separated using a miniaturized HCl-based ion-exchange chromatography procedure modified from Krogh (61) with 40-μL columns of AG1 × 8 resin. Eluted U and Pb were dried down with H3PO4 and then redissolved in a silica gel emitter solution (62) and loaded onto a zone-refined, outgassed Re filament. Measurement of isotopic ratios was done on an IsotopX ×62 multiple-collector thermal ionization mass spectrometer. Isotopes of Pb were measured by peak-hopping on a single Daly/photomultiplier detector system. Isotopes of U were measured as UO2 on Faraday detectors in static mode. Isotope ratios of U and Pb were corrected for mass fractionation during analysis using the ET2535 tracer solution. Data acquisition and reduction were done using the Tripoli and U-Pb Redux software packages (24, 25).

Acknowledgments

We thank Dan Rothman for discussions and two anonymous reviewers for comments. This work was supported by National Science Foundation Continental Dynamics Grant EAR-0807475 (to S.B.) and Instrumentation and Facilities EAR-0931839 (to S.B.). Additional support was provided from National Aeronautics and Space Administration Astrobiology Grant NNA08CN84A (to S.B.) and National Natural Science Foundation of China Grant 41290260 (to S.-z.S.). This work benefitted from the efforts of the EARTHTIME U-Pb community.

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: sburgess{at}mit.edu.
  • Author contributions: S.D.B. performed research; S.B. and S.-z.S. collected samples; S.D.B. did the isotopic analyses; S.B. and S.-z.S. contributed to writing and data interpretation; and S.D.B. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • See Commentary on page 3203.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1317692111/-/DCSupplemental.

References

  1. ↵
    1. Knoll AH,
    2. Bambach RK,
    3. Payne JL,
    4. Pruss S,
    5. Fischer WW
    (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256(3-4):295–313.
    .
    OpenUrlCrossRef
  2. ↵
    1. Wignall PB
    (2007) The end-Permian mass extinction: How bad did it get? Geobiology 5(4):303–309.
    .
    OpenUrlCrossRef
  3. ↵
    1. Shen SZ,
    2. et al.
    (2011) Calibrating the end-Permian mass extinction. Science 334(6061):1367–1372.
    .
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Payne JL,
    2. Clapham ME
    (2012) End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century? Annu Rev Earth Planet Sci 40:89–111.
    .
    OpenUrlCrossRef
  5. ↵
    1. Erwin DH
    (1998) The end and the beginning: Recoveries from mass extinctions. Trends Ecol Evol 13(9):344–349.
    .
    OpenUrlCrossRefPubMed
  6. ↵
    1. Erwin DH
    (2006) Extinction: How Life on Earth Nearly Ended 250 Million Years Ago (Princeton Univ Press, Princeton).
    .
  7. ↵
    1. Gattuso JP,
    2. Hansson L
    1. Knoll AH,
    2. Fischer WW
    (2011) Skeletons and ocean chemistry: The long view. Ocean Acidification, eds Gattuso JP, Hansson L (Oxford University Press, New York), pp 67–82.
    .
  8. ↵
    1. Brand U,
    2. et al.
    (2012) The end‐Permian mass extinction: A rapid volcanic CO2 and CH4‐climatic catastrophe. Chem Geol 322-323:121–144.
    .
    OpenUrl
  9. ↵
    1. Joachimski MM,
    2. et al.
    (2012) Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40:195–198.
    .
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Georgiev S,
    2. et al.
    (2011) Hot acidic Late Permian seas stifle life in record time. Earth Planet Sci Lett 310(3-4):389–400.
    .
    OpenUrlCrossRef
  11. ↵
    1. Cao C,
    2. et al.
    (2009) Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett 281(3-4):188–201.
    .
    OpenUrlCrossRef
  12. ↵
    1. Hinojosa JL,
    2. et al.
    (2012) Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Spec Pap Geol Soc Am 40(8):743–746.
    .
    OpenUrl
  13. ↵
    1. Bowring SA,
    2. Erwin DH,
    3. Davidek K,
    4. Wang W,
    5. Jin MW,
    6. Martin YG
    (1998) U/Pb zircon geochronology and tempo of the end-permian mass extinction. Science 280(5366):1039–1045.
    .
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Mundil R,
    2. et al.
    (2001) Timing of the Permian–Triassic biotic crisis: Implications from new zircon U/Pb age data (and their limitations). Earth Planet Sci Lett 187(1-2):131–145.
    .
    OpenUrlCrossRef
  15. ↵
    1. Mundil R,
    2. Ludwig KR,
    3. Metcalfe I,
    4. Renne PR
    (2004) Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305(5691):1760–1763.
    .
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Twitchett RJ,
    2. Looy CV,
    3. Morante R,
    4. Visscher H,
    5. Wignall PB
    (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29(4):351–354.
    .
  17. ↵
    1. Xie S,
    2. et al.
    (2007) Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis. Spec Pap Geol Soc Am 35(12):1083–1086.
    .
    OpenUrl
  18. ↵
    1. Huang C,
    2. Tong J,
    3. Hinnov L,
    4. Chen ZQ
    (2011) Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian-Triassic boundary interval. Geology 39(8):779–782.
    .
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Rampino MR,
    2. Kaiho K
    (2012) Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian-Triassic boundary interval. Geology Forum 40(5):e267.
    .
  20. ↵
    1. Wu H,
    2. et al.
    (2013) Time-calibrated Milankovitch cycles for the late Permian. Nat Commun 4:2452.
    .
    OpenUrlPubMed
  21. ↵
    1. Wang Y,
    2. et al.
    (2013) Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40(1):113–129.
    .
  22. ↵
    1. Jin YG,
    2. et al.
    (2006) The global boundary stratotype section and point (GSSP) for the base of Changhsingian stage (upper Permian). Episodes 29(4):175–182.
    .
    OpenUrl
  23. ↵
    1. Condon DJ,
    2. McLean N,
    3. Noble SR,
    4. Bowring SA
    (2010) Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochim Cosmochim Acta 74(24):7127–7143.
    .
    OpenUrlCrossRef
  24. ↵
    1. McLean N,
    2. Bowring J,
    3. Bowring S
    (2011) An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochem Geophys Geosyst 12(6):1–26.
    .
    OpenUrl
  25. ↵
    1. Bowring JF,
    2. McLean NM,
    3. Bowring SA
    (2011) Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux. Geochem Geophys Geosyst 12(6):1–19.
    .
    OpenUrl
  26. ↵
    1. Jin YG,
    2. et al.
    (2000) Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289(5478):432–436.
    .
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Wang Y,
    2. et al.
    (2013) Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40(1):113–129.
    .
    OpenUrl
  28. ↵
    1. Rampino MR,
    2. Prokoph A,
    3. Adler A
    (2000) Tempo of the end-Permian event: High-resolution cyclostratigraphy at the Permian-Triassic boundary. Geology 28(7):643–646.
    .
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Gorjan P,
    2. Kaiho K,
    3. Chen ZQ
    (2007) A carbon-isotopic study of an end-Permian mass-extinction horizon, Bulla, northern Italy: A negative δ 13C shift prior to the marine extinction. Terra Nova 244(3-4):483–492.
    .
    OpenUrl
  30. ↵
    1. Guex J,
    2. et al.
    (2008) Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Palaeogeogr Palaeoclimatol Palaeoecol 267(1-2):266–275.
    .
    OpenUrl
  31. ↵
    1. Song H,
    2. et al.
    (2013) Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism. Global Planet Change 105:7–20.
    .
    OpenUrlCrossRef
  32. ↵
    1. Korte C,
    2. et al.
    (2004) Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. Int J Earth Sci 93(4):565–581.
    .
    OpenUrl
  33. ↵
    1. Sun Y,
    2. et al.
    (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338(6105):366–370.
    .
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Kiehl JT,
    2. Shields CA
    (2005) Climate simulation of the latest Permian: Implications for mass extinction. Geology 33(9):757.
    .
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Wignall PB,
    2. Twitchett RJ
    (1996) Oceanic anoxia and the end Permian mass extinction. Science 272(5265):1155–1158.
    .
    OpenUrlAbstract
  36. ↵
    1. Zeebe RE,
    2. Zachos JC,
    3. Dickens GR
    (2009) Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene thermal maximum warming. Nat Geosci 2:576–580.
    .
    OpenUrlCrossRef
  37. ↵
    1. Lea DW,
    2. Pak DK,
    3. Spero HJ
    (2000) Climate impact of late quaternary equatorial pacific sea surface temperature variations. Science 289(5485):1719–1724.
    .
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Payne JL,
    2. et al.
    (2011) Early and middle triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south china: Implications for tempo and mode of biotic recovery from the end-permian mass extinction. Paleobiology 37(3):409–425.
    .
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Chen ZQ,
    2. Benton MJ
    (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383.
    .
    OpenUrlCrossRef
  40. ↵
    1. Song H,
    2. et al.
    (2011) Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39(8):739–742.
    .
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Brayard A,
    2. et al.
    (2009) Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction. Science 325(5944):1118–1121.
    .
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Svensen H,
    2. et al.
    (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277(3-4):490–500.
    .
    OpenUrlCrossRef
  43. ↵
    1. Kamo SL,
    2. et al.
    (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214:75–91.
    .
    OpenUrlCrossRef
  44. ↵
    1. Ganino C,
    2. Arndt NT
    (2009) Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Chem Geol 37:323–326.
    .
    OpenUrlCrossRef
  45. ↵
    1. Payne J,
    2. Kump L
    (2007) Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet Sci Lett 256(1-2):264–277.
    .
    OpenUrlCrossRef
  46. ↵
    1. Renne PR,
    2. Black MT,
    3. Zichao Z,
    4. Richards MA,
    5. Basu AR
    (1995) Synchrony and causal relations between permian-triassic boundary crises and siberian flood volcanism. Science 269(5229):1413–1416.
    .
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Reichow MK,
    2. et al.
    (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet Sci Lett 277(1-2):9–20.
    .
    OpenUrlCrossRef
  48. ↵
    1. Blackburn TJ,
    2. et al.
    (2013) Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340(6135):941–945.
    .
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Ivanov AV,
    2. et al.
    (2013) Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth Sci Rev 122:58–76.
    .
    OpenUrlCrossRef
  50. ↵
    1. Song H,
    2. Wignall PB,
    3. Tong J,
    4. Yin H
    (2013) Two pulses of extinction during the Permian–Triassic crisis. Nat Geosci 6:52–56.
    .
    OpenUrl
  51. ↵
    1. Payne JL,
    2. et al.
    (2004) Large perturbations of the carbon cycle during recovery from the end-permian extinction. Science 305(5683):506–509.
    .
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Meyer KM,
    2. Yu M,
    3. Jost AB,
    4. Kelley BM,
    5. Payne JL
    (2011) δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth Planet Sci Lett 302(3-4):378–384.
    .
    OpenUrlCrossRef
  53. ↵
    1. Galfetti T,
    2. et al.
    (2007) Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35(4):291–294.
    .
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Ovtcharova M,
    2. et al.
    (2006) New Early to Middle Triassic U–Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet Sci Lett 243(3-4):463–475.
    .
    OpenUrlCrossRef
  55. ↵
    1. Meyer KM,
    2. Yu M,
    3. Lehrmann D,
    4. Van de Schootbrugge B,
    5. Payne JL
    (2013) Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records. Earth Planet Sci Lett 361:429–435.
    .
    OpenUrlCrossRef
  56. ↵
    1. Zachos JC,
    2. Dickens GR,
    3. Zeebe RE
    (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451(7176):279–283.
    .
    OpenUrlCrossRefPubMed
  57. ↵
    1. Schulte P,
    2. et al.
    (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327(5970):1214–1218.
    .
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. D'Hondt S
    (2005) Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu Rev Ecol Evol Syst 36:295–317.
    .
    OpenUrlCrossRef
  59. ↵
    1. Ruhl M,
    2. Deenen M,
    3. Abels HA,
    4. Bonis NR
    (2010) Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie's Bay/East Quantoxhead, UK). Earth Planet Sci Lett 295(1-2):262–276.
    .
    OpenUrlCrossRef
  60. ↵
    1. Mattinson JM
    (2005) Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220(1-2):47–66.
    .
    OpenUrlCrossRef
  61. ↵
    1. Krogh TE
    (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37(3):485–494.
    .
    OpenUrlCrossRef
  62. ↵
    1. Gerstenberger H,
    2. Haase G
    (1997) A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem Geol 136(3-4):309–312.
    .
    OpenUrlCrossRef
  63. ↵
    1. Gradstein FM,
    2. Ogg JG,
    3. Schmitz MD,
    4. Ogg G
    1. Ogg JG
    (2012) The Triassic period. The Geologic Time Scale, eds Gradstein FM, Ogg JG, Schmitz MD, Ogg G (Elsevier, New York), pp 681–730.
    .
View Abstract
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
High-precision timeline for Earth’s most severe extinction
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Rapid extinction ends the Permian
Seth D. Burgess, Samuel Bowring, Shu-zhong Shen
Proceedings of the National Academy of Sciences Mar 2014, 111 (9) 3316-3321; DOI: 10.1073/pnas.1317692111

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Rapid extinction ends the Permian
Seth D. Burgess, Samuel Bowring, Shu-zhong Shen
Proceedings of the National Academy of Sciences Mar 2014, 111 (9) 3316-3321; DOI: 10.1073/pnas.1317692111
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

More Articles of This Classification

Physical Sciences

  • Cell contraction induces long-ranged stress stiffening in the extracellular matrix
  • Science and Culture: Wearable tech meets tattoo art in a bid to revolutionize both
  • Local growth rules can maintain metabolically efficient spatial structure throughout growth
Show more

Earth, Atmospheric, and Planetary Sciences

  • Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification
  • Effects of iron on the lattice thermal conductivity of Earth’s deep mantle and implications for mantle dynamics
  • Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model
Show more

Related Content

  • Temporal acuity in deep time
  • Correction for Burgess et al., High-precision timeline for Earth’s most severe extinction
  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary
  • UV-B-induced forest sterility: Implications of ozone shield failure in Earths largest extinction
  • The Permian timescale: an introduction
  • A geomagnetic polarity timescale for the Permian, calibrated to stage boundaries
  • Advances in numerical calibration of the Permian timescale based on radioisotopic geochronology
  • Permian strontium isotope stratigraphy
  • SIMS U-Pb zircon geochronological constraints on upper Ediacaran stratigraphic correlations, South China
  • Thresholds of catastrophe in the Earth system
  • Marine Early Triassic Actinopterygii from Elko County (Nevada, USA): implications for the Smithian equatorial vertebrate eclipse
  • PALEONTOLOGY OF THE BLAAUWATER 67 AND 65 FARMS, SOUTH AFRICA: TESTING THE DAPTOCEPHALUS/LYSTROSAURUS BIOZONE BOUNDARY IN A STRATIGRAPHIC FRAMEWORK
  • The timetable of evolution
  • Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna
  • The Permo-Triassic Gondwana sequence, central Transantarctic Mountains, Antarctica: Zircon geochronology, provenance, and basin evolution
  • High-precision time-space correlation through coupled apatite and zircon tephrochronology: An example from the Permian-Triassic boundary in South China
  • Obliquity-forced climate during the Early Triassic hothouse in China
  • Two LIPs and two Earth-system crises: the impact of the North Atlantic Igneous Province and the Siberian Traps on the Earth-surface carbon cycle
  • Middle Phanerozoic mass extinctions and a tribute to the work of Professor Tony Hallam
  • Marine anoxia and delayed Earth system recovery after the end-Permian extinction
  • Comparative size evolution of marine clades from the Late Permian through Middle Triassic
  • Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction
  • Siberian Traps volcaniclastic rocks and the role of magma-water interactions
  • Flourishing ocean drives the end-Permian marine mass extinction
  • High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction
  • Exploring macroevolution using modern and fossil data
  • Ocean acidification and the Permo-Triassic mass extinction
  • Terrestrial acidification during the end-Permian biosphere crisis?
  • Was the Ediacaran-Cambrian radiation a unique evolutionary event?
  • Temporal acuity and the rate and dynamics of mass extinctions
  • Scopus (173)
  • Google Scholar

Similar Articles

You May Also be Interested in

Project MindScope
Christof Koch describes a large-scale effort to understand how the cerebral cortex functions. March 26, 2018 | Running Time: 5:57
Listen
Past PodcastsSubscribe
PNAS Profile
PNAS Profile of NAS member Michael Strand.
A deformed, intermediate, and non-deformed human skull.
Female migration in Medieval Bavaria
Researchers used genomic analyses to explore demographic processes in the 5th and 6th centuries AD in southern Germany.
Image courtesy of State collection for Anthropology and Paleoanatomy Munich, Germany.)
Recession diagram.
Human health and the Great Recession
A study examines the human health effects of the Great Recession (GR) of 2008.
Image courtesy of Pixabay/Mediamodifier.
Colorful sound waves.
Genetics of synesthesia
Researchers identified genetic variants linked to synesthesia, a rare neurological phenomenon connecting different sensory experiences, in three multigenerational families.
Image courtesy of Pixabay/GDJ.
Proceedings of the National Academy of Sciences: 115 (14)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • New Age Model
    • Discussion
    • Conclusion
    • Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Authors & Info
  • PDF
Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information for

  • Authors
  • Reviewers
  • Press

Feedback    Privacy/Legal

Copyright © 2018 National Academy of Sciences.