The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center

Michael T. Englander,a,b,1 Joshua L. Avins,b,2,3 Rachel C. Fleisher,b,3 Bo Liu,1 Philip R. Effrain,a,4 Jianniang Wang,b,5 Klaus Schulten,c,d,e,1 Thomas S. Leyh1, Ruben L. Gonzalez Jr.b,6 and Virginia W. Cornishb,6

*Integrated Program in Cellular, Molecular and Biomedical Sciences, Department of Chemistry, and †Department of Chemistry, Columbia University, New York, NY 10027; ‡Center for Biophysics and Computational Biology, †Department of Physics, and ‡Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and †Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Edited by Ignacio Tinoco, Jr., University of California, Berkeley, CA, and approved March 24, 2015 (received for review January 8, 2015)

The cellular translational machinery (TM) synthesizes proteins using exclusively L- or achiral aminoacyl-tRNAs (aa-tRNAs), despite the presence of D-amino acids in nature and their ability to be aminoacylated onto tRNAs by aa-tRNA synthetases. The ubiquity of L-amino acids in proteins has led to the hypothesis that D-amino acids are not substrates for the TM. Supporting this view, protein engineering efforts to incorporate D-amino acids into proteins using the TM have thus far been unsuccessful. Nonetheless, a mechanistic understanding of why D-aa-tRNAs are poor substrates for the TM is lacking. To address this deficiency, we have systematically tested the translation activity of D-aa-tRNAs using a series of biochemical assays. We find that the TM can effectively, albeit slowly, accept D-aa-tRNAs into the ribosomal aa-tRNA binding (A) site, use the A-site D-aa-tRNA as a peptidyl-transfer acceptor, and translocate the resulting peptidyl-D-aa-tRNA into the ribosomal peptidyl-tRNA binding (P) site. During the next round of continuous translation, however, we find that ribosomes carrying a P-site peptidyl-D-aa-tRNA partition into subpopulations that are either translationally arrested or that can continue translating. Consistent with its ability to arrest translation, chemical protection experiments and molecular dynamics simulations show that P site-bound peptidyl-D-aa-tRNA can trap the ribosomal peptidyl-transferase center in a conformation in which peptidyl transfer is impaired. Our results reveal a novel mechanism through which D-aa-tRNAs interfere with translation, provide insight into how the TM might be engineered to use D-aa-tRNAs, and increase our understanding of the physiological role of a widely distributed enzyme that clears D-aa-tRNAs from cells.

The high fidelity of protein synthesis has historically been attributed to the cumulative accuracy with which aaRSs aminoacylate amino acids onto tRNAs (11) and with which the ribosome repetitively selects and incorporates aa-tRNAs in the order dictated by the mRNA (1–3). Once an aa-tRNA has been incorporated into the ribosomal aa-tRNA binding (A) site, the ribosome positions the carbonyl carbon of the ester bond linking the nascent polypeptide to the peptidyl-tRNA bound at the ribosomal peptidyl-tRNA binding (P) site for nucleophilic attack by the α-amino group of the amino acid moiety of the newly incorporated A-site aa-tRNA and catalyzes the peptidyl-transfer reaction (12). Following peptidyl transfer, the newly deacylated P-site tRNA and the newly formed A-site peptidyl-tRNA carrying the nascent polypeptide that has been extended by one amino acid are translocated together with the mRNA into the ribosomal tRNA exit (E) site and the P site, respectively, preparing the ribosomal complex for the next round of the translation elongation cycle. It is within this framework that the speed and accuracy with which the TM incorporates L-amino acids into proteins is evaluated. Therefore, a widely distributed enzyme that clears D-aa-tRNAs is of translational physiological utility to a widely distributed enzyme that clears D-aa-tRNAs from cells.

The authors declare no conflict of interest.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1Present address: Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104.
2Present address: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
3J.L.A. and R.C.F. contributed equally to this work.
4Present address: Department of Anesthesiology, Yale University, New Haven, CT 06520.
5Present address: MSCF Program, Tepper School of Business, Carnegie Mellon University, New York, NY 10004.
6To whom correspondence may be addressed. Email: rlg2118@columbia.edu or vc114@olumbia.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424712112/-/DCSupplemental.

Significance

Utilization of the translation machinery (TM) to incorporate unnatural amino acids (UAAs) to create polymers with novel function holds great promise for synthetic biology. Many useful UAAs, however, are not substrates for the TM, yet the mechanistic bases for the TM’s ability to discriminate against UAAs remain unknown. Here we elucidate the mechanistic basis for the impaired incorporation efficiency of D-amino acids. We show that the ribosome discriminates the chirality of the amino acid within its peptidyl-transferase center (PTC). Our results demonstrate a novel mechanism through which D-aminoacyl-tRNAs (D-aa-tRNAs) interfere with translation, provide insight into how the TM might be engineered to use D-aa-tRNAs, and suggest additional physiological utility to a widely distributed enzyme that clears D-aa-tRNAs from cells.
proteins has been extensively investigated (1–3). Although the ability of the TM to incorporate D-amino acids into proteins has been similarly, albeit less extensively, investigated in various in vitro translation systems, these studies have found that D-amino acids are incorporated with zero or low incorporation efficiencies.

Early studies using a cell-free, extract-based translation system devoid of DTD showed that D-Tyr-trNA\textsubscript{TYR} (i.e., a wild-type trNA\textsubscript{TYR} that had been purified from cells and that presumably contained all of its naturally occurring posttranscriptional modifications) could be incorporated by the TM, but with only an ∼17% efficiency relative to L-Tyr-trNA\textsubscript{TYR} prepared with the same natural tRNA\textsubscript{TYR} (8). Biochemical studies with these same aa-tRNAs demonstrated that D-Tyr-trNA\textsubscript{TYR} bound more weakly to elongation factor (EF) Tu than L-Tyr-trNA\textsubscript{TYR} and that D-Tyr was incorporated into the nascent polypeptide by the ribosome at a slower rate and with a lower yield than L-Tyr (13). More recent studies have used engineered suppressor tRNAs (i.e., in vitro transcribed tRNAs lacking all posttranscriptional modifications that read through stop or sense codons) and have reported D-amino acid incorporation efficiencies ranging from 0% to greater than 40% (4, 5, 14, 15), depending on the in vitro translation system used (i.e., comprised of a cell extract or of fully purified components), the identities of the engineered tRNA and D-amino acid used, and the inclusion or exclusion of DTD.

Motivated by the observation that the TM can incorporate D-amino acids into proteins but does so with relatively low incorporation efficiencies (4, 5, 14, 15), we sought to elucidate at which step(s) during the elongation cycle D-amino acids are discriminated against by the TM and determine the mechanism through which this discrimination occurs. To this end, we have prepared D-aa-tRNAs and evaluated their performance as substrates for the TM during discrete steps of the elongation cycle using a highly active in vitro translation system composed of purified translation components and lacking DTD (16). Our results demonstrate that the TM can effectively, albeit slowly, incorporate a D-aa-tRNA into the A site, use the A-site D-aa-tRNA as a peptidyl-transfer acceptor, and translocate the resulting A-site peptidyl-D-aa-tRNA into the P site. During the next round of continuous translation, however, the P-site peptidyl-D-aa-tRNA in a subpopulation of elongating ribosomes fails to act as a peptidyl-transfer donor and induces a robust translation arrest event. The remaining subpopulation of elongating ribosomes can continue translating, suggesting that D-amino acids can be efficiently incorporated into full-length proteins by the TM. Consistent with its ability to induce translation arrest, chemical protection experiments and molecular dynamics (MD) simulations demonstrate that the presence of a D-amino acid at the C terminus of the nascent polypeptide chain can induce conformational changes within the ribosome that stabilizes the peptidyl-transferase center (PTC) in an inactive conformation.

Results

D-aa-tRNAs Are Incorporated by the TM But Can Arrest Actively Translating Ribosomes. We investigated the ability of D-aa-tRNAs to be incorporated into short peptides by the TM in a highly purified, highly active in vitro translation system (16) devoid of DTD. First, the yields and rates of synthesis of [35S]-Met-D-Phe and [35S]-L-Phe dipeptides were compared by measuring the percent of f-[35S]-Met-trNAMet converted to peptide product versus time using electrophoretic TLC (eTLC) (17). In these experiments, D- or L-Phe cyanomethyl ester was charged onto natural, posttranscriptionally modified tRNAPhc using the Flexizyme ribozyme (18) (Figs. S1 and S24). Teritary complexes of EF Tu, GTP, and aa-tRNAs [EF-Tut(GTP)aa-tRNAs] were delivered to limiting quantities of ribosomal initiation complexes. Initiation complexes were prepared by assembling ribosomes bearing f-[35S]-Met-trNAMet at the ribosomal P site on a variant of the mRNA encoding bacteriophage T4 gene product 32 that commences with Met-Phe-Lys as the first 3 of the 20 amino acids that this variant mRNA encodes. Successful delivery of ternary complexes to ribosomal initiation complexes resulted in the formation of elongating ribosomes, or elongation complexes (ECs). In agreement with the published literature (19), 87% of fMet was converted to the control fMet-L-Phe dipeptide within the first 15-s time point (Fig. 1 A and B and Table S1). Consistent with previous reports that D-Phe is a substrate for the TM (14), D-Phe-trNAPhc reached a nearly identical endpoint as L-Phe-trNAPhc in an EF Tu catalyzed (Fig. S2 B and C) dipeptide synthesis reaction, albeit one with an apparent rate of synthesis of fMet-D-Phe dipeptide k_{app} of 0.020 s-1 (Fig. 1 A and B and Table S1), a rate that is three orders of magnitude slower than reported rates of protein synthesis with natural substrates (20 peptide bonds per second) (19).

Having demonstrated that D-Phe-trNAPhc can be successfully incorporated into dipeptide, we included a third amino acid, Lys, tRNALys, and performed tripeptide synthesis reactions. Surprisingly, but perhaps explaining early reports of the poor incorporation efficiency of D-Tyr on natural tRNATYR (8, 13) and more recent reports of the poor incorporation efficiency of D-Phe on an engineered tRNA (14), synthesis of [35S]-Met-D-Phe-Lys tripeptide does not go to completion. Instead the reaction plateaus with an apparent endpoint of only 18% fMet converted to fMet-D-Phe-Lys tripeptide with a concomitant accumulation of fMet-D-Phe dipeptide and an apparent rate of 0.004 s-1 (Fig. 1 C and D and Table S1). Analysis using reverse-phase HPLC and synthetic marker fMet-D-Phe and fMet-D-Phe-Lys peptides confirmed that D-Phe was indeed incorporated into the product di- and tripeptides (Fig. S2D).

![Fig. 1. D-Phe-trNAPhc exhibits translation disorders during peptide elongation. (A) Synthesis of dipeptide f-[35S]-Met-L-Phe (Left) and f-[35S]-Met-D-Phe (Right) versus time. Reaction products were separated using eTLC. (B) Plot of the fraction of f-[35S]-Met converted to f-[35S]-Met-X versus time where X = L-Phe (black squares) or D-Phe (gold squares) from A. Experiments were run in duplicate, and the SE between the two measurements is reported. (C) Synthesis of tripeptide f-[35S]-Met-L-Phe-Lys (Left) and f-[35S]-Met-D-Phe-Lys (Right) versus time. Reaction products were separated using eTLC. (D) Plot of the fraction of f-[35S]-Met converted to f-[35S]-Met-X-Lys versus time where X = L-Phe (black squares) or D-Phe (gold squares) from C. Experiments were run in duplicate, and the SE between the two measurements is reported. (E) Synthesis of f-[35S]-Met-D-Phe-Lys tripeptide and f-[35S]-Met-D-Phe-Lys-Glu tetrapeptide. Translation reactions were allowed to proceed for 30 min, and reaction products were separated using eTLC.](https://www.pnas.org/content/112/19/6039.fighelpers/6039.F1.png)
We next examined the ability of the TM to undergo a fourth round of elongation and synthesize an fMet-D-Phe-Lys-Glu tetrapeptide. Inclusion of Glu-tRNA_C and S₆ in our standard peptide synthesis reactions did not increase the yield of the fMet-D-Phe-Lys tripeptide beyond what we observed in the tripeptide synthesis reactions but did result in full conversion of the fMet-D-Phe-Lys tripeptide that was synthesized to fMet-D-Phe-Lys-Glu tetrapeptide (Fig. 1E). Thus, during continuous translation, ECs carrying fMet-D-Phe-tRNA^{Phe} apparently partition into two subpopulations, a nonproductive subpopulation that is translationally arrested and a productive subpopulation that is competent to continue translation. Notably, the observation of this latter subpopulation strongly suggests that D-amino acids can be incorporated into full-length proteins by the TM. We were next motivated to explain the reduced yield that we observed in the fMet-D-Phe-Lys tripeptide synthesis reaction.

P Site-Bound Peptidyl-D-aa-tRNAs Arrest Translation by Blocking the PeptidylTransferase Reaction. One explanation for the decreased yield of fMet-D-Phe-Lys tetrapeptide synthesis could be premature dissociation of fMet-D-Phe-tRNA_{Phe} from ECs. To test this possibility, we used nitrocellulose filter binding assays to measure the percent of f[-³⁵S]-Met-D-Phe-tRNA_{Phe} that remains bound to ECs as a function of time under conditions identical to those used for our dipeptide synthesis reaction (Fig. 2A). These experiments demonstrate that fMet-D-Phe-tRNA_{Phe} does not dissociate from ECs at a rate that is appreciably different from that of fMet-L-Phe-tRNA_{Phe} (0.0003 s⁻¹ vs. 0.0005 s⁻¹, respectively) (Fig. 2A and Table S1) or that is competitive with the observed rate of fMet-D-Phe-Lys tetrapeptide synthesis (0.004 s⁻¹) (Fig. 1C and Table S1). Indeed, inspection of the reaction time courses demonstrates that at the 10 min time point, fMet-D-Phe-Lys tetrapeptide synthesis has nearly plateaued at an 18% yield (Fig. 1C and D), while at the same time point nearly all of the fMet-D-Phe-tRNA_{Phe} remains stably bound to ECs (Fig. 2A).

Having established that fMet-D-Phe-tRNA_{Phe} remains stably bound to ECs during the course of fMet-D-Phe-Lys tetrapeptide synthesis, we next sought to determine whether translocation of fMet-D-Phe-tRNA_{Phe} from the ribosomal A site to the P site was impaired during the translocation step of translation elongation, wherein an EC advances by one codon along the mRNA. Fig. 2B and C and Table S1 report the results of a standard primer extension inhibition, or toeprinting, assay that maps the location of ECs on their mRNAs (16). These data demonstrate that fMet-D-Phe-tRNA_{Phe} can be translocated from the A site to the P site of ECs with a yield of 78% (versus 82% translocation of fMet-L-Phe-tRNA_{Phe}), thereby failing to account for the 18% yield in the fMet-D-Phe-Lys tetrapeptide synthesis reaction.

Based on the observation that fMet-D-Phe-tRNA_{Phe} can be fully translocated from the A site to the P site of ECs, we next asked whether P site-bound fMet-D-Phe-tRNA_{Phe} is impaired as a peptidyl-transfer donor. To test this possibility, we reacted ECs carrying fMet-D-Phe-tRNA_{Phe} at the P site with the antibiotic puromycin (Pmn). Pmn is an aminocyclopentane-nucleotide mimic of the 3' terminus of aa-tRNA that has been extensively used to monitor the reactivity of P site-bound peptidyl-tRNAs as peptidyltransfer donors (20). In striking agreement with the yield of the fMet-D-Phe-Lys tetrapeptide synthesis reaction (Fig. 1D and Table S1), the fMet-D-Phe-Pmn synthesis reaction also plateaued at 18% conversion of fMet to fMet-D-Phe-Pmn (Fig. 2D and E and Table S1). These data strongly suggest that the translation arrest that we observe in ECs carrying P site-bound fMet-D-Phe-tRNA_{Phe} arises from a significant defect in the ability of the D-Phe at the C terminus of the fMet-D-Phe-tRNA_{Phe} to participate as a donor in the peptidyltransferase reaction.

We next explored the generality of our results by characterizing the activities of D-Val-tRNA_{Val} and D-Lys-tRNA_{Lys} in the same series of biochemical assays that we used to characterize the activity of D-Phe-tRNA_{Phe} (Fig. S3–S6). These data demonstrate that all three D-aa-tRNAs participate in dipeptide synthesis reactions that go to completion (Fig. 1A and B, Fig. S3, and Table S1) and participate in tetrapeptide synthesis reactions that result in the formation of tetrapeptide products whose yields plateau at values that are well below that expected for complete tetrapeptide synthesis (Fig. 1C and D, Fig. S4, and Table S1). The reduced yields exhibited by all three D-aa-tRNAs in the tetrapeptide synthesis reactions are accompanied by concomitant accumulation of dipeptide products. Furthermore, these results show that all three fMet-D-aa-tRNAs remain stably bound to ECs over the course of tetrapeptide synthesis (Fig. 2F, Figs. S5 and S6, and Table S1) and that, with the possible exception of fMet-D-Lys-tRNA_{Lys}, can be efficiently translocated from the A site to the P site of ECs (Fig. 2B and C, Figs. S5 B and C and S6 B and C, and Table S1). Finally, during the next round of continuous translation, we find that all three fMet-D-aa-tRNAs arrest a significant subpopulation of ECs by failing to participate as peptidyl-transfer donors within the P site of the PTC (Fig. 2D and E, Figs. S5 D and E and S6 D and E, and Table S1). Interestingly, the percentage of the total EC population that is translationally arrested depends on the side chain of the D-amino acid (Fig. 1, Figs. S3 and S4, and Table S1), ranging from 42% for D-Lys to 82% for D-Phe to 89% for D-Val. This observation suggests that the presence of a peptidyl-D-aa-tRNA in the P site can stabilize a conformation of the ribosome that is precluded from undergoing peptidyl transfer and that the percentage of the total EC population that is stabilized in
this translationally arrested conformational state depends on the structure of the D-amino acid’s side chain.

P Site-Bound Peptidyl-D-aa-tRNAs Can Stabilize a Conformation of the Ribosome That Cannot Support Peptidyl Transfer. To directly test our hypothesis that the peptidyl-D-aa-tRNA can stabilize the ribosome in a conformation that cannot support peptidyl transfer, we subjected ECs carrying either fMet-L-Phe-tRNA\(^{\text{Phe}}\) or fMet-D-Phe-tRNA\(^{\text{Phe}}\) in the P site to a dimethyl sulfate (DMS)-based chemical probing assay. This assay can detect differences between the secondary structures of ribosomal RNA (rRNA) nucleotides in ECs carrying P site-bound peptidyl-daa-tRNA and those carrying the corresponding P site-bound peptidyl-L-aa-tRNA and allowed us to assess whether such differences could be detected when comparing the two ECs. Using this assay, we found statistically significant differences in the secondary structures of 23S rRNA nucleotides A2058, A2059, and A2062 in ECs carrying P site-bound peptidyl-daa-tRNA versus those carrying the corresponding P site-bound peptidyl-L-aa-tRNA (SI Experimental Procedures), providing strong evidence that these residues adopt altered conformations in the presence of fMet-D-Phe-tRNA\(^{\text{Phe}}\) relative to their conformations in the presence of fMet-L-Phe-tRNA\(^{\text{Phe}}\) (Fig. 3A and Fig. S7). Stabilization of these altered conformations of A2058, A2059, and A2062 by fMet-D-Phe-tRNA\(^{\text{Phe}}\) is allosteric, as these nucleotides are too far away from the P site-bound dipeptidyl-tRNA to directly contact it (21). Indeed, A2058, A2059, and A2062 are located at the entrance to the ribosomal nascent polypeptide exit tunnel (21), where they are expected to only contact polypeptide chains that are at least four (A2062), seven (A2059), or nine (A2058) amino acids in length (21). Interestingly, conformational rearrangements of these nucleotides are thought to be involved in nascent polypeptide-mediated translation arrest mechanisms during expression of the bacterial gene products SecM (A2058) (22), TnaC (A2058 and A2059) (23, 24), and ErnC (A2062) (25). These results support our hypothesis that the presence of a D-amino acid at the C terminus of a P site-bound peptidyl-tRNA stabilizes a conformation of the ribosome that is different from that which is stabilized in the presence of the corresponding L-amino acid. Notably, rRNA nucleotide A2082, which is located ~50 Å from the PTC in 23S rRNA helix 75, likewise adopts an altered conformation in the presence of peptidyl fMet-D-Phe-tRNA\(^{\text{Phe}}\) relative to its conformation in the presence of peptidyl fMet-L-Phe-tRNA\(^{\text{Phe}}\) (Fig. S7). The fact that A2082 is far from the PTC suggests that the presence of a P-site fMet-D-Phe-tRNA\(^{\text{Phe}}\) allosterically modulates not only the conformation of the exit tunnel entrance (ETE) but also the conformation of other, more distal regions of the 50S subunit.

To gain further insight into how the D-amino acid at the C terminus of a P site-bound peptidyl-tRNA modulates the structure and dynamics of the ribosome relative to its corresponding L-amino acid, we constructed a reduced model of the EC, including only residues within 60 Å of the PTC and only the acceptor stems of the P- and A-site tRNAs, and performed all-atom MD simulations on this construct. In agreement with the results of the chemical probing experiments (Fig. 3A and Fig. S7), MD simulations of ECs carrying a P site-bound fMet-D-Phe-tRNA\(^{\text{Phe}}\) reveal that the average conformations of A2058, A2059, and A2062 deviate from those which were observed in MD simulations of ECs carrying a P site-bound fMet-L-Phe-tRNA\(^{\text{Phe}}\) (Fig. 3B and Fig. S8). Additionally, differences between the average conformations of 23S rRNA nucleotides G2505 and U2506, which would not have been detected by DMS-based chemical probing experiments, and A2063, which might not have led to changes in the accessibility of this nucleotide to DMS, are observed (Fig. 3B, Fig. S8, and Movie S1). Significantly, our MD simulations show a longer distance between the α-amino of the A-site L-aa-tRNA and the ester group of the P site-bound D-aa-tRNA versus the α-amino of the A-site L-aa-tRNA and the ester group of the P site-bound L-aa-tRNA (Fig. 3B and Fig. S8). This result suggests that the presence of a P site-bound peptidyl-D-aa-tRNA prevents the ribosome from appropriately positioning the reactive moieties for catalysis (Fig. S8).

Discussion

We have mechanistically characterized the progression of D-Phe, D-Lys, and D-Val esterified onto natural, fully modified tRNAs through the elongation cycle of protein synthesis (Fig. 4). Although the rate of dipeptide formation is orders of magnitude slower with the D-aa-tRNAs compared with their L-aa-tRNA counterparts (13), the D-aa-tRNAs are nonetheless incorporated with yields that are comparable to their corresponding L-aa-tRNAs, demonstrating that D-aa-tRNAs can fully participate as acceptors in the peptidyl-transferase reaction. We show that the newly decylated tRNAs in the P site and the newly formed peptidyl-D-aa-tRNAs in the A site are able to translocate into the E site and P site, respectively. During continuous translation, however, P site-bound peptidyl-D-aa-tRNAs partition ECs into two subpopulations, a productive subpopulation that is competent for further rounds of translation elongation and a nonproductive subpopulation that is translationally arrested. This arrested subpopulation, which results in truncated polypeptide products containing a D-amino acid at their C termini due to the failure of the P site-bound peptidyl-D-aa-tRNA to act as a peptidyl-transferase donor, provides the most likely explanation for the poor unnatural amino acid incorporation efficiencies that have been observed during attempts to synthesize proteins containing D-Tyr (8), D-Trp (14), D-Arg (14), and possibly other unnatural amino acids (5).

The methods used here establish an experimental framework for characterizing the precise mechanisms through which unnatural amino acids interfere with the function of the TM. The use of a purified in vitro translation system guaranteed the absence of DTD. Precautions were taken to ensure that tRNAs used to deliver unnatural amino acids to the TM were fully decylated and devoid of their corresponding natural amino acids before aminoacylation.
Mechanistic scheme for the partitioning of ECs carrying a P site-bound peptidyl-D-aa-tRNA into translationally arrested and translationally competent subpopulations. Delivery and incorporation of D-aa-tRNA result in the effective formation of an EC carrying a P site-bound peptidyl-D-aa-tRNA. During the next round of continuous translation, the presence of a P site-bound peptidyl-D-aa-tRNA partitions ECs into two subpopulations, a productive subpopulation that is competent for further rounds of translation elongation and a nonproductive subpopulation that is translationally arrested.

The mechanistic insights gained from our biochemical and computational studies may help guide future efforts to engineer the TM so as to increase the efficiency with which D-amino acids, and possibly other unnatural amino acids, are incorporated into full-length proteins. The side-chain dependence of the fractional subpopulation of elongating ribosomes that are not translationally arrested by the presence of a P site-bound peptidyl-D-aa-tRNA suggests that steric effects involving the side chain of the C-terminal D-amino acid prevent the ribosome from appropriately translating unperturbed, resulting in the successful incorporation of D-amino acids into full-length proteins.

The effects we observe here are strikingly similar to those observed by Green and coworkers in ECs carrying a P site-bound peptidyl-tRNA in which A76 at the 3' terminus of the tRNA has been replaced by 2'-deoxy-A76 [peptidyl-(dA76)tRNA] (27). Specifically, tripeptide synthesis reactions analogous to those performed here showed that incorporation of an aa-(dA76)tRNA results in the effective formation of an EC that carries a P site-bound dipeptidyl-(dA76)tRNA and that, during the next round of continuous translation, results in a tripeptide yield that is reduced relative to what is observed for the incorporation of the corresponding aa-tRNA. Based on a previous report (17) and a series of follow-up experiments (27), Green and coworkers ultimately propose that P site-bound dipeptidyl-(dA76)tRNA induces a slow, inactivating conformational rearrangement of the PTC that competes with the next round of translation and results in the observed reduction in tripeptide synthesis yields (27). Although it is possible that competition from a slow, inactivating conformational rearrangement that is similar, or even identical, to that proposed by Green and coworkers underlies the partitioning of ECs carrying a P site-bound peptidyl-D-aa-tRNA into the translationally arrested and translationally competent subpopulations that we observe here, more detailed structural and biochemical studies of ECs carrying peptidyl-(dA76)tRNAs and peptidyl-D-aa-tRNAs will be needed to investigate this possibility.

Our results show that in addition to its ability to block peptidyl transfer, a P site-bound peptidyl-D-aa-tRNA can allosterically modulate the conformation of the ETE. This observation raises the intriguing possibility that peptidyl-D-aa-tRNA-mediated translation arrest at the PTC is coupled to stabilization of particular conformations of the ETE. Such a possibility is consistent with the observation that at least one antibiotic that binds at the PTC and inhibits peptidyl transfer (i.e., chloramphenicol) also perturbs the conformations of distally located nucleotides at the ETE (28, 29) and that resistance to such antibiotics can be conferred by mutations at the ETE (30, 31). Indeed, at least one previously reported interpretation of these results is that the PTC and ETE are conformationally coupled such that direct stabilization of a particular PTC conformation via antibiotic binding also stabilizes a particular ETE conformation (i.e., binding of the antibiotic to the PTC stabilizes a single PTC-ETE conformer) (29). Stabilization of such a PTC-ETE conformer might result in perturbation of downstream conformational transitions that inactivate the ribosome (29). Perhaps the most compelling evidence of coupling between the PTC and the ETE, however, is provided by recent work from Mankin and coworkers demonstrating that binding of macrolide antibiotics to the ETE allosterically alters the conformation of the PTC, predisposing the ribosome for translation arrest (32). Thus, the results we present here contribute to mounting evidence that the PTC and ETE are conformationally coupled and that such coupling can be used to modulate protein synthesis.

The mechanistic insights gained from our biochemical and computational studies may help guide future efforts to engineer the TM so as to increase the efficiency with which D-amino acids, and possibly other unnatural amino acids, are incorporated into full-length proteins. The side-chain dependence of the fractional subpopulation of elongating ribosomes that are not translationally arrested by the presence of a P site-bound peptidyl-D-aa-tRNA suggests that steric effects involving the side chain of the C-terminal D-amino acid prevent the ribosome from appropriately translating unperturbed, resulting in the successful incorporation of D-amino acids into full-length proteins.

Finally, our results place added significance to the role of DTD in clearing D-amino acids that have been charged onto tRNAs in vivo. Deletion of the gene encoding DTD (ditd) in bacteria and...
eukaryotic cells results in the cytoxicity of several D-amino acids that in the presence of ddG are typically nontoxic (9). This cytoxicity has been attributed either to compromising the downstream function of proteins into which D-amino acids have been incorporated (34) or to depleting the pool of L-aa-tRNAs from cells via the misacylation of D-amino acids onto tRNAs (35). The results presented here suggest an additional mechanism that might underlie the observed cytoxicity of D-amino acids in the absence of DTD. If DTD were not clearing D-aa-tRNAs immediately upon formation, our results suggest that D-aa-tRNAs could be delivered into the A site of elongating ribosomes to form peptidyl-D-aa-tRNAs. Subsequent translocation of such peptidyl-D-aa-tRNAs into the P site would then result in elongating ribosomes that have some probability of either becoming translationally arrested or continuing to translate. Considering the likelihood that multiple D-aa-tRNAs might be incorporated by a single elongating ribosome during the translation of a single protein, it is possible that the accumulation of translationally arrested ribosomes and/or of the truncated protein products that they produce could contribute significantly to the observed cytoxicity of D-amino acids. Given that D-amino acid racemase enzymes are found in the brain (6), D-amino acids can be aminoacylated onto tRNA by aARS (8, 9), and that tRNA misacylation has been linked to neurodegenerative disorders (36), the translation disorders that we report here provide a plausible molecular mechanism that warrants future consideration as a potential underlying cause for neurodegenerative disease.

Experimental Procedures

Peptide synthesis reactions were performed in a Tri-polymix buffered composition of 50 mM Tris-acetate (pH25℃ = 7.5), 100 mM potassium chloride, 5 mM ammonium acetate, 0.5 mM calcium acetate, 3.5 mM magnesium acetate, 6 mM 2-mercaptoethanol, 5 mM putrescine, and 1 mM spermidine (16). Details regarding the preparation and purification of all reagents; the protocols used to perform and analyze the peptide synthesis, toeprinting, filter binding, Pnn, and chemical protection assays; and the procedures for performing the MD simulations can be found in SI Experimental Procedures.

ACKNOWLEDGMENTS. We thank Prof. Ya-Ming Hou and Dr. Marcel Dupasquier for the kind gift of a nucleotidyl transferase overexpression strain, Prof. David Tirsch for the gift of a phenylalanyltRNA synthetase overexpressing strain, and Prof. Takuya Ueda for the gift of a lysine-tRNA synthetase overexpression strain. We additionally thank Prof. Rachel Green, Prof. Robert Sauer, Prof. Hiroaki Suga, Dr. Luisa Cocheilla, Dr. Hani Zaher, Dr. Lucas Gartenmann Dickson, Mr. Kwok-Yan Chan, Dr. Chris Harrison, Prof. Eric Greene, and Dr. Daniel MacDougall for insightful comments, discussions, and advice. We also thank Dr. Som Mitra for his assistance analyzing the chemical probing data. Finally, we are indebted to Mr. Corey Perez and Ms. Amanda Olivo for managing the V.W.C. and R.L.G. laboratories. This work was supported in part by funds to V.W.C. and R.L.G. from Columbia University as well as National Institutes of Health (NIH) Grant R01 GM090126 (to R.L.G. and V.W.C.), Burroughs Wellcome Fund Grant CABS 1004856 (to R.L.G.), NIH Grant R01 GM106158 (to T.S.L.), and NIH Grant 5P41GM104601 and National Science Foundation Grant PHY0822613 (to K.S.). M.T.E. and R.C.F. were supported by the Training Program in Molecular Biophysics at Columbia University (T32 GM008281). This work used computer time provided by the Extreme Science and Engineering Discovery Environment (XSEDE MCA130028).