Microscopic identification of the order parameter governing liquid–liquid transition in a molecular liquid

Ken-ichiro Murata and Hajime Tanaka

Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan

Edited by Pablo G. Debenedetti, Princeton University, Princeton, NJ, and approved April 2, 2015 (received for review January 18, 2015)

A liquid–liquid transition (LLT) in a single-component substance is an unconventional phase transition from one liquid to another. LLT has recently attracted considerable attention because of its fundamental importance in our understanding of the liquid state. To access the order parameter governing LLT from a microscopic viewpoint, here we follow the structural evolution during the LLT of an organic molecular liquid, triphenyl phosphite (TPP), by time-resolved small- and wide-angle X-ray scattering measurements. We find that locally favored clusters, whose characteristic size is a few nanometers, are spontaneously formed and their number density monotonically increases during LLT. This strongly suggests that the order parameter of LLT is the number density of locally favored structures and of nonconserved nature. We also show that the locally favored structures are distinct from the crystal structure and these two types of orderings compete with each other. Thus, our study not only experimentally identifies the structural order parameter governing LLT, but also may settle a long-standing debate on the nature of the transition in TPP, i.e., whether the transition is LLT or merely microcrystal formation.

Significance

Liquid–liquid transition (LLT) in single-component liquids is one of the most mysterious phenomena in condensed matter. To understand this phase transition, it is essential to elucidate the order parameter governing it. We have succeeded in accessing the structural order parameter governing LLT by simultaneously measuring small- and wide-angle X-ray scattering during the process of LLT. We identify the order parameter to be the number density of locally favored structures, whose size is a few nanometers. This suggests that the order parameter is scalar and nonconserved. This finding sheds new light on the physical nature of this unconventional transition from one liquid to another.

Author contributions: H.T. designed research; K.M. performed research; K.M. and H.T. analyzed data; and K.M. and H.T. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. Email: tanaka@iis.u-tokyo.ac.jp.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1501149112/-/DCSupplemental.
refractive index (or, density) \((9, 10, 29, 30)\), and the polarity associated with local molecular ordering \((12)\) has been suggested for LLT in TPP. There have been structural studies on LLT by X-ray and neutron scattering measurements, focusing on local liquid structures at an inter- and intramolecular scale \((36, 38, 52-54)\) and mesoscopic structures \((34, 55)\). However, there has been no experimental evidence for the presence of locally favored structures, which characterize the liquid state uniquely, or the order parameter has still not been identified from a microscopic viewpoint.

Here we study the structural change of TPP during LLT by time-resolved small- and wide-angle X-ray scattering measurements, which cover a length scale from a single molecule size \((\sim 1 \text{ nm})\) to more than tens of nanometers. We show, to our knowledge, the first direct evidence for the presence of LFS and the temporal increase upon the liquid I-to-liquid II transformation. Furthermore, we also find an indication of the formation of microcrystallites during LLT. However, we reveal that LFS and microcrystallites have different sizes and growth kinetics, indicating that although they sometimes appear simultaneously during the process of LLT, LFT itself is driven by the formation of LFS and not by that of microcrystallites. We also discover that LFS are destroyed upon crystallization, clearly indicating not only that these two types of orderings are competing with each other but also that LFS is a structure unique to the liquid state. Our findings provide a comprehensive view on the long-standing controversy on the origin of the glacial phase, which was discovered by Kivelson and his coworkers \((29, 30)\), and show that the fraction of LFS may be the relevant order parameter of LLT. This suggests that a liquid can have a spatiotemporal hierarchical structure at a low temperature, contrary to the common picture of a high-temperature liquid where the structure is random and homogeneous beyond the molecular size.

Results and Discussion

Results of Small-Angle X-Ray Scattering. We show in Fig. 1A the temporal change of the scattering function \(I(q)\) in a small-angle regime during LLT at the annealing temperature \(T_a = 212\,\text{K}\). The experimental details are described in Materials and Methods. We quenched a liquid from \(T = 293\,\text{K}\) to \(T_a\) within 5 min and then followed the time evolution of \(I(q)\). The raw data covering not only a small-angle but also a wide-angle regime are shown in Fig. S1. \(I(q)\) exhibits complex temporal evolution during LLT. In the final state of LLT at 560 min, there is a distinct Guinier regime \((56)\) in \(I(q)\), implying the existence of LFS. To analyze the \(I(q)\) at a low-\(q\) region, we basically consider the following two contributions in the light of our TOP model \((49)\): (i) scattering from an LFS, \(I_{\text{LFS}}(q)\), and (ii) scattering from large-scale spatial fluctuations of the local number density of LFS, \(S\), induced by the cooperativity in the formation of LFS, \(I_S(q)\). The latter is related to the development of macroscopic spatial fluctuations observed during LLT. Hence, we formulate the scale-dependent fluctuations associated with local ordering and depression of spinodal decomposition (SD)-type transformation. These fluctuations can also be detected by X-ray scattering measurements because \(S\)

![Fig. 1. Structural evolution during LLT.](image-url)
should be coupled to the density \(\rho \) (49). Note that the density is further proportional to the electron density. On the basis of this picture, we express \(I(q) \) in a small-angle regime as follows (57):

\[
I(q) = I_S(q) + I_{LFS}(q),
\]

where \(I_S(q) \) represents the intensity of the S fluctuations and \(I_{LFS} \) the correlation length (Fig. 1E). Because the correlation length \(\xi_S \) is much longer than the length scale that is covered by our small-angle X-ray scattering measurements, we set \(\xi_S = \nu m \) and ignore its temporal change. This choice of \(\xi_S \) has no effects on our analysis because \(\xi_S \gg \frac{1}{q} \) for our q range.

Next we discuss the scattering component \(I_S(q) \). Here we assume the Ornstein–Zernike (OZ) correlation function for large-scale density fluctuations observed below \(T_{SD} \). The spinodal temperature \(T_{SS} \) of LLT is determined as 215.5 K (10). \(I_S(q) \) represents the intensity of the S fluctuations and \(\xi_S \) the correlation length (Fig. 1E). Because the correlation length \(\xi_S \) is much longer than the length scale that is covered by our small-angle X-ray scattering measurements, we set \(\xi_S = \nu m \) and ignore its temporal change. This choice of \(\xi_S \) has no effects on our analysis because \(\xi_S \gg \frac{1}{q} \) for our q range.

Results of Wide-Angle X-Ray Scattering. Next we show the time evolution of \(I(q) \) in a wide-angle regime in Fig. 1C, which is measured simultaneously with \(I(q) \) at a low-q range shown in Fig. 1A. We find that the LFS (41, 42) indicates the presence of additional structures, respectively, which are associated with LFS but with something else. IV were associated with LFS (54). However, this delay suggests that these small peaks emerging in a wide-angle regime are not associated with LFS but with something else.

The question then is, what structure is responsible for the change of \(I(q) \) in a wide-angle regime? To answer this, we focus on \(I(q) \) of liquid II prepared at higher \(T_a \) in Fig. 1A (see also the data in Fig. 4A). The peak II from a new structure formed during LLT. We show in Fig. 1D the time evolutions of \(I(q) \), which is consistent with the growth and decay of \(S(q) \) fluctuations observed with phase contrast microscopy (10) as well as time-resolved light-scattering measurements (11). Interestingly, the time evolution of \(\phi_{MC} \) is significantly slower than that of \(I(q) \) in a wide-angle regime. We find that the time evolutions of \(I(q) \) and \(\phi_{MC} \) agree well with each other despite the fact that the fittings are made independently. This proportionality between the intensity of scattering from LFS, \(I_{LFS}(q) \), and the volume fraction of LFS, \(\phi_{LFS} \), indicates that LFS changes neither their size nor electron density but only their number density increases with time. We can also see that the \(I(q) \) shows a peak around 380 min (Fig. 1D, Inset), which is consistent with the growth and decay of \(S(q) \) that indicates the existence of additional structures, which have a sharp interface in liquid II and whose size is much larger than that of the LFS. The most probable candidate is microcrystallites. Then, the increase of this contribution with increasing \(T_a \) indicates that more microcrystallites are formed at higher \(T_a \). This interpretation is also supported by the results of our calorimetric, optical birefringence, and light-scattering measurements (9, 11, 60), which all indicate the formation of microcrystallites and the increase in their amount with an increase in \(T_a \). Next we show \(T_a \) dependence of \(I(q) \) in a wide-angle regime in Fig. 2B. We find that peaks II and IV are more pronounced for higher \(T_a \) (see also the values of \(\phi_{MC} \) in Table S1). Together with the above, it may be natural to interpret that newly emerged peaks II and IV originate mainly from microcrystallites, although some contribution from LFS might be contained. We note that the size of LFS may be too small for the spatial correlation with the LFS (42). We use a small-angle regime to compare the results of the two-state model (49). The red solid lines in Fig. 1A indicate the results of the fitting. The above model functions can successively reproduce the experimental data. An example of the fitting for the data at 10 min is shown in Fig. 1B. The fact that the LFS cluster has a rough interface indicates that the LFS is made of at least several molecules and thus has a complex shape.
growth front of a liquid II droplet but stop growing after being included in the droplet (see SI Text for the details).

Formation of Locally Favored Structures and Microcrystallites. To elucidate the ordering behavior during LLT in more detail, we also investigate the temporal evolution of I(q) at various T_a. As shown in Fig. 2A, more microcrystallites are formed during LLT at higher T_a. This indicates that when analyzing I(q) at low q, we need to consider an additional contribution from microcrystallites in Eq. 1: I(q) = I_{LFS}(q) + I_{S}(q) + I_{MC}(q), where I_{MC}(q) is the contribution from microcrystallities. In Fig. 3A, we show as an example the time evolution of I(q) in a small-angle regime during the LLT at T_a = 218 K. Actually, I(q) at q < 0.4 nm^{-1} increases rapidly with time in the late stage and obeys the Porod law in the final state. However, it is almost impossible to separate I_{MC}(q) and I_{S}(q) due to the limitation of our q range. So, we need to make an assumption. Here we assume that the scattering from microcrystallities is much more dominant than that from spatial fluctuations of the concentration of LFS. This should be reasonable because (i) the density change is far more significant for crystallization than for the formation of LFS and (ii) the correlation length of microcrystallities is much shorter than that of LFS spatial fluctuations and, thus, the former has a larger scattering contribution than the latter in our q range. Then, we can assume

\[I(q) \sim I_{MC}(q) = I_{MC}(0) \Delta r \int C(r) \frac{\sin(qr)}{qr} r^2 dr, \]

where D_c and \(\xi_{MC} \) are the spatial dimensionality and the characteristic size of microcrystallites, respectively. We tentatively set \(\xi_{MC} = 300 \text{ nm} \) although there is no firm basis for this. What can be confident about is the relation of \(\xi_{LFS} \sim 1.7 \text{ nm} < \xi_{MC} \sim \xi_S \) (see also refs. 9, 10). This relation, although not rigorous, is sufficient for estimating the size of LFS. The results of the fitting are indicated by red solid lines in Fig. 3A, indicating that the experimental data can be well described by the above model. The fittings yield R_D, D_c and I_{LFS}(0) of the LFS as \(\sim 3 \text{ nm} \), \(\sim 2.3, \) and \(\sim 0.17 \text{ cm}^{-1} \), respectively, independent of T_a (Table S1). This stability of LFS suggests that it is a well-defined local structural element and its number density (S) can be regarded as the order parameter governing LLT. This order parameter monotonically increases during LLT, indicating its nonconserved nature, consistent with the two-order-parameter model (20, 49).

In Fig. 3B, we show the time evolutions of the normalized I_{LFS}(0) and \(\phi_{MC} \) during the transformation at various T_a s. The values used for the normalization at each T_a are listed in Table S1. The sequential ordering, LLT first and then microcrystal formation, observed at 212 K (Fig. 1C), is also confirmed for all T_a s irrespective of the type of phase transformation, NG- or SD type. As shown in Fig. 3C, \(\Delta r \) monotonically increases with decreasing T_a. We also find an interesting relation between D_c and \(\phi_{MC} \) in the transformation process. Fig. 3D shows the temporal change of D_c during LLT, indicating a sharp change of D_c from 2 to 3 (see the arrows in Fig. 3D). Note that D_c = 3 in Eqs. 6 and 7 corresponds to the Debye–Anderson–Brumberger function whose q dependence obeys the Porod law, representing the scattering from randomly distributed clusters with a sharp interface (61). This suggests that the onset of the change in D_c reflects the formation of microcrystals in the process. We also confirm that this onset time t_0 is in good agreement with that of \(\phi_{MC} \) (Fig. 3D, Inset), again suggesting a strong correlation between the formation of microcrystallites and the changes in a wide-angle regime in the annealing process (Fig. 2A and B).

In the early stage, D_c has the value of about 2, independent of T_a. In Eqs. 6 and 7, this corresponds to the OZ correlation function whose formula is already given in Eq. 2 although the value of \(\xi_{MC} \) should be different from that of \(\xi_S \). Thus, it is reasonable to consider that D_c = 2 does not come from I_{MC}(q) but rather from I_S(q). We note that these two length scales cannot be distinguished in our measurements because of the limited q range. For NG-type LLT (at 216 and 218 K), however, D_c is expected to be 3 because a droplet structure with a sharp interface is observed with phase contrast microscopy. This discrepancy may be caused by the experimental limitation that our q range is too high compared with the characteristic wavenumber of such a macroscopic structure. Thus, we can access only the tail part of LFS.

Fig. 2. Microcrystallites coexisting with LFS. (A) T_a dependence of I(q) of liquid II in a small-angle regime. The scattering at q > 0.4 nm\(^{-1}\) comes from LFS, whereas the scattering at q < 0.4 nm\(^{-1}\) comes from microcrystallites. Here the slope of the Porod law (\(I(q) \propto q^{-4} \)) is also indicated. (B) T_a dependence of I(q) in a wide-angle regime.

Fig. 3. Structural evolution during LLT at various T_a s. (A) Time evolution of I(q) in a small-angle regime during LLT at T_a=218 K. The data are vertically shifted for clarity. The blue filled circles show I(q) of liquid II at 241 min. The contribution from the wide-angle scattering is subtracted from the data as in Fig. 1A. The red solid curves represent the best fit of the relation I(q) = I_{LFS}(q) + I_{S}(q) + I_{MC}(q) with Eqs. 6 and 7. The shoulder around 1 nm\(^{-1}\) is the scattering contribution from LFS. The scattering signal in the light blue region is mainly from long-range density fluctuations associated with LLT in the early stage, and from microcrystallites in the late stage. (B) Time evolutions of the normalized I_{LFS}(0) and \(\phi_{MC} \) for various T_a s. For 212, 213, and 214 K, we used an equation describing SD-type ordering as the fitting function (20). For 216 and 218 K, where NG-type LLT proceeds, we used a Kolmogolov–Avrami equation to describe the evolution (20). The solid curves indicate the best fit to I_{LFS}(0) whereas the dash-dot curves correspond to \(\phi_{MC} \) (C) T_a dependence of the delay time, \(\Delta t = T_{MC} - T_{LS} \). See text for the definition of T_{LS} and T_{MC}. (D) T_a dependence of the temporal change of D_c. Each arrow indicates the onset of the change in D_c, i.e., the onset of microcrystal formation. (Inset) Relation between the onset time of \(\phi_{MC} \) and T_{MC}, and that of D_c, t_0 indicating the relation t_0 \sim T_{MC}.
the scattering from droplets, which may be a cause for a small value of D_2, even for NG-type LLT.

Crystallization Process of Liquid II. Finally, we study the crystallization process of liquid II upon heating, focusing on the behaviors of LFS and microcrystallites. In Fig. 4A and B, we show $I(q)$ of liquid II in a small-angle and wide-angle regime, respectively, during the heating process of liquid II formed at $T_0 = 214$ K. There are only minor changes in a small-angle regime below 223 K unlike the case in the annealing measurement (Fig. 2A), whereas peaks II and IV in a wide-angle regime constantly grow upon heating, as in the case of Fig. 2B. Above 228 K, drastic changes start to take place in both small-angle and wide-angle regimes: $I(q)$ of LFS (0.3 $e^{-q} < 3$ nm$^{-1}$) starts to decrease at 228 K and finally disappears at 233 K. We note that these behaviors are linked to the emergence of many Bragg peaks at 228 K and their complete developments at 233 K in a wide-angle regime, respectively. We quantitatively analyzed this change in the small-angle regime, using the above model function. The results are shown in Fig. 4C. Both $I_{\text{LFS}}(0)$ and ϕ_{LFS} decrease upon heating, suggesting that the crystallization process proceeds while destroying LFS. The difference in the T dependence between $I_{\text{LFS}}(0)$ and ϕ_{LFS} may be due to inhomogeneous distribution of LFS under coexistence with crystals. In particular, we find the co-existence of the Bragg peaks and the LFS halo at 226 K, suggesting that the liquid state can survive as long as LFS persist. This indicates that the LFS act against the growth of microcrystallites and have a frustration effect on crystallization. Similar situations were reported by numerical simulations and experiments of systems with competing orderings (20, 62, 63). The Bragg peak at $q = 10.8$ nm$^{-1}$ (at 228 K) continuously grows from peak II resulting from microcrystallites (Fig. 4B, Inset), suggesting that large (bulk) crystals may be formed from microcrystallites. Although the growth of microcrystallites is detected only in a wide-angle regime during the heating process, its sign is expected to be observed in a small-angle regime but below our q range. We note that the little change in $I(q)$ below $q < 0.2$ nm$^{-1}$ in Fig. 4A is not necessarily inconsistent with the growth of microcrystallites, because the growth may cause the change only in the Guinier regime and not in the Porod regime. This point should be studied carefully in the future by accessing a lower q range.

Another important point is the structural characteristic of microcrystallites. At 223 K, i.e., even at a rather higher temperature, besides peaks II and IV we observe only a few broad peaks (shown by the arrows in Fig. 4B), which are attributed to microcrystallites. This implies that microcrystallites are not big enough to produce sharp diffraction peaks. According to the X-ray and ab initio study by Hernandez et al. (64), the unit cell of TPP crystal has a disk-like shape (lattice constant: $a = 37.77$ Å, $b = 32.71$ Å, $c = 5.729$ Å). This may explain why the scattering from the $a-b$ plane is much weaker compared with that from the c direction [e.g., peaks II and IV (64)]: Strong correlation along the $a-b$ plane of the crystal requires a much longer length than that along the c direction. So, small microcrystallites can produce only a part of the Bragg peaks of the bulk crystal.

Conclusions

To conclude, we show, to our knowledge, the first experimental evidence that nanometer-size locally favored structures are formed upon LLT and their number density is the order parameter of LLT, although generality of a link of the formation of LFS to LLT and the origin of its cooperativity still need to be clarified. Our study also indicates that the controversy on the nature of the transformation in TPP originates from the fact that two different types of orderings, LLT and microcrystall formation, proceed almost simultaneously. We successfully separate the two types of orderings by directly following the process of their formation; LLT takes place first, followed by crystallization.

We speculate that the formation of microcrystallites during LLT observed in these systems is a consequence of a lower crystal-liquid interfacial energy for liquid II than for liquid I, which was confirmed for TPP (65). The interface tension should be associated with the spatial gradient of the order parameters (density and local structure) across the interface. We speculate that for TPP a smaller density difference of liquid II/crystal than liquid I/crystal lowers the nucleation barrier. The formation of microcrystallites associated with LLT is also observed in other liquids: l-butanol (13), germanium (17), and aqueous organic solutions (6-8). The above scenario might be widely applicable to these cases.

Materials and Methods

The sample used in this measurement is TPP purchased from Acros Organics and used after extracting only a crystallizable part to remove impurities. Time-resolved small- and wide-angle X-ray scattering (SWAXs) measurements were performed by using SAXSs camera (Anton Paar) in the q range from 0.08 nm$^{-1}$ to 27 nm$^{-1}$. Because the collimating system in this camera is of line-focus type, raw data (particularly in a small-angle regime) are smeared (57). We desmeared raw scattering data, or transformed raw data to their ideal scattering profile, which should be obtained from an ideal point focus system whose primary beam is expressed by the delta function, using the primary beam profile and Saxxquant 3.0 software. We determined the absolute scattering intensity by using water as the reference. The value of the scattering intensity at $q = 0$ of water is known as $I(0) = 0.01632$ cm$^{-1}$ at 293 K (66). The X-ray exposure time is 10 min in all measurements, which is short enough compared with the entire transformation process. The measurement temperature in the capillary cell is calibrated by the melting point of n-octane (217 K). The contribution of scattering from a capillary tube in which a sample is sealed is subtracted from scattering data.

![Fig. 4. Crystallization process from a glassy state of liquid II. (A) Temperature dependence of $I(q)$ of liquid II (prepared at $T_0 = 214$ K) in a small-angle regime, in the heating process. The increase of $I(q)$ around $q = 0.3$ nm$^{-1}$ below 228 K means that the effect of $I(q)$ gradually weakens (the decrease of ϕ_{LFS}) upon heating. (B) The same as A in a wide-angle regime. The data are vertically shifted and the data for 233 K are displayed separately for clarity. (Inset) Enlarged figure of the peak II region. (C) Temperature dependence of $I_{\text{LFS}}(0)$ (red filled circles) and ϕ_{LFS} (blue filled circles) obtained from the analysis of the result in A.](image-url)
ACKNOWLEDGMENTS. We thank John Russo for critical reading of our manuscript. This study was partly supported by Grants-in-Aid for Scientific Research (S) and Specially Promoted Research from the Japan Society for the Promotion of Science.