Simulation of the isotropic EXAFS spectra for the S_2 and S_3 structures of the oxygen evolving complex in photosystem II

Xichen Lia, Per E. M. Siegbahnb,1, and Ulf Rydec

aCollege of Chemistry, Beijing Normal University, 100875 Beijing, China; bDepartment of Organic Chemistry, Arhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden; and cDepartment of Theoretical Chemistry, Chemical Center, Lund University, S-22100 Lund, Sweden

Edited by Arieh Warshel, University of Southern California, Los Angeles, CA, and approved February 20, 2015 (received for review November 18, 2014)

Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O–O bond formation. For the intermediate S_2 and S_3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions concerning what happens in the S_2–S_3 transition. Analyses of extended X-ray adsorption fine structure (EXAFS) experiments have indicated relatively large structural changes in this transition, with changes of distances sometimes larger than 0.3 Å and a change of topology. In contrast, our previous density functional theory (DFT(B3LYP)) calculations on a cluster model showed very small changes, less than 0.1 Å. It is here found that the DFT structures are also consistent with the EXAFS spectra for the S_2 and S_3 states within normal errors of DFT. The analysis suggests that there are severe problems in interpreting EXAFS spectra for these complicated systems.

water oxidation | density functional theory | S-state structures | EXAFS refinement

The knowledge of the different steps of water oxidation in photosystem II has increased rapidly the past years. After the first low-resolution X-ray structures appeared ~10 y ago (1–3), quantum chemical studies using density functional theory (DFT) have played a major role for obtaining a mechanistic understanding. First, an O–O bond formation mechanism was suggested in 2006 (4) in which a terminally bound oxyl radical in the center of the oxygen evolving complex (OEC) was attacked by a manganese-bridging oxo group. Second, an improved structure was suggested in which, most importantly, the outer manganese was placed differently from where it was placed in the previous X-ray structures (5). This position led to an open space in the center of the OEC, which is critical for allowing the low-barrier O–O bond formation suggested earlier (4).

In 2011, a major experimental breakthrough occurred when the first high-resolution X-ray structure at 1.9 Å was presented by Umema et al. (6), which essentially confirmed the quantum chemical structure of the OEC. The main difference was that Asp170 was found to bind in a bridging mode between the terminal manganese and calcium instead of only terminally to the manganese as in the quantum chemical structure. The rest of the structure is very similar, including the critical positions of the outer manganese and the oxo groups, and the ligand connections. A minor problem with the X-ray structure is that it is most probably reduced by X-ray radiation (7–9), indicating that it is unlikely to be in the S_1 state as claimed. More recently, spectroscopic studies have played a major role by confirming the most important aspects of the quantum chemical suggestions. On the basis of the new X-ray structure and old DFT(B3LYP) structure (5), using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and DFT, a detailed structure of the OEC in the S_2 state was reached (10) that agrees almost perfectly with a structure obtained independently by a DFT(B3LYP) energy minimization (11, 12) (Fig. 1). The positions of the oxo groups and the protonation states, including which ligands are water and which are hydroxides, agree, along with which manganese are Mn(III) and which are Mn(IV) at that stage. Also, the DFT(B3LYP) structure from 2009, before the high-resolution structure, is very similar (13). Two years ago, the substrate oxygen positions were suggested for S_1 using a W-band 17O ELDOR-detected NMR spectroscopy (14). The position for the slowly exchanging substrate agrees with the one suggested by the DFT studies (4, 11–13), but there is still a minor possible disagreement for the fast-exchanging substrate. Very recently, a combined experimental and theoretical study by Cox et al. (15) used EPR and 55Mn–EDNMR spectra to suggest an S_1 structure almost identical to the structure suggested by DFT(B3LYP) 2 y ago (16) (Fig. 2), and again very similar to the one from 2009 (13). It was claimed that only this structural model fits the measured spectra.

Even though the major features of water oxidation can now be claimed to be reasonably well understood, additional studies are required to sort out details of the mechanism. A puzzling observation stems from previous extended X-ray adsorption fine structure (EXAFS) studies of the S_2–S_3 transition. In the EXAFS studies by Yachandra and coworkers (17–19), three short distances of 2.7–2.8 Å were found in S_2. In another EXAFS study by Dau and coworkers (20), only two short Mn–Mn distances of 2.7 Å were suggested. Instead, two of the Mn–Mn distances were proposed to be longer than 3.0 Å. For the S_2–S_3 transition, the discrepancies were even more marked. In the studies by Yachandra and coworkers (17–19), it was concluded that there is a lengthening of one of the 2.7–2.8 Å distances to

Significance

A few years ago, spectroscopy confirmed almost every detail of the previous density functional theory (DFT)-suggested structure for the S_2 state of photosynthesis. Earlier this year, the 2-y-old DFT structure for the S_2 state was also confirmed in detail, which means that there is now an answer to what happens in the important S_2–S_3 transition, and there is an opportunity to discuss and evaluate the predictions for this transition made by extended X-ray adsorption fine structure (EXAFS) over the past decades. The present analysis also shows that the EXAFS spectra are consistent with the suggested DFT structures within normal DFT errors. Importantly, there are no major structural changes in this transition.

Author contributions: P.E.M.S. designed research; X.L. and U.R. performed research; X.L., P.E.M.S., and U.R. analyzed data; and P.E.M.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option. 1To whom correspondence should be addressed. Email: ps@physto.se.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1422058112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1422058112

PNAS | March 31, 2015 | vol. 112 | no. 13 | 3979–3984
3.00 Å. In the study by Dau and coworkers (20) it was instead suggested that there is a shortening of one of the distances, which was >3.0 Å, down to 2.7 Å, indicating a formation of an additional Mn–Mn bis-μ-oxo bridge in S2. Perhaps the most noteworthy of the differences of the suggested S2 distances is the one that is 2.80 Å in the Dau and coworkers (20) study, and as long as 3.0 Å in the Yachandra et al. study (17). The suggestions from both these studies give larger deviations to the DFT/spectroscopy structure than are expected from DFT, greater than 0.1 Å on some distances and a topology change. The two different EXAFS interpretations led to different proposals for the water oxidation mechanism. It should in this context be mentioned that for S2 the raw data from the two groups are the same because the latter are very sensitive to the metal distances. Therefore, an EXAFS spectrum calculated directly on a DFT structure will be poor, and a direct comparison of DFT and EXAFS distances will also show extensive deviations. Instead, it is better to perform a combined EXAFS/DFT refinement of the EXAFS spectrum, in which the EXAFS raw data (not only the EXAFS distances) are used as a restraint in the DFT geometry optimization (22–24). Thereby, DFT will determine the general structure of the complex, whereas the EXAFS data will determine the detailed distances involving the metals. Such calculations are presented in this study for the S2 and S3 states, for a large DFT model used previously (11, 12), and also for a much smaller model. The results are compared with the two different experimental EXAFS analyses. The main purpose of the present study is to investigate whether the discrepancies to experiments for the computational model, concerning the structural changes in S2 to S3, really indicate significant differences in the structures or if they are mainly due to minor differences in bond lengths and technical differences in how the spectra are analyzed. The present study agrees with earlier ones (25, 26) in that a major problem of interpreting EXAFS spectra of complicated molecules is that it is possible to fit several different structures to the same spectrum.

It should finally be emphasized that a comparison with other theoretical and experimental work is not part of the purpose of the present paper, which is instead focused on EXAFS results. However, other theoretical work on water oxidation in photosystem II has been discussed in detail in recent reviews (12, 27, 28).

Methods and Models

In previous studies where the present starting structures were obtained, the DFT method used was the hybrid functional B3LYP (29) with the lcao* basis set. For the present EXAFS refinement analysis, the nonhybrid functional BP86 (30) has been used instead for technical reasons. The structures were therefore first reoptimized with this functional using a def2-SV(P) basis set. BP86 is known to give structures of similar quality as B3LYP, and the structural changes were indeed small. It has previously been emphasized that for the present system, B3LYP gives much better energetics than BP86 (31). However, the comparison made concerned relative energies for different structures, whereas in the present study the energy differences entering the fitting procedure concern points in the same local minima. Because the equilibrium geometries are very similar using B3LYP and BP86, these energy differences should also be very similar. The cluster-type modeling of the active site was used (28). The details, which are the same as used in previous studies (12), are described in SI Appendix.

The DFT/EXAFS refinements were performed with the ComQum-EXAFS software (23, 24). This method is a combination of QM geometry optimization and an EXAFS structure refinement, and is the same used in previous studies (22–24). Technical details are provided in SI Appendix.
Results

The results from the present optimizations and refinements for the S$_2$ and S$_3$ states are given in Table 1, where the results from the experimental EXAFS analyses are also shown. For the S$_1$ states, results for two topologically different structures are given (Fig. 3), the first ones for the energetically optimal structure with the central oxo group closer to the outer manganese Mn$_4$, and the second for a local minimum where this oxo group is closer to Mn$_1$. These two types of structures have been known to be nearly degenerate (“outer” oxo preferred) for the S$_2$ state (13), and recently they have been shown to correspond to the two states observed by EPR (32). The refined S$_2$ spectrum for the outer oxo position is shown in Fig. 4 together with the one for the S$_3$ state. The refined spectra are superimposed in SI Appendix, Fig. S2. The spectrum for the “inner” oxo position is shown in SI Appendix, Fig. S3. The optimized distances for the S$_2$ state from the previous study (12) using the large model were Mn$_1$–Mn$_2$ = 2.83 Å, Mn$_2$–Mn$_3$ = 2.80 Å, Mn$_3$–Mn$_4$ = 2.74 Å, and Mn$_1$–Mn$_3$ = 2.81 Å. These results were obtained using B3LYP with the lacyt$_p$ basis set. For the present study, a reoptimization using BP86 was done. The differences to the B3LYP results are very small (0.01–0.04 Å), with the BP86 results being Mn$_1$–Mn$_2$ = 2.87 Å, Mn$_2$–Mn$_3$ = 2.81 Å, Mn$_3$–Mn$_4$ = 2.77 Å, and Mn$_1$–Mn$_3$ = 2.84 Å. The calculated results compare very well with the EXAFS analysis by Yachandra and coworkers (17), where the distances were suggested to be two of 2.73 Å, one of 2.82 Å, and one of 3.30 Å. It should be noted that the EXAFS analysis could not distinguish between the different Mn–Mn distances. In the more recent study, the results of the analysis are similar with three distances of 2.7 Å and one with 3.2 Å (21). As usual, the DFT(B3LYP) study, the results of the analysis are similar with three distances between the different Mn

The DFT/EXAFS refinement leads to the expected shortening of the three short Mn–Mn distances. The refined results are Mn$_1$–Mn$_2$ = 2.83 Å, Mn$_2$–Mn$_3$ = 2.74 Å, Mn$_3$–Mn$_4$ = 2.68 Å, and Mn$_1$–Mn$_3$ = 3.62 Å. The three short distances are now in even better agreement with the analysis by Yachandra et al. For the long Mn–Mn distance, the refined distance is slightly longer than the experimental one, but this cannot be regarded as a serious difference because this distance is extremely sensitive to details in the models used in the calculations.

Turning to the results for the S$_3$ state, the B3LYP distances for the energetically optimal outer position of the oxo group are Mn$_1$–Mn$_2$ = 2.84 Å, Mn$_2$–Mn$_3$ = 2.81 Å, Mn$_3$–Mn$_4$ = 2.76 Å, and Mn$_1$–Mn$_3$ = 3.55 Å. The differences to the short S$_2$ distances are +0.01 Å, +0.01 Å, and +0.02 Å, respectively. The similarity of these Mn–Mn distances to the ones for the S$_2$ state is surprising from two aspects. First, both EXAFS studies suggest much larger changes of these Mn–Mn distances. Second, because Mn$_1$ is oxidized from Mn(III) to Mn(IV) in this transition, there is a loss of a Jahn–Teller axis, which leads to a significant shortening of a Mn–O bond along this axis by as much as 0.6 Å, from 2.4 to 1.8 Å, though this does not seem to affect the Mn–Mn distances. The reoptimized BP86 distances show the same tendency with Mn$_1$–Mn$_2$ = 2.88 Å, Mn$_2$–Mn$_3$ = 2.82 Å, Mn$_3$–Mn$_4$ = 2.79 Å, and Mn$_1$–Mn$_3$ = 3.53 Å. The differences to the short S$_2$ distances are +0.01 Å, +0.01 Å, and +0.02 Å, respectively, the same differences as for B3LYP. The DFT/EXAFS refinement changes the picture somewhat, with distances of Mn$_1$–Mn$_2$ = 2.74 Å, Mn$_2$–Mn$_3$ = 2.73 Å, Mn$_3$–Mn$_4$ = 2.81 Å, and Mn$_1$–Mn$_3$ = 3.78 Å, leading to differences of −0.09 Å, −0.01 Å, and +0.13 Å, respectively, compared with the S$_2$ distances, instead indicating two notable changes of the short Mn–Mn distances. An even larger difference is found for the long distance after the refinement, from 3.62 to 3.78 Å. However, in this context the long distance is much more sensitive to details of the structures.

The EXAFS analysis by Yachandra and coworkers (17) led to suggested distances for the S$_3$ state of 2.73 Å, 2.80 Å, 3.00 Å, and 3.30 Å. There is one rather large difference to the DFT(B3LYP) results and this is the 3.00 Å distance, which is only 2.81 Å using DFT/EXAFS. As mentioned previously, DFT(B3LYP) normally overestimates distances, so this would be a surprising difference. In the EXAFS analysis by Dau and coworkers, the suggested distances are two of 2.73 Å, one of 2.77 Å, and one larger than 3.00 Å. Notably, the longest of the short distances is only 2.77 Å in comparison with 3.00 Å in the analysis by Yachandra et al. However, the results of the Dau and coworkers analysis are well in line with the DFT results. Again, the EXAFS raw data from the two experimental studies is different for the S$_3$ state, and the raw data from Dau and coworkers was used here. In the recent reanalysis by the Yachandra group, two alternatives were given, one where all four distances are short, and one where one distance is longer (21). For the first of these suggestions there is thus a discrepancy to the present analysis; in the second one there is a discrepancy concerning which distance is the long one (see below).

From the above, it can be concluded that the agreement between the DFT(B3LYP) and EXAFS results are quite good compared with the Yachandra and coworkers (17) analysis for the S$_2$ state. For the S$_3$ state, the agreement is quite good compared with the Dau and coworkers analysis. For the earlier analysis of Yachandra and coworkers (17), the agreement is not as good. In the more recent reanalysis, there are still disagreements (see below) (21). Because the two EXAFS analyses differ substantially to each other for each state, the discrepancies between the results of DFT(B3LYP) and EXAFS become more pronounced when the changes of the distances between S$_2$ and S$_3$ are compared. The DFT changes of the short Mn–Mn distances

Table 1. Mn–Mn distances obtained for S$_2$ and S$_3$ using different methods and models

<table>
<thead>
<tr>
<th>Method</th>
<th>Mn1–Mn2</th>
<th>Mn2–Mn3</th>
<th>Mn3–Mn4</th>
<th>Mn1–Mn3</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAFS</td>
<td>2.82</td>
<td>2.73</td>
<td>2.73</td>
<td>3.30</td>
<td>(17)</td>
</tr>
<tr>
<td>EXAFS</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>3.20</td>
<td>(21)</td>
</tr>
<tr>
<td>B3LYP</td>
<td>2.83</td>
<td>2.80</td>
<td>2.74</td>
<td>3.46</td>
<td>(12)</td>
</tr>
<tr>
<td>BP86</td>
<td>2.87</td>
<td>2.81</td>
<td>2.77</td>
<td>3.44</td>
<td></td>
</tr>
<tr>
<td>Refined*</td>
<td>2.83</td>
<td>2.74</td>
<td>2.68</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td>Truncated, refined*</td>
<td>2.74</td>
<td>2.83</td>
<td>2.69</td>
<td>3.60</td>
<td></td>
</tr>
<tr>
<td>S$_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAFS</td>
<td>2.73</td>
<td>2.80</td>
<td>3.00</td>
<td>3.30</td>
<td>(17)</td>
</tr>
<tr>
<td>EXAFS</td>
<td>2.70</td>
<td>2.70</td>
<td>3.2 (2.8)</td>
<td>2.80</td>
<td>(21)</td>
</tr>
<tr>
<td>B3LYP</td>
<td>2.73</td>
<td>2.77</td>
<td>>3.0</td>
<td>>3.0</td>
<td>(20)</td>
</tr>
<tr>
<td>BP86</td>
<td>2.84</td>
<td>2.81</td>
<td>2.76</td>
<td>3.55</td>
<td>(12)</td>
</tr>
<tr>
<td>Refined*</td>
<td>2.74</td>
<td>2.73</td>
<td>2.81</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>Truncated, refined*</td>
<td>2.72</td>
<td>2.79</td>
<td>2.79</td>
<td>3.80</td>
<td></td>
</tr>
</tbody>
</table>

Outer oxo

<table>
<thead>
<tr>
<th>Method</th>
<th>Mn1–Mn2</th>
<th>Mn2–Mn3</th>
<th>Mn3–Mn4</th>
<th>Mn1–Mn3</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>2.84</td>
<td>2.81</td>
<td>2.76</td>
<td>3.55</td>
<td>(12)</td>
</tr>
<tr>
<td>BP86</td>
<td>2.88</td>
<td>2.82</td>
<td>2.79</td>
<td>3.53</td>
<td></td>
</tr>
<tr>
<td>Refined*</td>
<td>2.74</td>
<td>2.73</td>
<td>2.81</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>Truncated, refined*</td>
<td>2.72</td>
<td>2.79</td>
<td>2.79</td>
<td>3.80</td>
<td></td>
</tr>
</tbody>
</table>

Inner oxo

<table>
<thead>
<tr>
<th>Method</th>
<th>Mn1–Mn2</th>
<th>Mn2–Mn3</th>
<th>Mn3–Mn4</th>
<th>Mn1–Mn3</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>2.75</td>
<td>2.78</td>
<td>3.18</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td>BP86</td>
<td>2.78</td>
<td>2.80</td>
<td>3.19</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>Refined*</td>
<td>2.72</td>
<td>2.75</td>
<td>3.15</td>
<td>2.81</td>
<td></td>
</tr>
</tbody>
</table>

* Values are from the analysis of Yachandra and coworkers (17).

* Ref. values are from the analysis of Dau and coworkers (21).

* The values shown in the table are the optimized distances for the S$_2$ state from the previous study (12) using the large model. The optimized distances for the S$_3$ state are obtained using the small model.
are very small, as noted previously. However, it is interesting that the DFT/EXAFS refinement led to somewhat larger changes of +0.13 and −0.09 Å for two distances. The refined results therefore agree better qualitatively with the interpretations of the EXAFS studies, indicating some structural changes in this transition. A conclusion that appears clear is that DFT (B3LYP or BP86) by itself is not accurate enough for predicting the detailed changes in the distances (see below). Two of the distances (Mn1–Mn2 and Mn2–Mn3 in the cube) show the same type of shortening of the (short) distances after refinement as in the case of the S2 state, which is in line with previous experience. However, the third distance (Mn3–Mn4) to the outside manganese shows an unexpected lengthening, which may be a sign of a slightly worse description by DFT(B3LYP) for the S3 state. Errors of 0.1 Å are not unusual for DFT-optimized geometries. The typical accuracy of DFT calculations for metal–ligand distances is ∼0.06 Å, whereas the accuracy of DFT(B3LYP) is lower for nonbonded distances such as Mn–Mn and Mn–Ca (probably 0.1–0.2 Å).

Even though the two experimental EXAFS analyses agree that there should be a significant structural change in the S2–S3 transition, the details of this change, and the consequences of it, are quite different in the two studies. The earlier analysis by Yachandra and coworkers (17) gave one change of more than 0.2 Å (or one of 0.2 and one of 0.1 Å). This change, supported by results of earlier and later XANES spectra (33), led to the conclusion that an oxygen rather than a manganese is oxidized in this transition, which strongly affected the suggested O–O bond formation mechanism (34, 35). The conclusion from the XANES spectra has been questioned experimentally (36), and also recently on the basis of DFT model calculations (37). The Dau and coworkers results, however, gave one change from a distance larger than 3.0 Å down to 2.77 Å; this led to a suggested structural change in this transition with a formation of an additional Mn–Mn bis-μ-oxo bridge in S3 (38). With the present knowledge, both from model calculations and spectroscopy experiments, none of these suggestions are likely to be correct. One conclusion that can be drawn is that it appears to be very difficult to obtain detailed structural information from EXAFS spectra, even if these are accurately measured, of such a complicated multimetal complex like the OEC, without detailed information from similar model complexes where the structures are known. Such information is presently missing.
could stem from either a minor error in DFT or something missing in the chemical model used. Even before the recent spectroscopic verification of also the S_2 state (15) (when the present study was performed), the first possibility appeared to be by far the most likely explanation. One interesting aspect is that in this transition a strong hydroxyl bond is introduced from the substrate hydroxyl group bound to Mn1 and an oxo group bridging Mn3–Mn4. The hydrogen bond is very short, only 1.49 Å, and a lengthening effect on the Mn3–Mn4 bond could have been expected, but the DFT(B3LYP)-optimized structure shows only a small shortening of $+0.02\AA$; the EXAFS refinement indicates that it should be larger with $+0.13\AA$. The actual error for the DFT bond distances implied by the refinement is $+0.06\AA$ for one distance and $−0.05\AA$ for the other. DFT errors like these cannot be excluded. At the same time, Mn1 is oxidized, which could implicate a shortening of the Mn1–Mn2 bond distance. Instead, DFT surprisingly shows a small increase by 0.01 Å. The EXAFS refinement shows the expected trend with a shortening of $−0.09\AA$ with individual errors of $+0.00\AA$ and $+0.10\AA$. Again, a DFT error of this size cannot be excluded.

The second alternative to explain the effects on the distances from the DFT/EXAFS refinement would be some sort of error in the model used for the DFT calculations. Because there is a very large degree of consensus between computational modeling and spectroscopic experiments concerning both the S_2 (10) and the S_3 structure (15), an error of this type appears highly unlikely. Another question in that case is what type of defect this could be. An effect from the surrounding, not included in the DFT model, can most likely be ruled out on the basis of previous experience. Inside the model, a protonation of one of the μ-oxo bonds between Mn3 and Mn4 could explain the shortening of this bond distance, but could hardly explain the shortening of the Mn1–Mn2 bond. A protonation of an oxo bond in the S_2 state is unlikely on the basis of the present knowledge of this state. In the S_2–S_3 transition, a water binds to the OEC and a proton from that water could, in principle, protonate one of the oxo bonds, but this would require a lack of proton release in this transition. However, there is convincing experimental evidence that a proton release does occur (38). A protonation of a μ-oxo bond in the S_2–S_3 transition would furthermore complicate O–O bond formation substantially. In all known mechanisms for O–O bond formation, the protonation of the oxo group is not needed. At the stage the oxygen radical is formed, the presence of another protonated group than a substrate should therefore preferably be avoided, because that group could be deprotonated instead.

Another alternative to the present optimal S_1 structure could have been the one where the central oxo group is close to Mn1 (Fig. 3); this has been suggested in one of the alternatives in the recent reanalysis of the EXAFS spectra (21), but this analysis used a definition of the outer structure with a 5-coordinated Mn4 (present numbering) in contrast to the structure here. Also, it can now be added that the inner structure was ruled out by the recent spectroscopic analysis (15). The B3LYP distances (Table 1) with the energetically less optimal inner position for the oxo group are Mn1–Mn2 = 2.75 Å, Mn2–Mn3 = 2.78 Å, Mn3–Mn4 = 3.18 Å, and Mn1–Mn3 = 2.89 Å. Because EXAFS cannot identify which Mn–Mn distance is which, a comparison with the S_2 distances should be made with a rearrangement of the assignments for the bonds. The differences to the short S_2 distances are then $+0.01\AA$, $−0.02\AA$, and $+0.06\AA$, respectively. These changes are again, like for the outer model, smaller than the suggestions made by EXAFS. For the refined distances the corresponding differences are $+0.04\AA$, $+0.01\AA$, and $−0.02\AA$, which thus show even smaller differences to the ones in the S_2 state; this is different from the case of the “outer” oxo where the refined distance changes showed a better correspondence with EXAFS. However, the results for the outer and inner structures show too-small differences between each other to allow any conclusion of which structure should be best, on the basis of the EXAFS analysis. Energetically, the outer minimum is preferred with a margin of 4.9 kcal/mol at the B3LYP level. In line with the excellent agreement obtained so far between the DFT results and spectroscopic experiments, the suggestion based solely on the calculations would therefore be that the outer minimum is the actually preferred one; e.g., it has in this context been shown that the correct order, with a reasonable energy separation, compared with experiments, is obtained by DFT for the corresponding states in S_2 (13, 32). At the BP86 level, the preference for the outer minimum is even larger by another 5 kcal/mol. As discussed, the choice between these minima does not have any major effects on the actual O–O bond formation mechanism (13). The refined spectrum for the inner oxo position is shown in SI Appendix, Fig. S3.

Another comment can be made concerning the present EXAFS analysis. Both the experimental EXAFS spectra show large differences between the S_2 and S_3 states, which was the reason for suggesting a much larger structural change than found both here and in the recent EPR spectroscopic analysis. However, the present analysis shows that it is indeed possible to obtain different EXAFS spectra for two structures with highly similar Mn–Mn distances (Fig. 4). A remaining question is whether the DFT/EXAFS refined distances would have significant effects on the energetics, and thereby the mechanism. To test this possibility, the S_2 and S_3 structures were reoptimized, keeping the short Mn–Mn distances fixed to the values obtained after the refinement; by definition, this is less optimal energetically for DFT, but the difference for S_2 is small, with an energy increase of only 1.3 kcal/mol. The same small difference of 1.3 kcal/mol is found for the inner minimum of S_3. For the outer minimum of S_3, the effect is slightly larger with 2.2 kcal/mol. In line with previous experience, the other detailed differences in the geometries do not matter much. Previously, it has been shown that the choice of basis set for the geometry optimization does not have significant effects on the energetics, even though this could change the distances by even more than the difference between the optimal and refined structures discussed here (39). Finally, the energies were calculated with fixed distances from the different EXAFS studies (17, 20, 21). By this means, the distances to the actual structures are small, in the range 1–2 kcal/mol. The exceptions are when EXAFS has suggested only two, rather than three, short distances, where the energy difference goes up to 10 kcal/mol. For the most recent EXAFS study, the energy differences are also somewhat larger with 4–5 kcal/mol for the outer oxo structures. It is not possible to draw any conclusion from these values, except that the energies are insensitive to the details of the Mn–Mn distances, and these details do not affect the mechanism.

Results for a truncated model (Methods and Models) are also shown in Table 1. In general, the full and the truncated structures are similar. Concerning the changes of the distances from S_2 to S_1, the truncated model gives a shortening (after refinement) of $−0.04\AA$ for Mn2–Mn3, whereas the full model gives $+0.01\AA$. The shortening of the distance to the outer manganese (Mn3–Mn4) is also similar in the two models with $+0.10$ and $+0.13\AA$, respectively.

Conclusions

In the present study, a DFT/EXAFS refinement procedure has been applied to DFT structures for the S_2 and S_1 states, previously presented (12). Previous experimental spectroscopic studies have confirmed the details of the DFT(B3LYP) structure for the S_2 state (10) (Fig. 1). Very recently (after the present study was made), a similar confirmation also exists for the S_3 state (15) (Fig. 2). The oxidation states of the four manganese atoms, the ligation of the amino acids, the identification of oxo,

Li et al.
PNA | March 31, 2015 | vol. 112 | no. 13 | 3983
hydroxide, and water ligands have for both states been confirmed by the experiments. Also, the mechanism for O–O bond formation has been essentially confirmed by experiments (14). With this background it was now of high interest to go back to the analysis of the EXAFS spectra. Over many years, EXAFS studies have been made on the OEC, mainly by two groups reaching rather different conclusions. However, both groups have agreed that there should be a significant structural change in the S2–S3 transition, because the EXAFS spectra for the two states are different. However, the details of this change have been suggested to be quite different. In one of the studies, a major shortening of one Mn–Mn distance by more than 0.2 Å was suggested (17–19), whereas in the other one a major shortening of one distance by at least 0.2 Å was instead suggested (20). In contrast, the DFT(B3LYP) optimizations showed only limited changes of the Mn–Mn distances in this transition (12). The main purpose of the present study was therefore to investigate whether the DFT structures could be considered consistent with the EXAFS spectra. The conclusion from the study is that the DFT structures could be well-fitted to match the spectra keeping the same topological structures and with only minor distortions, within the normal errors of DFT; this also means that it is indeed possible to obtain EXAFS spectra that agree very well with those obtained experimentally, even from structures of the S2 and S3 states that are highly similar. The DFT/EXAFS refinement modified the previous DFT (B3LYP) results somewhat. Instead of the small changes in the S2–S3 transition obtained previously, one Mn–Mn distance was suggested to increase by +0.13 Å, whereas another decreased by −0.09 Å. The most likely explanation for this correction is minor errors in DFT. Errors in metal–metal distances of this magnitude have been noticed several times before, and the energetic consequence of these errors is minor. Defects in the chemical model used are considered much less likely, in particular after the recent spectroscopic verification of also the S3 state; this provides further support for the previously suggested O–O bond formation mechanism, with an attack by an oxyl radical, bound to Mn1, on a μ-oxo-ligand bound between Mn3 and Mn4 (4, 12, 13).

ACKNOWLEDGMENTS. We thank the Swedish National Infrastructure for Computing for providing computer time. This work was generously supported by the Knut and Alice Wallenberg Foundation and by grants from the Swedish Research Council. X.L. acknowledges support from Beijing Normal University (Grant 2014NT10) and National Science Foundation of China (Grant 21131003).

Materials included in the supporting information:

- **Methods and models**

- **Figure S1.** The previously optimized structure for the S2-state (Siegbahn PEM (2013) Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O2 release. Biochim Biophys Acta, Bioenergetics 1827: 1003-1019.).

- **Figure S2.** The refined EXAFS spectra for the S2- and S3- states superimposed.

- **Figure S3.** Refined EXAFS spectrum for the S3-state with the central oxo close to manganese Mn1, the “inner” oxo position.

- **Coordinates (corresponding figures are also shown):**
 - S2 optimized at BP86/def2-SV(P)
 - S2 refined at BP86/def2-SV(P)/EXAFS
 - S3-outer optimized at BP86/def2-SV(P)
 - S3-outer refined at BP86/def2-SV(P)/EXAFS
 - S3-inner optimized at BP86/def2-SV(P)
 - S3-inner refined at BP86/def2-SV(P)/EXAFS
 - S2 truncated and optimized at BP86/def2-SV(P)
 - S2 truncated and refined at BP86/def2-SV(P)/EXAFS
 - S3-outer truncated and optimized at BP86/def2-SV(P)
 - S3-outer truncated and refined at BP86/def2-SV(P)/EXAFS
 - S3-inner truncated and optimized at BP86/def2-SV(P)
 - S3-inner truncated and refined at BP86/def2-SV(P)/EXAFS

Sample files of how to compute isotropic EXAFS in the present manuscript are available upon request.
Methods and models.

The cluster type modeling of the active site was used. This implies fixing three coordinates along the backbone of each amino acid. For the surrounding enzyme a continuum dielectric model is usually used, but since only the structures are of interest here this was not done in the present study. The main cluster model used in the present study is shown in Fig. S1 for the S2-state. The model includes the amino acids that are directly coordinating to the manganese cluster, Asp170, Glu189, His332, Glu333, Asp342, Ala344 and Glu354. The close-by charged residues Asp61 and Arg357 were also included, as well as His337, which is strongly hydrogen bonding to a manganese bridging oxo-group. In the recent high-resolution X-ray structure, the important region around chloride was resolved, which includes the positively charged Lys317. This region, also containing a set of hydrogen bonding water molecules, was therefore included in the model. As a test of the convergence of the EXAFS analysis, a minimum cluster model was also used. In that model only the ligands directly binding to the OEC were kept, see above. Each amino acid was furthermore truncated with just a methyl group outside the active part of the side chain. Aspartates and glutamates were thus represented by acetates, and histidine by methyl-imidazole. No atoms were kept fixed in this model. In all structures the consensus oxidation states were used, with all Mn(IV) for S3 and one Mn(III) in S2. Ferromagnetic coupling was used throughout since for the present discussion, different spin-couplings between the metal atoms give too small differences to be relevant in the present context (1).

The EXAFS/QM refinements were performed with the ComQum-EXAFS software (2, 3). This method is a combination of a quantum mechanical (QM) geometry optimization and an EXAFS structure refinement. It employs an energy function that is the sum of the standard QM energy (E_{QM}) and an EXAFS pseudo-energy (E_{EXAFS}), in the form of the EXAFS χ^2 “goodness-of-fit” parameter:

$$E_{EXAFS/QM} = E_{QM} + \omega_{EXAFS}E_{EXAFS}$$ \hspace{1cm} 1

Since the two energies have different units (energy units for E_{QM} but unit-less for
A weighting factor is needed (2). It determines the relative importance of the two terms. χ^2 was calculated in R-space (by IFEFFIT (4)), following the equation:

$$\chi^2 = \sum_{i=1}^{N} (\exp(i) - \text{calc}(i))^2$$

where N equals $(R_{\text{max}} - R_{\text{min}}) / \text{StepSize}$. The interval R_{min} to R_{max} was divided into N equally spaced points. $R_{\text{min}} = 1.0 \, \text{Å}$, $R_{\text{max}} = 5.0 \, \text{Å}$, and the spacing between the points (StepSize) was 0.03 Å. Considering that the EXAFS distances normally have a better accuracy (0.02 Å) than the QM distances (0.06 Å), the weight factor ω_{EXAFS} is increased until χ^2 no longer decreases and is stable for about 100 cycles of refinement (2) (typically $\omega_{\text{EXAFS}} = 10^4 - 10^6$). Gradients are obtained by differentiation of equation 1. In practice, analytical gradients are calculated for E_{QM}, whereas the EXAFS forces are obtained by numerical differentiation of the EXAFS energies, using a step length of $10^{-6} \, \text{Å}$ (2) for the four Mn ions, the Ca ion, the bridging oxo atoms, and all the first-sphere ligating atoms along all three Cartesian directions. With this approach, the final structure should be an optimal compromise between the QM and the EXAFS data, ideally letting EXAFS determine the detailed Mn-ligand distances, whereas QM determines the remainder of the structure.

The QM calculations were done using BP86 and def2-SV(P) as described in the main text, implemented in the Turbomole software. We used the program FEFF v8.3 (5, 6) to calculate the theoretical EXAFS scattering amplitudes and phase shifts. All EXAFS fits were performed with the IFEFFIT v1.2.11c program (4). All possible paths with up to four scattering legs (NLEG = 4) and a 5.0 Å path half-length (RPATH) were considered. Paths with σ and curved-wave amplitudes less than 1.0 and 2.5 %, respectively, of that of the largest path (CRITERIA) were neglected. The paths considered are too many (256) to allow a fit of an individual Debye-Waller factor for each one. Instead, they were calculated (one for each path) by FEFF (5, 6) with the equation-of-motion method (7) at the beginning of the refinement and then kept fixed in the subsequent optimization. The calculations were supplemented by vibrational force constants for all bonds and angles in the complexes, obtained by a DFT frequency calculation on vacuum-optimized structures of each state and then extracting the force...
constants using the approach of Seminario (8), with the program HESS2FF (9). They were obtained for the experimental temperature.

The EXAFS spectra were generously provided by Prof. Dau (10) (illumination-freeze approach at 20K). A window function $w(k)$, defined as a fractional cosine-square window (Hanning) with $dk = 1$, was applied to the k^3-weighted EXAFS data. The windowed spectra obtained for a grid of k points, equally spaced at 0.05 Å$^{-1}$ in the 1.8-11.8 Å$^{-1} k$ range, were then Fourier transformed (FT) with a factor of 1.0 to obtain the FT-amplitudes in the reduced distance R space. The calculated and experimental EXAFS spectra were compared in the R range 1.0-5.0 Å. Finally, it should be emphasized that the EXAFS calculations depend on several parameters, which, of course, influence also the outcome of the refinement procedure.

References for “Methods and models”

10. Haumann M, et al. (2005) Structural and oxidation state changes of the photosystem ii manganese complex in four transitions of the water oxidation cycle ($s_0 \rightarrow s_1$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_3$, and $s_3,4 \rightarrow s_0$) characterized by x-ray absorption spectroscopy at 20 k and room temperature†. Biochemistry 44(6):1894-1908.
Figure S1: The previously optimized structure for the S$_2$-state (Siegbahn PEM (2013) Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O$_2$ release. *Biochim Biophys Acta, Bioenergetics* 1827: 1003-1019.). The numbering of the Mn-atoms is the one used throughout the present paper, and is the same as in the high-resolution X-ray structure. Amino acid hydrogens are removed.
Figure S2: The refined EXAFS spectra for the S$_2$- and S$_3$- states superimposed. The one for the S3-state is shown in purple.
Figure S3. Refined EXAFS spectrum for the S3-state with the central oxo close to manganese Mn1, the “inner” oxo position.
Coordinates (figures are also shown).

S2 optimized at BP86/def2-SV(P)

E(BP86/def2-SV(P)) = -10678.791137 hartree
S2 refined at BP86/def2-SV(P)/EXAFS
E(BP86/def2-SV(P)) = -10678.750479 hartree, $\chi^2 = 336.7$
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H91</td>
<td>11.83042710</td>
<td>0.38213700</td>
<td>3.15520800</td>
</tr>
<tr>
<td>H92</td>
<td>11.09489310</td>
<td>-1.0364610</td>
<td>2.60224340</td>
</tr>
<tr>
<td>C93</td>
<td>10.54603120</td>
<td>-0.44520950</td>
<td>4.35463540</td>
</tr>
<tr>
<td>H94</td>
<td>9.91132540</td>
<td>0.44520950</td>
<td>4.35463540</td>
</tr>
<tr>
<td>H95</td>
<td>11.03409240</td>
<td>-1.17860750</td>
<td>5.57257350</td>
</tr>
<tr>
<td>C96</td>
<td>9.62722400</td>
<td>-1.65360560</td>
<td>4.77616660</td>
</tr>
<tr>
<td>H97</td>
<td>10.17862490</td>
<td>-2.45790990</td>
<td>5.30323080</td>
</tr>
<tr>
<td>H98</td>
<td>9.33411110</td>
<td>-2.05699870</td>
<td>3.78171100</td>
</tr>
<tr>
<td>H99</td>
<td>9.05636080</td>
<td>3.04743080</td>
<td>-0.43353630</td>
</tr>
<tr>
<td>C100</td>
<td>8.74537050</td>
<td>4.78860370</td>
<td>-0.38752640</td>
</tr>
<tr>
<td>C101</td>
<td>9.58219930</td>
<td>4.01486980</td>
<td>1.44973960</td>
</tr>
<tr>
<td>C102</td>
<td>10.03061280</td>
<td>4.97136760</td>
<td>1.79149750</td>
</tr>
<tr>
<td>C103</td>
<td>8.30569150</td>
<td>3.80175890</td>
<td>2.21162090</td>
</tr>
<tr>
<td>C104</td>
<td>7.57993250</td>
<td>4.62137220</td>
<td>1.97897800</td>
</tr>
<tr>
<td>C105</td>
<td>8.49491540</td>
<td>3.83827470</td>
<td>3.31107310</td>
</tr>
<tr>
<td>C106</td>
<td>8.68244850</td>
<td>2.49100700</td>
<td>1.90084690</td>
</tr>
<tr>
<td>C107</td>
<td>7.74291450</td>
<td>2.19245510</td>
<td>0.93354390</td>
</tr>
<tr>
<td>C108</td>
<td>6.96488410</td>
<td>1.72087520</td>
<td>2.74552840</td>
</tr>
<tr>
<td>C109</td>
<td>6.56524130</td>
<td>2.19215520</td>
<td>3.95254860</td>
</tr>
<tr>
<td>H110</td>
<td>6.18079040</td>
<td>1.55576800</td>
<td>4.66121480</td>
</tr>
<tr>
<td>H111</td>
<td>6.38436540</td>
<td>3.20236020</td>
<td>4.09932600</td>
</tr>
<tr>
<td>C112</td>
<td>7.60738650</td>
<td>0.48882400</td>
<td>2.39372420</td>
</tr>
<tr>
<td>H113</td>
<td>7.13227500</td>
<td>-0.15787930</td>
<td>1.77074730</td>
</tr>
<tr>
<td>C114</td>
<td>5.90508350</td>
<td>-0.05352490</td>
<td>2.96848710</td>
</tr>
<tr>
<td>C115</td>
<td>11.82439770</td>
<td>-5.39308960</td>
<td>7.24925490</td>
</tr>
<tr>
<td>C116</td>
<td>11.2520230</td>
<td>-5.97246120</td>
<td>6.55470800</td>
</tr>
<tr>
<td>C117</td>
<td>12.79646290</td>
<td>-5.85244910</td>
<td>7.46174210</td>
</tr>
<tr>
<td>C118</td>
<td>12.03023890</td>
<td>-4.39030310</td>
<td>6.81490670</td>
</tr>
<tr>
<td>C119</td>
<td>11.14847240</td>
<td>-5.33192300</td>
<td>6.82941950</td>
</tr>
<tr>
<td>C120</td>
<td>11.86415840</td>
<td>-4.81392270</td>
<td>9.34812510</td>
</tr>
<tr>
<td>C121</td>
<td>11.00580650</td>
<td>-6.34958750</td>
<td>9.02000070</td>
</tr>
<tr>
<td>C122</td>
<td>9.83050540</td>
<td>-4.57634580</td>
<td>8.68701700</td>
</tr>
<tr>
<td>C123</td>
<td>9.03585570</td>
<td>-4.59426480</td>
<td>9.82063610</td>
</tr>
<tr>
<td>C124</td>
<td>9.19186020</td>
<td>-3.76144650</td>
<td>7.79385260</td>
</tr>
<tr>
<td>C125</td>
<td>9.48348300</td>
<td>-3.46555340</td>
<td>6.78255970</td>
</tr>
<tr>
<td>C126</td>
<td>7.95553040</td>
<td>-3.81475220</td>
<td>9.62556940</td>
</tr>
<tr>
<td>C127</td>
<td>7.14713100</td>
<td>-3.59777930</td>
<td>10.33259670</td>
</tr>
<tr>
<td>C128</td>
<td>8.05575340</td>
<td>-3.28362640</td>
<td>8.39943100</td>
</tr>
<tr>
<td>C129</td>
<td>7.26457790</td>
<td>-2.66126200</td>
<td>7.95272030</td>
</tr>
<tr>
<td>C130</td>
<td>6.09893620</td>
<td>-4.23518820</td>
<td>-1.22219730</td>
</tr>
<tr>
<td>C131</td>
<td>5.38336320</td>
<td>-4.56843400</td>
<td>-1.95928720</td>
</tr>
<tr>
<td>C132</td>
<td>7.10941700</td>
<td>-4.13018110</td>
<td>-1.58867200</td>
</tr>
<tr>
<td>C133</td>
<td>5.80186680</td>
<td>-3.20451830</td>
<td>-0.96442430</td>
</tr>
<tr>
<td>C134</td>
<td>6.03745620</td>
<td>-5.11920200</td>
<td>0.06134250</td>
</tr>
<tr>
<td>C135</td>
<td>5.98357120</td>
<td>-6.17743050</td>
<td>-0.15532730</td>
</tr>
<tr>
<td>C136</td>
<td>6.88778090</td>
<td>-4.86809720</td>
<td>0.71364140</td>
</tr>
<tr>
<td>C137</td>
<td>4.74468900</td>
<td>-4.65030800</td>
<td>0.82357370</td>
</tr>
<tr>
<td>C138</td>
<td>4.76265270</td>
<td>-3.45507180</td>
<td>1.24210220</td>
</tr>
<tr>
<td>C139</td>
<td>3.75417000</td>
<td>-5.45311550</td>
<td>0.94837410</td>
</tr>
<tr>
<td>C140</td>
<td>-1.82887550</td>
<td>-11.98571740</td>
<td>4.24856840</td>
</tr>
<tr>
<td>C141</td>
<td>-2.35869330</td>
<td>-12.71809530</td>
<td>3.65630050</td>
</tr>
<tr>
<td>C142</td>
<td>-2.32840640</td>
<td>-11.78325020</td>
<td>5.18423380</td>
</tr>
<tr>
<td>C143</td>
<td>-0.84275280</td>
<td>-12.44415420</td>
<td>4.51008340</td>
</tr>
<tr>
<td>C144</td>
<td>-1.61140710</td>
<td>-10.66894560</td>
<td>3.47109640</td>
</tr>
</tbody>
</table>

S13
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H154</td>
<td>-2.5227389</td>
<td>-0.4293848</td>
<td>2.8803622</td>
</tr>
<tr>
<td>H155</td>
<td>-1.4895680</td>
<td>-0.8239020</td>
<td>4.2010934</td>
</tr>
<tr>
<td>C156</td>
<td>-0.3782938</td>
<td>-1.0688170</td>
<td>2.5421330</td>
</tr>
<tr>
<td>H157</td>
<td>0.5340000</td>
<td>-1.0628900</td>
<td>3.1629353</td>
</tr>
<tr>
<td>H158</td>
<td>-0.3168287</td>
<td>-1.1066500</td>
<td>2.0274970</td>
</tr>
<tr>
<td>C159</td>
<td>-0.3393652</td>
<td>-0.9632277</td>
<td>1.4425126</td>
</tr>
<tr>
<td>H160</td>
<td>0.5415974</td>
<td>-0.9723802</td>
<td>0.8030637</td>
</tr>
<tr>
<td>H161</td>
<td>-1.2280738</td>
<td>-0.9790390</td>
<td>0.7654441</td>
</tr>
<tr>
<td>C162</td>
<td>-0.4558121</td>
<td>-0.8148062</td>
<td>1.8461078</td>
</tr>
<tr>
<td>H163</td>
<td>-0.6709740</td>
<td>-0.7536728</td>
<td>0.9353570</td>
</tr>
<tr>
<td>H164</td>
<td>-1.2865780</td>
<td>-0.7952144</td>
<td>2.5571476</td>
</tr>
<tr>
<td>N165</td>
<td>0.7596940</td>
<td>-0.6229300</td>
<td>2.4460390</td>
</tr>
<tr>
<td>H166</td>
<td>0.8870835</td>
<td>-0.6525494</td>
<td>2.1733431</td>
</tr>
<tr>
<td>H167</td>
<td>1.6990486</td>
<td>-0.7974070</td>
<td>2.1018855</td>
</tr>
<tr>
<td>C169</td>
<td>0.9082024</td>
<td>-0.6917129</td>
<td>5.5169798</td>
</tr>
<tr>
<td>O170</td>
<td>1.3883100</td>
<td>-0.6613392</td>
<td>4.4633255</td>
</tr>
<tr>
<td>H171</td>
<td>1.3369039</td>
<td>-0.5117744</td>
<td>4.9893446</td>
</tr>
<tr>
<td>O172</td>
<td>0.5076007</td>
<td>-0.1114240</td>
<td>3.6584349</td>
</tr>
<tr>
<td>H173</td>
<td>1.2193188</td>
<td>-0.2145974</td>
<td>1.8117873</td>
</tr>
<tr>
<td>H174</td>
<td>7.1027570</td>
<td>-0.2146457</td>
<td>2.7994291</td>
</tr>
<tr>
<td>H175</td>
<td>6.3495260</td>
<td>-0.2308440</td>
<td>1.5006933</td>
</tr>
<tr>
<td>O176</td>
<td>1.1968462</td>
<td>0.4357717</td>
<td>6.4270034</td>
</tr>
<tr>
<td>H177</td>
<td>1.1703446</td>
<td>-0.2807415</td>
<td>5.7115791</td>
</tr>
<tr>
<td>H178</td>
<td>1.2056846</td>
<td>-0.0414290</td>
<td>7.2998736</td>
</tr>
<tr>
<td>O179</td>
<td>2.8404979</td>
<td>2.6834706</td>
<td>8.4962600</td>
</tr>
<tr>
<td>H180</td>
<td>3.5968900</td>
<td>2.8409300</td>
<td>9.1440356</td>
</tr>
<tr>
<td>H181</td>
<td>2.2663484</td>
<td>2.0076845</td>
<td>8.9587381</td>
</tr>
<tr>
<td>O182</td>
<td>4.9806650</td>
<td>2.2170373</td>
<td>10.2252799</td>
</tr>
<tr>
<td>H183</td>
<td>5.0491107</td>
<td>1.3982680</td>
<td>9.6675930</td>
</tr>
<tr>
<td>H184</td>
<td>5.7406187</td>
<td>2.1736048</td>
<td>10.8628215</td>
</tr>
<tr>
<td>O185</td>
<td>2.9384896</td>
<td>-1.7831137</td>
<td>1.9910731</td>
</tr>
<tr>
<td>H187</td>
<td>3.5619534</td>
<td>-2.5506489</td>
<td>1.7094526</td>
</tr>
<tr>
<td>H188</td>
<td>1.0271355</td>
<td>-4.9028422</td>
<td>5.8776662</td>
</tr>
<tr>
<td>O189</td>
<td>2.4870983</td>
<td>-2.1388560</td>
<td>7.5566483</td>
</tr>
<tr>
<td>H190</td>
<td>1.2766777</td>
<td>-5.0417368</td>
<td>1.4537485</td>
</tr>
<tr>
<td>H191</td>
<td>3.2050731</td>
<td>-5.0517920</td>
<td>1.3366169</td>
</tr>
<tr>
<td>H192</td>
<td>0.9290105</td>
<td>-4.9539223</td>
<td>0.5368108</td>
</tr>
<tr>
<td>H193</td>
<td>0.4922266</td>
<td>-2.4787981</td>
<td>2.0593104</td>
</tr>
<tr>
<td>H194</td>
<td>0.6744669</td>
<td>-3.4612689</td>
<td>2.0632425</td>
</tr>
<tr>
<td>H195</td>
<td>0.5395638</td>
<td>-2.1599514</td>
<td>3.0189445</td>
</tr>
<tr>
<td>O195</td>
<td>3.2437154</td>
<td>-8.0059388</td>
<td>1.3980653</td>
</tr>
<tr>
<td>H196</td>
<td>3.5419423</td>
<td>-7.0752317</td>
<td>1.1275638</td>
</tr>
<tr>
<td>H197</td>
<td>4.0301054</td>
<td>-8.5644493</td>
<td>1.5556459</td>
</tr>
<tr>
<td>O198</td>
<td>0.9754963</td>
<td>-3.9162630</td>
<td>6.1666315</td>
</tr>
<tr>
<td>H199</td>
<td>0.0629983</td>
<td>-3.7978061</td>
<td>6.4900139</td>
</tr>
<tr>
<td>H200</td>
<td>2.0850669</td>
<td>-3.0209703</td>
<td>7.3068878</td>
</tr>
<tr>
<td>H201</td>
<td>2.8479582</td>
<td>-1.7794526</td>
<td>6.6812680</td>
</tr>
<tr>
<td>H202</td>
<td>1.9038333</td>
<td>-2.0415458</td>
<td>1.8446000</td>
</tr>
<tr>
<td>H203</td>
<td>9.2292069</td>
<td>-5.1292363</td>
<td>10.6853515</td>
</tr>
</tbody>
</table>

S3-outer optimized at BP86/def2-SV(P)

E(BP86/def2-SV(P)) = -10678.171412 hartree
O192 0.40479020 -2.46815226 2.02612682
H193 0.55316965 -3.46132989 2.01583661
H194 1.77722075 -2.07534752 1.80341122
O195 3.16280449 -7.99206850 1.48667542
H196 3.51904249 -7.09041213 1.19209871
H197 3.93488965 -8.55447979 1.69955214
O198 1.13822745 -3.54174804 6.27363365
H199 1.27202109 -2.46319494 5.07816875
H200 1.79377261 -3.39175120 6.99907366
H201 3.25187147 -1.70287857 6.82688831
H202 9.25111358 -5.15420462 10.69666722

S3-outer refined at BP86/def2-SV(P)/EXAFS
E(BP86/def2-SV(P)) = -10678.101767 hartree, χ² = 173.4

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn1</td>
<td>3.09266710</td>
<td>-1.51446410</td>
<td>3.86745690</td>
<td></td>
</tr>
<tr>
<td>Mn2</td>
<td>4.77685150</td>
<td>-1.94567200</td>
<td>8.88416470</td>
<td></td>
</tr>
<tr>
<td>Mn3</td>
<td>5.55820990</td>
<td>-1.54414350</td>
<td>5.20669290</td>
<td></td>
</tr>
<tr>
<td>Mn4</td>
<td>6.68459740</td>
<td>-0.55870330</td>
<td>7.49267650</td>
<td></td>
</tr>
<tr>
<td>O5</td>
<td>3.75202910</td>
<td>-1.26722610</td>
<td>5.55679590</td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td>5.95223400</td>
<td>0.07019920</td>
<td>5.93184600</td>
<td></td>
</tr>
<tr>
<td>O7</td>
<td>4.96613190</td>
<td>-0.19955310</td>
<td>8.42508500</td>
<td></td>
</tr>
<tr>
<td>O8</td>
<td>6.04081820</td>
<td>-2.27112790</td>
<td>7.37466810</td>
<td></td>
</tr>
<tr>
<td>Ca9</td>
<td>3.56255500</td>
<td>1.16700160</td>
<td>6.73433250</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>0.66754570</td>
<td>1.95159040</td>
<td>1.70634730</td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>1.22518360</td>
<td>1.90580260</td>
<td>0.78257780</td>
<td></td>
</tr>
<tr>
<td>H12</td>
<td>-0.32439890</td>
<td>2.36864150</td>
<td>1.61432410</td>
<td></td>
</tr>
<tr>
<td>H13</td>
<td>0.44332180</td>
<td>0.87203350</td>
<td>1.89448640</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>1.48318960</td>
<td>2.42312910</td>
<td>2.93793460</td>
<td></td>
</tr>
<tr>
<td>H15</td>
<td>0.77857980</td>
<td>2.75395440</td>
<td>3.74063490</td>
<td></td>
</tr>
<tr>
<td>H16</td>
<td>2.09413630</td>
<td>3.27552250</td>
<td>2.71928950</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>2.45616860</td>
<td>1.46376940</td>
<td>3.69144580</td>
<td></td>
</tr>
<tr>
<td>O18</td>
<td>3.22095350</td>
<td>1.98120370</td>
<td>4.54635090</td>
<td></td>
</tr>
<tr>
<td>O19</td>
<td>2.44140460</td>
<td>0.19041880</td>
<td>3.44991240</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>1.05825960</td>
<td>1.82996580</td>
<td>13.45631340</td>
<td></td>
</tr>
<tr>
<td>H21</td>
<td>0.70223990</td>
<td>0.36013900</td>
<td>13.58246300</td>
<td></td>
</tr>
<tr>
<td>H22</td>
<td>0.73346680</td>
<td>2.12912700</td>
<td>13.86357880</td>
<td></td>
</tr>
<tr>
<td>H23</td>
<td>1.91243200</td>
<td>0.91156870</td>
<td>14.12768310</td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>1.59812470</td>
<td>1.11671820</td>
<td>12.00378430</td>
<td></td>
</tr>
<tr>
<td>H25</td>
<td>2.46022140</td>
<td>1.81485450</td>
<td>11.86918640</td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>0.82147670</td>
<td>1.42093990</td>
<td>11.26998850</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>2.06101510</td>
<td>-0.33799340</td>
<td>11.68728950</td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>1.16144680</td>
<td>-0.99753810</td>
<td>11.67842330</td>
<td></td>
</tr>
<tr>
<td>H29</td>
<td>2.74037220</td>
<td>-0.71178600</td>
<td>12.48460350</td>
<td></td>
</tr>
<tr>
<td>C30</td>
<td>2.73218900</td>
<td>-0.55788870</td>
<td>10.31829480</td>
<td></td>
</tr>
<tr>
<td>O31</td>
<td>2.36678490</td>
<td>0.11390170</td>
<td>9.33990860</td>
<td></td>
</tr>
<tr>
<td>O32</td>
<td>3.62254860</td>
<td>-1.52348700</td>
<td>10.27659580</td>
<td></td>
</tr>
<tr>
<td>C33</td>
<td>2.78444980</td>
<td>-7.86080840</td>
<td>8.62574410</td>
<td></td>
</tr>
<tr>
<td>H34</td>
<td>2.21520190</td>
<td>-8.80273150</td>
<td>8.80590880</td>
<td></td>
</tr>
<tr>
<td>H35</td>
<td>2.07895800</td>
<td>-7.18573910</td>
<td>8.09954430</td>
<td></td>
</tr>
<tr>
<td>C36</td>
<td>3.97330250</td>
<td>-8.18961980</td>
<td>7.71283580</td>
<td></td>
</tr>
<tr>
<td>O37</td>
<td>5.07948070</td>
<td>-8.56786170</td>
<td>8.17943420</td>
<td></td>
</tr>
<tr>
<td>C38</td>
<td>3.21599530</td>
<td>-7.27823920</td>
<td>10.00070700</td>
<td></td>
</tr>
<tr>
<td>H39</td>
<td>3.82591030</td>
<td>-8.04322020</td>
<td>10.54258970</td>
<td></td>
</tr>
<tr>
<td>H40</td>
<td>2.30772660</td>
<td>-7.08209980</td>
<td>10.61500720</td>
<td></td>
</tr>
<tr>
<td>C41</td>
<td>3.98067860</td>
<td>-6.01315800</td>
<td>9.78704610</td>
<td></td>
</tr>
</tbody>
</table>
N42 5.10076700 -6.07500550 8.97309090
H43 5.45830430 -6.07500550 8.97309090
C44 3.75732180 -4.65840310 9.99474000
H45 2.98228200 -4.12870120 10.56184160
H46 5.47626870 -4.82766480 8.65251800
H47 6.18816810 -4.59989220 7.86175100
N48 4.71779310 -3.93704040 9.29280460
N49 3.79288400 -7.94101500 6.40025100
H50 2.84949120 -7.59558230 6.08992780
C51 4.91725350 -7.84634480 5.46886570
H52 4.69501830 -8.45987600 4.56558790
H53 5.80496980 -8.28509940 5.97097510
C54 5.19239880 -6.36319460 5.06972650
H55 6.09580660 -6.33607740 4.41501170
C56 5.47083020 -5.81220700 5.99917480
C57 4.02862940 -5.59422420 4.38201430
H58 3.04689910 -5.76712200 4.89133660
H59 3.87189100 -5.45155300 3.33753140
C60 4.15923890 -4.07351420 3.46027490
O61 3.27040850 -3.36472310 3.81508890
C62 5.13707110 -3.54304590 4.96849810
C63 9.15951180 -0.19158100 11.44722900
H64 8.91168860 -0.16295680 10.59572660
H65 9.78411120 -0.03671170 12.36990400
C66 7.97452920 -0.08908970 11.54091930
C67 2.07141300 -0.41723510 12.24391000
H68 8.27831580 -1.80249760 11.94436860
C69 7.30492600 -1.03816490 10.20644110
O70 7.86465290 -0.63904500 9.13858960
C70 6.21784960 -1.67696210 10.23743930
C71 8.76443370 1.58966190 11.31650630
C72 7.60516340 1.98986250 11.52733330
C73 7.98287610 2.43033530 10.98959190
C74 10.67895960 2.03250410 10.70255050
C75 9.56777780 3.85881480 10.76518890
C76 10.52363240 4.39537400 10.93490930
O78 8.14418700 4.20487300 11.50013380
C79 9.10939430 4.13223020 9.32796180
O80 9.87586840 4.50945170 8.47314800
C79 7.78470120 3.86021770 9.15329170
H80 7.25299700 3.44603740 9.92589190
C81 7.18763250 3.85811840 7.84716870
H82 6.41160870 4.65595880 7.75022770
C83 8.00360220 4.07404820 7.12173620
H84 6.51322260 2.52664350 7.46460250
C85 5.42278900 2.67556330 6.85910670
C86 7.15947500 1.43195550 7.74207130
C87 11.58166190 -0.61708330 3.48089920
H80 12.44417520 -1.21809280 3.72840290
H81 11.83042710 0.38213700 3.15520800
H82 11.13393200 -1.10249660 2.58196290
H83 10.51380330 -0.51493120 4.57177850
C84 9.78567370 0.28587200 4.28293820
H85 10.93943360 -0.18782750 5.54844550
C86 9.72458060 -1.82968610 4.73905820
C87 10.31338080 -2.54527090 5.35227770
C88 9.53815250 -2.29158010 3.75178970
C89 8.37119940 -1.60771540 5.39464850
O90 7.32798880 -1.95344610 4.76422830
O91 8.32251180 -1.08279180 6.55437640
C90 10.81872430 4.22856830 -0.81502130
H91 11.54036440 3.48392240 -0.51313100
H92 11.20109300 5.23062590 -0.68822340
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H168</td>
<td>1.6626200</td>
<td>-7.87528180</td>
<td>2.23927110</td>
</tr>
<tr>
<td>C169</td>
<td>0.96332590</td>
<td>-6.71249860</td>
<td>5.65219450</td>
</tr>
<tr>
<td>O170</td>
<td>1.40165430</td>
<td>-1.79656420</td>
<td>4.54601770</td>
</tr>
<tr>
<td>H171</td>
<td>4.98758890</td>
<td>-1.13480600</td>
<td>3.14547930</td>
</tr>
<tr>
<td>O172</td>
<td>7.03092040</td>
<td>-2.26989930</td>
<td>1.88541290</td>
</tr>
<tr>
<td>H173</td>
<td>7.00157050</td>
<td>-2.08480110</td>
<td>1.57530850</td>
</tr>
<tr>
<td>H174</td>
<td>6.13775830</td>
<td>-2.44271690</td>
<td>1.3270030</td>
</tr>
<tr>
<td>O176</td>
<td>1.434477110</td>
<td>0.18668410</td>
<td>6.49069120</td>
</tr>
<tr>
<td>H177</td>
<td>1.29513130</td>
<td>-0.48858660</td>
<td>5.73884470</td>
</tr>
<tr>
<td>H178</td>
<td>2.97161120</td>
<td>2.58162360</td>
<td>8.51069680</td>
</tr>
<tr>
<td>H180</td>
<td>3.76502550</td>
<td>2.77306640</td>
<td>9.09090270</td>
</tr>
<tr>
<td>H181</td>
<td>2.48086220</td>
<td>1.89485020</td>
<td>9.03702000</td>
</tr>
<tr>
<td>O182</td>
<td>5.07069970</td>
<td>2.02666140</td>
<td>10.11349010</td>
</tr>
<tr>
<td>H183</td>
<td>5.16812140</td>
<td>1.17145820</td>
<td>9.60267890</td>
</tr>
<tr>
<td>H184</td>
<td>5.76538550</td>
<td>2.00409730</td>
<td>10.8157740</td>
</tr>
<tr>
<td>O185</td>
<td>2.73575670</td>
<td>-1.77262540</td>
<td>2.02059760</td>
</tr>
<tr>
<td>H186</td>
<td>3.35920470</td>
<td>-2.50490290</td>
<td>1.65121640</td>
</tr>
<tr>
<td>H187</td>
<td>1.92085500</td>
<td>-4.54458890</td>
<td>6.24747490</td>
</tr>
<tr>
<td>O188</td>
<td>3.38131870</td>
<td>-2.31122420</td>
<td>7.81557690</td>
</tr>
<tr>
<td>O189</td>
<td>1.18090510</td>
<td>-4.97610800</td>
<td>1.42371700</td>
</tr>
<tr>
<td>H190</td>
<td>2.21054920</td>
<td>-5.01048560</td>
<td>1.27693830</td>
</tr>
<tr>
<td>H191</td>
<td>0.79105990</td>
<td>-4.95227870</td>
<td>0.52062290</td>
</tr>
<tr>
<td>O192</td>
<td>0.37183620</td>
<td>-2.50205200</td>
<td>2.15752400</td>
</tr>
<tr>
<td>Mn1</td>
<td>2.67177030</td>
<td>-1.42350750</td>
<td>3.93224120</td>
</tr>
<tr>
<td>Mn2</td>
<td>4.72847330</td>
<td>-1.49367320</td>
<td>8.69417830</td>
</tr>
<tr>
<td>Mn3</td>
<td>5.23090040</td>
<td>-1.58256700</td>
<td>5.82215540</td>
</tr>
<tr>
<td>Mn4</td>
<td>6.69983730</td>
<td>0.08272700</td>
<td>7.52048450</td>
</tr>
<tr>
<td>O5</td>
<td>3.87740410</td>
<td>-1.44863070</td>
<td>7.10096340</td>
</tr>
<tr>
<td>O6</td>
<td>5.9353610</td>
<td>0.21503980</td>
<td>6.03561650</td>
</tr>
<tr>
<td>O7</td>
<td>5.16834340</td>
<td>0.30643930</td>
<td>8.53106650</td>
</tr>
<tr>
<td>O8</td>
<td>6.26150580</td>
<td>-1.81370540</td>
<td>7.56461000</td>
</tr>
<tr>
<td>Ca9</td>
<td>3.39920930</td>
<td>1.11444960</td>
<td>6.87404400</td>
</tr>
<tr>
<td>C10</td>
<td>0.66760180</td>
<td>1.95138550</td>
<td>1.70634150</td>
</tr>
<tr>
<td>H11</td>
<td>1.22515670</td>
<td>1.90586150</td>
<td>0.78256780</td>
</tr>
<tr>
<td>H12</td>
<td>-0.32439790</td>
<td>2.36866830</td>
<td>1.61431550</td>
</tr>
<tr>
<td>H13</td>
<td>0.45235690</td>
<td>0.89374070</td>
<td>1.90896150</td>
</tr>
<tr>
<td>C14</td>
<td>1.47789600</td>
<td>2.50081120</td>
<td>2.88815880</td>
</tr>
<tr>
<td>C15</td>
<td>0.80386760</td>
<td>2.87159970</td>
<td>3.69554430</td>
</tr>
<tr>
<td>C16</td>
<td>2.11198900</td>
<td>3.37604070</td>
<td>2.62105680</td>
</tr>
<tr>
<td>C17</td>
<td>2.38206380</td>
<td>1.47748810</td>
<td>3.59871300</td>
</tr>
</tbody>
</table>

S3-inner optimized at BP86/def2-SV(P)

$$E(BP86/def2-SV(P)) = -10678.155678\text{ hartree}$$
S3-inner refined at BP86/def2-SV(P)/EXAFS
E(BP86/def2-SV(P)) = -10678.087615 hartree, χ² = 168.8
<table>
<thead>
<tr>
<th>Atom</th>
<th>X-Position</th>
<th>Y-Position</th>
<th>Z-Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>N121</td>
<td>6.15664470</td>
<td>0.45802160</td>
<td>2.8254900</td>
</tr>
<tr>
<td>H122</td>
<td>6.63276460</td>
<td>-0.3390690</td>
<td>2.32109470</td>
</tr>
<tr>
<td>C124</td>
<td>11.8421970</td>
<td>-5.97245430</td>
<td>6.55469720</td>
</tr>
<tr>
<td>H125</td>
<td>11.2521918</td>
<td>-5.85244940</td>
<td>7.46174090</td>
</tr>
<tr>
<td>H126</td>
<td>12.7964514</td>
<td>-5.85244940</td>
<td>7.46174090</td>
</tr>
<tr>
<td>H127</td>
<td>12.0182776</td>
<td>-4.38954680</td>
<td>6.85066610</td>
</tr>
<tr>
<td>C128</td>
<td>11.2380775</td>
<td>-5.37466460</td>
<td>8.36641060</td>
</tr>
<tr>
<td>H129</td>
<td>11.9826990</td>
<td>-4.92619940</td>
<td>9.36536880</td>
</tr>
<tr>
<td>H130</td>
<td>11.1055727</td>
<td>-6.42392370</td>
<td>9.01260800</td>
</tr>
<tr>
<td>C131</td>
<td>9.9505901</td>
<td>-4.60044100</td>
<td>8.82818170</td>
</tr>
<tr>
<td>N132</td>
<td>9.1608376</td>
<td>-4.80193220</td>
<td>9.96938210</td>
</tr>
<tr>
<td>C133</td>
<td>9.3027794</td>
<td>-3.71258800</td>
<td>8.05752420</td>
</tr>
<tr>
<td>H134</td>
<td>9.5610550</td>
<td>-2.8776670</td>
<td>7.08734740</td>
</tr>
<tr>
<td>C135</td>
<td>8.0841963</td>
<td>-3.99659990</td>
<td>9.89349670</td>
</tr>
<tr>
<td>H136</td>
<td>7.2817034</td>
<td>-3.87591960</td>
<td>10.62966690</td>
</tr>
<tr>
<td>N137</td>
<td>8.1663742</td>
<td>-3.32059640</td>
<td>8.73988780</td>
</tr>
<tr>
<td>H138</td>
<td>7.3697357</td>
<td>-2.70418060</td>
<td>8.36681380</td>
</tr>
<tr>
<td>C139</td>
<td>6.0988543</td>
<td>-4.23512080</td>
<td>-1.22217370</td>
</tr>
<tr>
<td>H140</td>
<td>5.3839225</td>
<td>-4.56845270</td>
<td>-1.95928440</td>
</tr>
<tr>
<td>H141</td>
<td>6.9904775</td>
<td>-4.90157950</td>
<td>0.65385400</td>
</tr>
<tr>
<td>C142</td>
<td>4.8740767</td>
<td>-4.74805900</td>
<td>0.94499580</td>
</tr>
<tr>
<td>H143</td>
<td>4.9529835</td>
<td>-3.64662700</td>
<td>1.57915660</td>
</tr>
<tr>
<td>C144</td>
<td>3.8655786</td>
<td>-5.52736730</td>
<td>9.80873900</td>
</tr>
<tr>
<td>C145</td>
<td>2.8287825</td>
<td>-11.98662600</td>
<td>4.24859980</td>
</tr>
<tr>
<td>H150</td>
<td>-2.3587153</td>
<td>-12.7182040</td>
<td>3.65630700</td>
</tr>
<tr>
<td>H151</td>
<td>-2.3284623</td>
<td>-11.78327670</td>
<td>5.18421850</td>
</tr>
<tr>
<td>H152</td>
<td>-0.8497408</td>
<td>-12.4190650</td>
<td>4.50474270</td>
</tr>
<tr>
<td>C153</td>
<td>-1.6251790</td>
<td>-10.66397740</td>
<td>3.47580000</td>
</tr>
<tr>
<td>H154</td>
<td>-2.5686434</td>
<td>-10.38999210</td>
<td>2.95437390</td>
</tr>
<tr>
<td>H155</td>
<td>-1.4126853</td>
<td>-9.84328590</td>
<td>4.20248160</td>
</tr>
<tr>
<td>C156</td>
<td>-0.4624434</td>
<td>-10.72720950</td>
<td>2.45972530</td>
</tr>
<tr>
<td>H157</td>
<td>0.5048975</td>
<td>-10.67377610</td>
<td>3.01263190</td>
</tr>
<tr>
<td>H158</td>
<td>-0.4666228</td>
<td>-11.71624120</td>
<td>1.95332170</td>
</tr>
<tr>
<td>C159</td>
<td>-0.5075775</td>
<td>-9.65887870</td>
<td>1.34683500</td>
</tr>
<tr>
<td>H160</td>
<td>0.3353112</td>
<td>-9.82378100</td>
<td>0.63400210</td>
</tr>
<tr>
<td>H161</td>
<td>1.4376048</td>
<td>-9.81462200</td>
<td>0.75184970</td>
</tr>
<tr>
<td>C162</td>
<td>0.5070132</td>
<td>-8.17889420</td>
<td>1.75605690</td>
</tr>
<tr>
<td>H163</td>
<td>-0.7958289</td>
<td>-7.56593530</td>
<td>0.86454770</td>
</tr>
<tr>
<td>H164</td>
<td>-1.2806258</td>
<td>-7.96884300</td>
<td>2.52748980</td>
</tr>
<tr>
<td>N165</td>
<td>0.7928737</td>
<td>-7.66368010</td>
<td>2.28630970</td>
</tr>
<tr>
<td>H166</td>
<td>0.8554578</td>
<td>-6.62941760</td>
<td>2.09951490</td>
</tr>
<tr>
<td>H167</td>
<td>0.9998320</td>
<td>-7.78920860</td>
<td>3.36675140</td>
</tr>
<tr>
<td>H168</td>
<td>1.6456814</td>
<td>-8.04757060</td>
<td>1.77000190</td>
</tr>
<tr>
<td>C169</td>
<td>0.9551069</td>
<td>-7.76028210</td>
<td>5.30925280</td>
</tr>
<tr>
<td>O170</td>
<td>0.6719499</td>
<td>-2.00798980</td>
<td>3.73680010</td>
</tr>
<tr>
<td>H171</td>
<td>0.5209311</td>
<td>-2.17563010</td>
<td>2.01213330</td>
</tr>
<tr>
<td>O172</td>
<td>4.35570260</td>
<td>-1.37070890</td>
<td>4.33572590</td>
</tr>
<tr>
<td>O173</td>
<td>7.09259200</td>
<td>-2.00451550</td>
<td>2.15387940</td>
</tr>
<tr>
<td>H174</td>
<td>7.04072660</td>
<td>-2.15788020</td>
<td>3.13417360</td>
</tr>
<tr>
<td>H175</td>
<td>6.36310640</td>
<td>-2.59649260</td>
<td>1.78227750</td>
</tr>
<tr>
<td>O176</td>
<td>0.69415940</td>
<td>1.39541270</td>
<td>7.07242430</td>
</tr>
<tr>
<td>H177</td>
<td>0.48776900</td>
<td>0.84846720</td>
<td>6.43522810</td>
</tr>
<tr>
<td>H178</td>
<td>0.58718700</td>
<td>0.98032380</td>
<td>7.95376740</td>
</tr>
<tr>
<td>O179</td>
<td>2.99426620</td>
<td>2.75784120</td>
<td>8.64019260</td>
</tr>
<tr>
<td>H180</td>
<td>3.79651940</td>
<td>2.81162600</td>
<td>9.24755380</td>
</tr>
<tr>
<td>H181</td>
<td>2.28269000</td>
<td>2.41069070</td>
<td>9.21674710</td>
</tr>
<tr>
<td>O182</td>
<td>5.07031840</td>
<td>2.19031730</td>
<td>10.30756030</td>
</tr>
<tr>
<td>H183</td>
<td>5.14246050</td>
<td>1.29651580</td>
<td>9.85989170</td>
</tr>
</tbody>
</table>
S2 truncated and optimized at BP86/def2-SV(P)
E(BP86/def2-SV(P)) = -8246.058426 hartree

Mn1	3.05933882	-1.13490653	3.71234449
Mn2	4.48864684	-1.57209595	8.57321371
Mn3	5.4430250	-1.2020693	5.24124085
Mn4	6.44907313	0.09955801	7.43948448
O5	3.54525459	-0.85699440	5.51582665
O6	5.71908099	0.50264787	5.80728188
O7	4.79994017	0.25188872	8.34544169
O8	5.80962717	-1.6638386	7.15746827
Ca9	3.53586618	1.38186765	6.59833027
C10	2.14803264	2.84880355	2.43212610
H11	1.17418269	3.21779195	2.82506450
H12	2.83053050	3.72947474	2.35170281
C13	2.7190278	1.38500149	3.43676817
O14	3.17757005	2.27199549	4.51745114
O15	2.6147356	0.6220088	3.05143359
C16	1.47645399	-0.57375256	11.44563885
H17	0.37508840	-0.55785299	11.30057301
H18	1.76994263	-1.40544124	12.11797187
C19	2.18003371	-0.65208892	10.08952559
C20	1.6420546	0.04742078	9.14341033
C21	3.2081760	-1.44243501	10.05806452
C22	2.54644457	-5.8162728	9.43705356
N23	5.2031205	-5.77293469	8.42410930
H24	5.67826611	-6.57552910	8.00689777
C25	3.83474745	-4.50134412	9.65000732
H26	3.16799683	-4.06956424	10.35909766
H27	5.37945601	-4.47215438	8.05556484
C28	6.03822434	-4.11471084	7.25249565
N29	4.58765979	-3.69349948	8.78413615
C30	4.06390849	-5.28742485	4.57406928
H31	3.20813517	-5.57679814	5.22337287
C32	3.83477962	-5.64659669	3.54569634
C33	4.17106082	-3.77750284	4.5585673
S2 truncated and refined at BP86/def2-SV(P)/EXAFS			
E(BP86/def2-SV(P)) = -8245.905852 hartree, χ² = 168.5			
S3	O52	7.13405700	-0.77846270
S3	O53	8.07108790	0.33732040
S3	C54	3.98860390	-5.70990380
S3	H55	3.55112220	-6.71460660
S3	H56	4.98092940	-5.1396510
S3	O57	3.07906700	-4.63238420
S3	O58	3.36162940	-3.48480790
S3	O59	1.88069570	-5.04578750
S3	O60	1.21105100	-0.42482070
S3	O61	2.02409770	1.50077880
S3	O62	5.01338570	-0.45844860
S3	O63	5.89660380	2.97348040
S3	O64	5.85150980	2.09148370
S3	O65	5.09971820	-2.98457780
S3	O66	1.02959510	1.18693750
S3	H76	1.02954110	0.53157080
S3	H77	0.53783460	0.87934890
S3	O68	1.98433440	2.94894440
S3	O69	2.70073210	2.85250970
S3	O70	1.41966200	2.12727660
S3	O71	3.97574740	2.71391200
S3	O72	4.48540700	2.01171670
S3	O73	4.49785280	3.51389330
S3	O74	2.65181430	-1.18752890
S3	O75	2.85371950	-2.29439250
S3	O76	1.22529970	3.16389780
S3	O77	2.40939030	-1.49256390
S3	O78	0.08021610	-3.59452930
S3	O79	0.84284420	4.25579650
S3	O80	-0.81390670	-4.09731360
S3	O81	0.05300790	-0.81870420
S3	O82	-0.09132840	1.84049980
S3	O83	0.26902030	-0.49196760
S3	O84	0.41062860	2.76785370
S3	O85	0.39211450	-3.19469050
S3	O86	1.69222760	-0.92853720
S3	O87	2.76559860	0.93164180
S3	O88	1.65436360	-0.96570050
S3	H90	8.57276880	0.05930760
S3	H91	7.44020240	4.99842080
S3	H92	2.51190730	2.85866830
S3	H93	1.22711980	0.39594190
S3	H94	4.22447750	-5.55589860
S3	H95	5.18443220	-4.94585470
S3	H96	10.24826260	0.22587490
S3	H97	4.90169130	-6.22546930

S3-outer truncated and optimized at BP86/def2-SV(P)

\[E(\text{BP86/def2-SV(P)}) = -8245.450465 \text{ hartree} \]

Mn	3.00066572	-1.20835929	3.75041286
Mn2	4.50192183	-1.64167889	8.66971562
Mn3	5.30794377	-1.31200669	5.26114433
Mn4	6.44428841	0.01710118	7.43849121
O5	3.53109200	-0.88056050	5.53988903
O6	5.71903703	0.40331072	5.82655656
O7	4.80717170	0.17966843	8.38694856
S3-outer truncated and refined at BP86/def2-SV(P)/EXAFS
E(BP86/def2-SV(P)) = -8245.264517 hartree, $\chi^2 = 72.5$
S3-inner truncated and optimized at BP86/def2-SV(P)
E(BP86/def2-SV(P)) = -7323.023714 hartree
S3-inner truncated and refined at BP86/def2-SV(P)/EXAFS

$E_{\text{BP86}/\text{def2-SV(P)}} = -7322.698782$ hartree, $\chi^2 = 98.6$
<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O45</td>
<td>1.06099460</td>
<td>-0.16623540</td>
<td>1.80331160</td>
</tr>
<tr>
<td>O46</td>
<td>3.3782910</td>
<td>-0.00849140</td>
<td>1.26881800</td>
</tr>
<tr>
<td>H47</td>
<td>4.97086640</td>
<td>3.61044030</td>
<td>-1.39049300</td>
</tr>
<tr>
<td>C48</td>
<td>4.18729910</td>
<td>2.80153690</td>
<td>-1.38149140</td>
</tr>
<tr>
<td>O49</td>
<td>2.92030310</td>
<td>3.07641260</td>
<td>-2.17056510</td>
</tr>
<tr>
<td>O50</td>
<td>4.48114160</td>
<td>1.73786030</td>
<td>-0.64856640</td>
</tr>
<tr>
<td>O51</td>
<td>-1.70081810</td>
<td>-1.05463130</td>
<td>0.95543700</td>
</tr>
<tr>
<td>H52</td>
<td>-2.08560610</td>
<td>-1.52723110</td>
<td>0.26191980</td>
</tr>
<tr>
<td>H53</td>
<td>-2.04774030</td>
<td>-0.14952550</td>
<td>1.02882810</td>
</tr>
</tbody>
</table>