IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans

Antonella de Luca1,2, Sanne P. Smeekensb,c,1, Andrea Casagranded, Rossana Iannitit,3,4,5, Kara L. Conwayd, Mark S. Gresnigtb,c,6,7, Jakob Begund, Theo S. Plantingab,c,6, Joa A. Bo Joostenb,c,6, Jos W. M. van der Meerd,c,6, Georgios Chamilosg, Mihai G. Neteae,b,c, Ramnik J. Xavierd,f,2, Charles A. Dinarellob,c,f,2, Luigina Romani3,3, and Frank L. van de Veerdonkbcg,2,3

1Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy; 2Department of Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; 3Nijmegen Institute for Infection, Inflammation, and Immunity, Nijmegen, The Netherlands; 4Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114; 5Department of Internal Medicine, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; 6Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045; and 7Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142

Contributed by Charles A. Dinarello, December 16, 2013 (sent for review October 20, 2013)

Patients with chronic granulomatous disease (CGD) have a mutated NADPH complex resulting in defective production of reactive oxygen species; these patients can develop severe colitis and are highly susceptible to invasive fungal infection. In CGD, defective neutrophils, macrophages, and monocytes, which are linked pathological conditions in CGD that can be restored by IL-1 receptor blockade.

The hyperinflammatory state in CGD is linked to inflammation. Studies in mice and humans reveal that autoinflammation is crucial for IL-1β secretion (14) and processing of pro-IL-1β (15, 16); defects in autoinflammation result in increased secretion of IL-1β. ROS production is commonly believed to be necessary for autoinflammation (17), and mice deficient in autoinflammation (ATG16L1−/−) can develop severe colitis and exhibit increased production of IL-1β (18).

In the present study, we aimed to decipher the link between autoinflammation and autoinflammatory diseases. Blocking the IL-1 receptor (IL-1R) with anakinra (the recombinant form of the naturally occurring IL-1R antagonist) not only limited inflammatory activation but also restored protective autophagy in CGD.

Results

ROS Deficiency Results in Defective Autophagy. The autophagosome-associated protein light chain 3 (LC3) is recruited to phagosomes upon engulfment of bacteria (19). To test whether p40phox, encoding the p40phox subunit of NADPH oxidase, is required for LC3 recruitment to the autophagosomes.

Significance

Chronic granulomatous disease (CGD) has an immunodeficiency component and, in addition, an autoinflammatory component in which autoinflammation is linked and amenable to IL-1 blockade. This study provides a rationale to perform clinical trials to investigate the efficacy of blocking IL-1 in CGD colitis and expands the therapeutic potential of IL-1 antagonists to inflammatory diseases with defective autophagy.

The authors declare no conflict of interest.

1 A.D.L. and S.P.S. contributed equally to this work.
2 To whom correspondence may be addressed. E-mail: cdinarello@mac.com or f.veerdonk@ aig.umcn.nl.
3 R.L. and F.L.v.d.V. share senior authorship.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322831111/-/DCSupplemental.
peritoneal macrophages were isolated from LC3-GFP transgenic and p40\(^{-/-}\) mice crossed with LC3-GFP mice and exposed to adherent and invasive Escherichia coli (AIEC) strain LF82. This Crohn disease-associated strain of \textit{E. coli} has previously been shown to accumulate preferentially in epithelial cells deficient in autophagy (20). LC3-GFP is recruited to phagocytized AIEC within macrophages obtained from WT mice expressing LC3-GFP within 30 min of infection (Fig. 1A and Fig. S1A). However, in p40\(^{-/-}\) mice, there is minimal recruitment of LC3 to internalized bacteria. Quantification of the fraction of internalized bacteria surrounded by LC3-GFP revealed significantly more recruitment in WT compared with p40\(^{-/-}\) macrophages (\(P < 0.001\)) (Fig. 1C). Thus, p40\(^{-/-}\), which is necessary for NADPH-dependent ROS production, is required for LC3 recruitment to engulfed bacteria.

To investigate whether NADPH-dependent ROS in humans is important for LC3 recruitment to the phagosome, we assessed LC3 recruitment to the phagosome in cells isolated from patients with CGD and healthy controls (HCs). The cells were exposed to FITC-labeled \textit{S. aureus}, a prominent pathogen in CGD (5), and were subsequently stained for LC3. The percentage of colocalization of \textit{S. aureus}-FITC with labeled LC3 was determined (Fig. 1B and Fig. S1B). Monocytes from patients with CGD showed significantly less colocalization between LC3 and phagocytized \textit{S. aureus} compared with monocytes from HCs (Fig. 1B). Therefore, the NADPH component p47phox in humans is required for LC3 recruitment upon engulfment of microorganisms.

Defects in Autophagy in p40\(^{-/-}\) Mice and Patients with CGD Result in Increased IL-1\(\beta\) Production

Because autophagy inhibits IL-1\(\beta\) production (15, 16), we assessed whether defective autophagy in ROS-deficient mice is responsible for the increased IL-1\(\beta\) secretion. Bone marrow-derived macrophages (BMMs) in the presence (WT) or absence (p40\(^{-/-}\)) of ROS were stimulated with LPS. As shown in Fig. 1C, LPS treatment induced IL-1\(\beta\) in both WT and p40\(^{-/-}\) BMMs, but p40\(^{-/-}\) BMMs produced nearly sixfold greater levels of the cytokine after stimulation (WT: 61 ± 20 pg/mL and p40\(^{-/-}\): 354 ± 50 pg/mL; \(P < 0.001\)). Blocking autophagy with 3-methyladenine (3MA) pretreatment enhanced LPS-induced IL-1\(\beta\) secretion in both WT and p40\(^{-/-}\) BMMs (WT: 502 ± 100 pg/mL and p40\(^{-/-}\): 828 ± 86 pg/mL; \(P < 0.01\); Fig. 1C). However, the IL-1\(\beta\) production due to inhibition of autophagy by 3MA was increased twofold in p40\(^{-/-}\) BMMs compared with 8.5-fold increased in WT BMMs (Fig. 1C). Next, we investigated whether the same differences are present in patients with CGD. In cells of HCs, autophagy inhibition by 3MA significantly increases LPS-induced IL-1\(\beta\) production (\(P < 0.01\)) (Fig. 1D). In contrast, 3MA did not increase IL-1\(\beta\) secretion in LPS-stimulated peripheral blood mononuclear cells (PBMCs) from patients with CGD (Fig. 1D). Collectively, these data provide evidence that a defect in autophagy is responsible for the increased IL-1\(\beta\) production in patients with CGD.

Blocking IL-1 Is Beneficial in p40\(^{-/-}\) Mice with Colitis

Colitis is a severe manifestation of CGD (21). To investigate whether the deficiency of NADPH-dependent ROS leading to defective autophagy and subsequently increased IL-1\(\beta\) production is relevant in vivo, we evaluated the effects of blocking IL-1 with anakinra in WT and p40\(^{-/-}\) mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. We observed that TNBS-treated p40\(^{-/-}\) mice have significantly more weight loss compared with WT mice (more than 20% loss of their initial body weight on day 5) upon TNBS treatment (Fig. 2A) and display severe inflammatory histopathology (Fig. 2B and Fig. S1A) and inflammatory cytokine responses (Fig. S1B). By contrast, TNBS-treated mice p40\(^{-/-}\) mice regained comparable weight after anakinra treatment, histological examination of colonic tissues and blinded histological scoring of colitis improved, and inflammatory cytokines were significantly lower (Fig. 2A and B and Fig. S1A and B). Thus, anakinra has significant beneficial effects on the outcome of colitis in CGD mice.

Blocking IL-1 Protects p47\(^{-/-}\) Mice from Invasive Aspergillosis

A prominent complication of CGD is the increased susceptibility to pulmonary aspergillosis that is associated with a marked inflammatory response (22). To investigate whether blocking IL-1R would decrease detrimental inflammatory responses in CGD mice with aspergillosis, WT and p40\(^{-/-}\) mice were infected with \textit{Aspergillus fumigatus} and treated with anakinra daily. Mice were monitored for survival, local fungal growth, inflammatory cell recruitment in the bronchoalveolar lavage (BAL), and lung histopathology. In contrast to WT mice, the majority of p40\(^{-/-}\) mice died of the infection (Fig. 2C), were unable to restrict fungal growth in the lung (Fig. 2D), and showed mycotic pneumonia at necropsy with more than half of the pulmonary parenchyma being involved (Fig. S2A), as well as BAL neutrophilia (Fig. S2A, Inset). Anakinra at 10 mg/kg, a dose that is known to be pharmacologically active in mice and mimics human therapeutic dosages (23), significantly increased survival (Fig. 2C), reduced fungal growth (Fig. 2D), decreased IL-1\(\beta\) (Fig. 2E), decreased BAL neutrophilia, decreased levels of MPO (Fig. 2F and Fig. S2A, Inset), and ameliorated lung pathology (Fig. S2A) in p47\(^{-/-}\) mice. The extent of granuloma formation was also significantly reduced by anakinra in CGD mice, as observed by gross pathology. These data demonstrate that anakinra restores immunocompetence in CGD by inhibiting excess neutrophil influx in the lung during infection and restraining fungal growth in p40\(^{-/-}\) mice.

The increased susceptibility of p40\(^{-/-}\) mice to \textit{Aspergillus} infection is associated with failure to activate protective T helper (Th) 1 and regulatory T-cell responses and the occurrence of inflammatory Th17 cells (22). Therefore, we also evaluated...
and increased IFN-β. We transiently transfected RAW 264.7 cells with the EGFP-LC3 plasmid and cultured the macrophages with live swollen conidia (SC) (25). Ralapamin, a known inducer of autophagy, was used as a positive control. Similar to ralapamin, blocking IL-1 dose-dependently increased autophagy in response to SC, as indicated by the increased number of cells with punctate dots containing EGFP-LC3 (Fig. 3C and Fig. S3A); the increased ratio of LC3-II/I (Fig. S3B); and the decreased p62, a ubiquitin-binding protein that is selectively degraded by autophagy (Fig. S3B). Furthermore, blocking IL-1 decreased caspase-1 cleavage in macrophages exposed to Aspergillus SC (Fig. S3C), which is similar to findings from the in vivo experiments. In vivo, blocking IL-1 promoted autophagy in WT and p47phox−/− mice with invasive aspergillosis, as revealed by LC3-I/Ii and p62 immunoblotting (Fig. 3D and E) and steady-state mRNA levels of selective autophagy genes, such as LC3a, LC3b, Becn1, Atg4a, Atg4b, and Atg5 (Fig. S3F). LC3 immunofluorescence in ex vivo purified macrophages from p47phox−/− mice demonstrated that blocking IL-1 restores defective autophagy to Aspergillus SC in CGD (Fig. 3F).

Inhibiting IL-1 Restores Autophagy in Human CGD Cells. We investigated whether inhibition of IL-1 could also restore defective autophagy in human CGD cells. Monocytes isolated from patients with CGD were exposed to Aspergillus SC or spores in the absence or presence of anakinra. Monocytes from patients with CGD show significantly less colocalization between LC3 and phagocytosed Aspergillus spores or SC compared with monocytes isolated from HCs (Fig. 4A). However, when the IL-1R was blocked, the capacity of monocytes from patients with CGD to recruit LC3 upon engulfment of Aspergillus increased to levels comparable to those with LC3 recruitment in monocytes from healthy subjects (Fig. 4B). Thus, blocking the IL-1 activity not only decreases inflammasome activation but restores defective autophagy in murine and human CGD cells.

Improved Clinical Outcome in Patients With CGD Who Had Colitis Treated with Anakinra. Two patients with CGD who had refractory colitis were treated s.c. with anakinra at a dosage of 100 mg daily for 3 mo. The first patient (p47phox−/−) suffered from colitis, with 15–20 loose stools per day; over the 3-mo period with anakinra, there was progressive improvement, with a reduction in frequency to eight to 10 stools per day (Fig. 4C). The second patient (gp91phox−/−), described by van de Veerdonk et al. (26), suffered from perirectal granulomas and abscesses, which were refractory to corticosteroid therapy. During the 3-mo treatment period, the inflammatory parameters improved and the patient showed a good clinical response (Fig. 4C), with resolution of the perirectal abscesses (Fig. 4D). After stopping anakinra, he was disease-free for several months; however, his colitis flared, and anakinra was restarted for a period of 4 wk after which he remained free of symptoms. Notably, although the first patient previously had a history of invasive pulmonary fungal disease with Exophiala dermatitidis and the second patient had multiple severe S. aureus infections (pneumonia and liver abscesses), no infections were observed during treatment with anakinra in these patients with CGD.

Discussion

Using murine and human cells, we demonstrate here that CGD is characterized by defective autophagy resulting in increased release of IL-1β. Although CGD is characterized by increased inflammasome activation (11–13), the present study expands on those findings by demonstrating that blocking IL-1 itself decreased IL-1β secretion and restored defective autophagy in CGD in vitro and in vivo settings. Clinically, we report here the beneficial effects observed in two patients suffering from CGD colitis treated with the IL-1R antagonist anakinra at the approved daily dose of 100 mg.
Autophagy defects resulting in inflammation appear to be a key feature in the pathogenesis of Crohn colitis, a disease that is indistinguishable from CGD colitis (27, 28). Given the suggested role for ROS in autophagy (29, 30), a defective autophagic process responsible for hyperproduction of IL-1β is consistent with NADPH deficiency. Indeed, defective autophagy (25) was observed in macrophages isolated from p40phox−/− mice, mimicking the intestinal inflammation of CGD (31). The defect in autophagy demonstrated here was accompanied by significantly higher secretion of IL-1β in the p40phox−/− macrophages compared with cells from WT mice and by increased secretion of IL-1β in PBMCs isolated from patients with CGD. The human data that defective autophagy contributes to the uncontrolled production of IL-1β in patients with CGD mice with invasive aspergillosis (25), blocking autophagy in WT mice infected with Aspergillus resulted in increased inflammation similar to that of p47phox−/− mice (Fig. S4). Not surprisingly, impaired autophagy results in impaired killing of A. fumigatus (37). Thus, the beneficial effects of anakinra observed in CGD mice with invasive aspergillosis is not only due to the reduction of neutrophil influx and IL-17 production but to the restoration of autophagy, which increases the killing of A. fumigatus by host phagocytes.

With the autophagy defect and the IL-1β hyperproduction being fundamental to the inflammatory features of CGD, the management of the disease appears to have advanced, as shown in the two patients with CGD colitis treated with anakinra. Anakinra dampened the inflammatory reaction and improved the clinical condition in patients with CGD colitis, providing a proof of principle for this therapeutic approach in the management of CGD. Although anti-TNF antibodies improved CGD...
can demonstrate that CGD is a disease associated with abnormal experiments performed in PBMCs from two patients with CGD. * presence of anakinra (10 mg/kg) was administered i.p. daily until the end of the experiment. C-reactive protein (CRP) was measured in serum as a marker of systemic inflammation. Weight changes were recorded daily, and on day 5, mice were killed and tissues were collected for histology, RNA analysis, and cytokine analysis. Colonic sections were stained with H&E, and histology was scored as described elsewhere (45).

Materials and Methods

Ethics Statement. Patients and healthy volunteers gave written consent to participate as approved by the Radboud University Institutional Review Board. Experiments were performed according to the Italian Approved Animal Welfare Assurance A-3143-01. The Subcommittee on Research Animal Care approved the studies in Boston.

Patients and HCs. For cytokine production, PBMCs were isolated and stimulated as previously described (43) from HCs and patients with CGD harboring homozygous mutations in the NCF1 gene (p47Phox). To induce autophagy, cells were incubated for 4 h in Earle’s Balanced Salt Solution starvation medium. After 4 h, IL-1β mRNA was assessed by quantitative RT-PCR. To inhibit autophagy, cells were incubated with 10 mM 3MA for 24 h.

Mice. C57BL6 WT mice were purchased from Jackson Laboratories. Homozygous p47Phox−/− mice on C57BL6 background were purchased (Harlan) and bred under specific pathogen-free conditions. The p40Phox−/− mice were generated previously (31). The p40Phox−/− × LC3-GFP mice were generated by crossing p40 Phox−/− mice with LC3-GFP transgenic mice for two generations (44) (SI Materials and Methods).

In Vitro Production of IL-1β in Mice. Bone marrow was harvested, and cells were cultured for 5 d in M-CSF to drive macrophage differentiation (SI Materials and Methods). On day 6, cells were harvested, counted, replated for 3 h, and incubated with 3MA for 1 h before LPS stimulation.

Mouse Macrophage Infection and Induction of Autophagy. Peritoneal macrophages were harvested and allowed to adhere to the coverslips (SI Materials and Methods).

Human Monocyte Infection and Induction of Autophagy. Monocytes were isolated from PBMCs on anti-CD14-coated beads (MACS Miltenyi) and allowed to adhere to glass coverslips for 1 h, after which they were exposed to pathogens. The coverslips were then washed, fixed in cold methanol, and examined by immunofluorescence (SI Materials and Methods). TBS-induced Colitis. As reported previously, mice received 2.5 mg of TBS and were concomitantly treated i.p. with anakinra (10 mg/kg). Weight changes were recorded daily, and on day 5, mice were killed and tissues were collected for histology, RNA analysis, and cytokine analysis. Colonic sections were stained with H&E, and histology was scored as described elsewhere (45).

Experimental Invasive Pulmonary Aspergillosis in Mice. Details on this model using viable conidia (3530 times 10^5) from the A. fumigatus Af293 strain are described in SI Materials and Methods. Different doses of anakinra were administered i.p. daily until the end of the experiment.

Cell Line Cultures, Transfection, and Autophagy. RAW 264.7 cells were transiently transfected with the EGFP-LC3 plasmid (Addgene) for 48 h and exposed to A. fumigatus SC at a cell/fungus ratio of 1:1 in the absence or presence of different dosages of anakinra or rapamycin as a positive control. LC3 staining, LC3b and p62 blotting, and gene transcription of autophagy genes were used to investigate autophagy (SI Materials and Methods).

Acknowledgments. This study was supported by a Veni grant of the Netherlands Organization for Scientific Research (to F.L.v.d.V.) and a Vici grant (to M.G.N.). It was also supported by the European Union’s Seventh Framework Programme Agreement ERC-2011-AAd-293714 [metabolomics of fungal diseases: a systems biology approach for biomarkers discovery and therapy (FUNMETA)] (to L.R.) and by National Institutes of Health (NIH) Grants DK-83756, AI-62773, DK-60049, and DK-43351 (to R.J.X.) and NIH Grant AI-15614 (to C.A.D.).

Fig. 4. Anakinra restores autophagy in human CGD cells and reduces disease severity in patients with CGD colitis. (A) Percentage of colocalization of LC3 with resting conidia (RC) or SC in PBMCs isolated from two patients with CGD and two HCs. (B) Percentage of colocalization of LC3 with RC or SC in the same PBMCs isolated from two patients with CGD in the absence or presence of anakinra (10 μg/mL). Data are representative of two separate experiments performed in PBMCs from two patients with CGD. *P < 0.05; **P < 0.01. (C) Two patients with CGD (P1 and P2) with active colitis were treated with anakinra at a dosage of 100 mg daily for 3 mo. C-reactive protein (CRP) (milligrams per liter) and the number of stools per day are shown. (D) Patient 2 (P2). The number of perirectal abscesses during a 3-mo period of treatment with anakinra is shown.

colitis, the treatment was accompanied by life-threatening infective complications (38). Anakinra is relatively safe (39), its dependent mechanisms, such as decreased autophagy and increased inflammasome activation, that cannot be viewed as separate pathological conditions in CGD. However, we cannot conclude that IL-1 alone explains the pathology of CGD because, downstream, there is also IL-18. In human heart tissue, IL-1 drives caspase-1 activation and increases active IL-18 (40). Support for this concept that IL-18 plays a role in IL-1-dependent disease can be found in a report using IL-18-deficient mice with inflammasome-dependent high levels of IL-1β (41). The earlier reports demonstrating that IL-1 can induce IL-1β through a positive feed-forward loop (42) explain the observation that IL-1 regulatory systems are dependent on the IL-1R signaling pathway. In this regard, CGD can no longer be regarded as an immunodeficiency but rather as a severe autoinflammatory disorder in which autophagy and inflammasomes are linked and amenable to IL-1 blockade.
Saitoh T, et al. (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-
van de Veerendonk FL, Netea MG, Dinarello CA, van der Meer JW (2011) Akrabin for the
Xavier RJ, Huett A, Rioux JD (2008) Autophagy as an important process in gut ho-
Mahida YR, Wu K, Jewell DP (1989) Enhanced production of interleukin-1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn’s dis-
Huang J, Brummell JH (2009) NADPH oxidases contribute to autophagy regulation.
Scherz-Shouval R, et al. (2007) Reactive oxygen species are essential for autophagy
Elison CD, et al. (2006) Neutrophils from p40phox−/− mice exhibit severe defects in
1927–1937.
Hampe J, et al. (2007) A genome-wide association scan of nonsynonymous SNPs
Parkes M, et al.; Wellcome Trust Case Control Consortium (2007) Sequence variants in
the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s
Plantinga TS, et al. (2011) Crohn’s disease-associated ATG16L1 polymorphism modu-
lates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut
60(9):1229–1235.
Kuijpers T, Lutter R (2012) Inflammation and repeated infections in CGD: Two sides of
Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: An immunologist’s
Kymizii I, et al. (2013) Corticosteroids block autophagy protein recruitment in
Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J
granulomatous disease-related colitis. Inflamm Bowel Dis 16(9):1335.
Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking
Pomeraize BJ, Reznikov LL, Harken AH, Dinarello CA (2001) Inhibition of caspase 1
reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta.
Brydges SD, et al. (2013) Divergence of IL-1, IL-18, and cell death in NLRP3 infla-
van de Veedonk FL, et al. (2009) The macrophage mannose receptor induces IL-17 in
Nakayama KI, et al. (2000) A novel ubiquitin-like family member regulates the
NEDD8 conjugation system and plays roles in ubiquitin-proteasome system and autophagy.
Cell 100(5):597–608.
of yeast Atg8, is localized to autophagosomes. EMBO J 19(14):3859–3871.
Koike S, et al. (2001) Atg8 is a mammalian homolog of yeast Atg8 required for
Nakatogawa K, et al. (2000) LC3, a mammalian homolog of yeast Atg8, is localized to
Nakayama KI, et al. (2000) A novel ubiquitin-like family member regulates the
NEDD8 conjugation system and plays roles in ubiquitin-proteasome system and autophagy.
Cell 100(5):597–608.
of yeast Atg8, is localized to autophagosomes. EMBO J 19(14):3859–3871.
Koike S, et al. (2001) Atg8 is a mammalian homolog of yeast Atg8 required for
Nakatogawa K, et al. (2000) LC3, a mammalian homolog of yeast Atg8, is localized to
Supporting Information

de Luca et al. 10.1073/pnas.1322831111

SI Materials and Methods

Animals. Eight- to 10-wk-old C57BL6 WT mice were purchased from Jackson Laboratories, and breeding pairs of homozygous p47phox−/− mice raised on C57BL6 background were purchased from Harlan and bred under specific-pathogen-free conditions at the breeding facilities of the University of Perugia. Mice were age- and gender-matched for each experiment. The p47phox−/− mice were generated as previously described (1). The p40phox−/−/x light chain 3 (LC3)-GFP mice used for microscopy studies were generated crossing p40phox−/− and LC3-GFP transgenic mice for two generations (2). Mice were maintained on food and water ad libitum in specific pathogen-free facilities at the Massachusetts General Hospital.

In Vitro Production of IL-1β in Mice. Bone marrow was harvested into sterile complete RPMI Plus Glutamax (Gibco; supplemented with 10% FCS and 50 μg/mL gentamicin). Cells were treated with RBC lysing buffer (Sigma) for 7 min at room temperature and passed through a 70-μm filter to obtain a single-cell suspension. Cells were cultured for 5 d (37 °C in 5% CO2) in complete RPMI supplemented with 20 ng/mL recombinant murine M-CSF (Peprotech) to drive macrophage differentiation. Cultures were supplemented with fresh RPMI and M-CSF on day 3 to replenish the cytokine. On day 6, cells were harvested, counted, and replated on 96-well flat-bottom plates. A total of 1 × 105 cells were plated per condition (50 μL per well) and incubated for 3 h at 37 °C in 5% CO2 at which point the macrophages had reattached to the plate. Cells were incubated with 3-methyl adenine (3MA) for 1 h before LPS stimulation. Cells not treated with 3MA were incubated in a similar volume of RPMI and rested for the pretreatment hour. LPS-treated samples were then stimulated with 100 ng/mL LPS (Invivogen) for 24 h at 37 °C in 5% CO2. Supernatants were harvested and frozen at −20 °C before ELISA analysis.

Mouse Macrophage Infection and Induction of Autophagy. Peritoneal macrophages were harvested by performing peritoneal lavage with 6 mL of GIBCO RPMI media (Invitrogen) containing 50 μg/mL gentamicin and applying 1 mL of lavage fluid to coverslips in 12-well plates. After 1 h, peritoneal macrophages had adhered to the coverslips and were washed with media and incubated at 37 °C in 5% CO2. Adherent and invasive Escherichia coli strain LF82 (a gift from A. Darfeuille-Michaud, Inserm/University of Auvergne, Clermont-Ferrand, France; INRA USC 2018) was grown overnight in Luria–Bertani 4919 broth containing 100 μg/mL ampicillin at 37 °C with aeration and were subcultured at a dilution of 1/33 for a further 3 h in Luria–Bertani broth. This culture was then labeled with Alexa Fluor 568 carboxylic acid, succinimidyl ester (Invitrogen) as follows. One milliliter of culture was then labeled with Alexa Fluor 568 carboxylic acid, succinimidyl ester was added to a final concentration of 0.3 mg/mL and incubated at 37 °C for 10 min, washed twice in PBS, further diluted in RPMI medium without antibiotics to yield a multiplicity of infection of 100, and added to the cultured peritoneal macrophages. Infections were allowed to proceed for 15 min, and the cells were washed once in medium containing 100 g/mL gentamicin sulfate and then incubated in fresh high gentamicin medium for a further 30 min. Cells were washed in PBS and then fixed in 4% formalin for 15 min. Cells were permeabilized by incubation in PBS with 0.1% Triton X-100 and 1% BSA for 2 min. To enhance the endogenous GFP signal, cells were then stained with rabbit anti-GFP (Cell Signaling Technologies) and washed repeatedly in PBS. A secondary Alexa Fluor 488-conjugated goat-anti-rabbit antibody was then used, and cells were stained for DNA. Slides were viewed for counting under wide-field fluorescence illumination with a 100× lens (Zeiss Axioplan; Carl Zeiss MicroImaging). The total number of bacteria per cell and the number of LC3-GFP+ bacteria were assessed in randomly chosen fields with at least 50 cells counted in triplicate. The numbers of LC3-GFP+ bacteria were then calculated as a percentage of total bacteria. Significance was assessed using the two-tailed, unequal variance Student t test. Images were obtained using laser-scanning confocal microscopy with a 63× objective lens (Leica SP5; Leica Microsystems).

Human Monocyte Infection and Induction of Autophagy. Staphylococcus aureus (clinical isolate) was heat-killed at 100 °C for 90 min. To FITC-label the bacteria, they were incubated for 30 min at 4 °C on a tube roller in 0.1 M carbonate/bicarbonate buffer and 0.01 mg/mL FITC (Sigma). After labeling, the bacteria were washed three times with PBS to remove unbound FITC. Monocytes from healthy controls and patients with CGD were isolated from peripheral blood mononuclear cells using magnetic bead separation with anti-CD14–coated beads (MACS Miltenyi) according to the protocol provided by the manufacturer. The monocytes were resuspended in RPMI culture medium supplemented with 1% gentamicin, 1% l-glutamine, and 1% pyruvate (Life Technologies). The cells were counted in a Bürker counting chamber, and their number was adjusted to 1 × 106/mL. A total of 2 × 105 monocytes per condition in a final volume of 100 μL were allowed to adhere to glass coverslips (Ø12 mm) for 1 h, after which they were exposed to S. aureus–FITC (2 × 109) at 37 °C for 1 h. After stimulation, the coverslips were washed twice with PBS to remove medium and nonphagocytized bacteria, and cells were fixed on the coverslips for 15 min in 4% paraformaldehyde. Subsequently, the coverslips were washed with PBS, followed by a fixation in ice-cold methanol for 10 min, after which coverslips were stored in PBS at 4 °C until immunofluorescence staining was performed. For immunofluorescence imaging, cells were washed twice with PBS, permeabilized by using 0.1% saponin (Sigma–Aldrich), blocked for 30 min in PBS plus 2% BSA, incubated for 1 h with a mouse monoclonal antibody to LC3 (Nanotools), washed twice in PBS plus 2% BSA, and stained by a secondary Alexa Fluor 555 goat–anti-mouse antibody (Molecular Probes) and TOPRO 3 (Molecular Probes). After the washing steps, slides were mounted in Prolong Gold antifade media (Molecular Probes) and images were acquired using a Leica SP2 RS laser-scanning confocal microscope with an oil-immersion objective (40/1.4 N.A.; Leica) using identical gain settings. The same procedures were performed with monocytes isolated from patients with CGD who had been exposed to Aspergillus spores and swollen conidia (SC) in the presence or absence of 10 μg/mL anakinra.

Experimental Invasive Pulmonary Aspergillosis in Mice. Viable conidia (>95%) from the Aspergillus fumigatus AF293 strain were obtained by growth on Sabouraud dextrose agar (Difco Laboratories) at room temperature. SC were obtained as described by de Luca et al. (3). For infection, mice were anesthetized by i.p. injection of 2.5% avertin (Sigma–Aldrich) before the intranasal instillation of a suspension of 2 × 107 conidia per 20 μL of saline. Mice were monitored for fungal growth (cfu per organ, mean ± SE) and histopathology (periodic acid–Schiff and Gomori staining of lung tissue sections). Bronchoalveolar lavage fluid collection and morphometry were done as described (3). Histology sections
and cytospin preparations were observed using a BX51 microscope (Olympus), and images were captured using a high-resolution DP71 camera (Olympus). Different doses of anakinra were administered i.p. daily until the end of experiment, and controls receive sterile saline.

Cell Line Cultures, Transfection, and Autophagy. RAW 264.7 cells (American Type Culture Collection) were seeded in a 100-mm Petri dish (3.5 × 10⁶) and transfected with the EGFP-LC3 plasmid (Addgene) using ExGen 500 in vitro Transfection Reagent (Fermentas) for 48 h, following the manufacturer’s instructions. Transiently transfected RAW 264.7 cells were exposed to A. fumigatus SC at a cell/fungi ratio of 1:1, 50 μM rapamycin (LC Laboratories), and 20 μg/mL Poly(I:C) (Sigma–Aldrich) in the presence of 10 μg/mL pepstatin A and 10 μg/mL E64-D (both from Sigma–Aldrich) to inhibit autophagosomal degradation by lysosomal enzymes. Cells were incubated for 4 h at 37 °C in 5% CO₂, as described by De Luca et al. (3). Cultures growing on coverslips were observed at a magnification of 100× with the Olympus BX51 fluorescence microscope using an FITC filter. Results are expressed as the number of cells with EGFP-LC3 puncta. An equal amount of cell lysate in 2× Laemmli buffer (Sigma) was probed with rabbit anti-GFP antibody (Abcam) and goat–anti-rabbit–IgG–HRP-conjugated secondary antibody (Sigma–Aldrich) after separation in 12% Tris/glycine SDS gel and transfer to a nitrocellulose membrane. Normalization was performed probing the membrane with mouse-anti-β-tubulin antibody (Sigma–Aldrich) and goat–anti-rabbit–IgG–HRP-conjugated secondary antibody. Chemiluminescence detection was performed with LiteAblotPlus chemiluminescence substrate (Euroclone S.p.A), using the ChemiDocTM XRS+ Imaging system (Bio-Rad Laboratories Srl), and quantification was obtained by densitometry image analysis using Image Lab 3.1.1 software (Bio-Rad). For autophagy on lung cells, purified 1 × 10⁶ alveolar macrophages from naive mice were stimulated on glass slides in 24-multiwell plates with Poly(I:C), Aspergillus SC, and anakinra, as above, for 2 h at 37 °C in 5% CO₂. Cells were incubated with 1:200 diluted anti-LC3 antibody (Cell Signaling Technology) overnight at 4 °C in PBS containing 3% normal BSA, incubated with anti-rabbit–phycoerythrin secondary antibody (Sigma–Aldrich), and fixed for 20 min in PBS containing 4% paraformaldehyde. Images were acquired using the Olympus BX51 fluorescence microscope with a 40× objective and analySIS image processing software (Olympus). DAPI was used to detect nuclei.

ELISA and Real-Time PCR. Human and murine cytokines were measured using commercial ELISA kits (R&D Systems and BD Biosciences). Real-time RT-PCR was performed using the iCycler iQ detection system (Bio-Rad) and SYBR Green chemistry (Finnzymes Oy). Cells were lysed, and total RNA was extracted using an RNeasy Mini Kit (QIAGEN) and reverse-transcribed as described by De Luca et al. (3). Amplification efficiencies were validated and normalized against Gapdh. The thermal profile for SYBR Green real-time PCR was at 95 °C for 3 min, followed by 40 cycles of denaturation for 30 s at 95 °C and an annealing/extension step of 30 s at 60 °C. Each data point was examined for integrity by analysis of the amplification plot. The mRNA-normalized data were expressed as relative cytokine mRNA in treated cells compared with that of unstimulated cells.

Statistical Analyses. The differences between groups were analyzed using the Mann–Whitney U test and the Wilcoxon signed rank test for unpaired and paired data, respectively. Differences were considered statistically significant when P ≤ 0.05. Data are presented as cumulative results of all experiments performed or as representative images (histology and Western blotting), and are given as mean ± SEM.

Fig. S1. C57BL/6 or p47phox−/− mice (four to six per group) received 2.5 mg of 2,4,6-trinitrobenzene sulfonic acid and were concomitantly treated i.p. with anakinra (10 mg/kg) daily until the end of the experiment [5 d postinfection (dpi)]. Controls consisted of mice treated with 50% ethanol. (A) Representative H&E-stained colonic sections at 5 dpi. (Scale bars: 100 μm.) (Magnification: Inset, 100×.) (B) Cytokine production (ELISA) in colon homogenates of mice at 5 dpi. *P < 0.05; **P < 0.01.
C57BL/6 or p47phox−/− mice were infected intranasally with live *A. fumigatus* conidia (six to eight mice per group) and treated i.p. with anakinra (10 mg/kg) daily until the end of the experiment (21 dpi). (A) Lung histopathology [periodic acid–Schiff (PAS) staining and either May–Grunwald Giemsa or Gomori staining (Insets)] at different dpi in *Aspergillus*-infected mice treated with 10 mg/kg of anakinra. (Scale bars: 200 μm.) (Magnification: Insets, 100×.) (Insets) Red arrows in the May–Grunwald Giemsa-stained images indicate intracellular conidia. Cytokine production (ELISA) in lung homogenates (B) and pattern of cytokine gene expression (C) by RT-PCR on total lung cells at 20 dpi. (D) Mpo mRNA expression (by RT-PCR) in the lungs at 7 dpi. In A, numbers refer to the percentage of mononuclear (MNC) or polymorphonuclear (PMN) cells in the bronchoalveolar lavage (BAL). Data are representative of three experiments.

*P < 0.05 (anakinra-treated vs. untreated mice).

de Luca et al. www.pnas.org/cgi/content/short/1322831111
Fig. S3. (A) Fluorescence images of EGFP-LC3-transfected RAW 264.7 cells exposed to A. fumigatus SC alone (None) or in the presence of anakinra (1 or 10 μg/mL) or rapamycin (50 μM) for 4 h. (Magnification: 100×.) Control cells, unexposed/untreated cells. (B) Quantification of LC3b and p62 in cell lysates by immunoblottting. Normalization was performed using β-tubulin (β-tub). Quantification was obtained by densitometry image analysis using Image Lab 3.1.1 software. (C) Cell lysates from EGFP-LC3-transfected RAW 264.7 cells stimulated as in A were subjected to immunoprecipitation with antibody to Casp-1 (normalized to β-tubulin). (D) Autophagy gene expression by RT-PCR in lungs of naive, infected untreated (None), or anakinra (10 mg/kg-treated mice at 7 dpi). Results are representative of three experiments. *P < 0.05; **P < 0.01.
Blocking autophagy increases inflammasome-dependent inflammation in C57BL/6 mice. (A) Lung histopathology (PAS staining) of mice intranasally infected with live A. fumigatus conidia (six to eight mice per group) and treated i.p. with saline (none), chloroquine (15 mg/kg), or 3MA (24 mg/kg) from the day of the infection until the end of the experiment (1 wk later). (Scale bars: 200 μm.) (B) Cleaved forms of Casp-1 in the lungs at 7 dpi were analyzed using antibodies that identify both the full-length proform and cleaved form, and were normalized to β-tub. (C) Cytokine production (ELISA) in lung homogenates at 7 dpi. Results are representative of two experiments. *P < 0.05.