Quantum dimer model for the pseudogap metal

Matthias Punk, Andrea Allais, and Subir Sachdev

We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin $S = 1/2$, charge $-e$ fermionic dimers. The model realizes a “fractionalized Fermi liquid” with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8×8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments.

The recent experimental progress in determining the phase diagram of the hole-doped Cu-based high-temperature superconductors has highlighted the unusual and remarkable properties of the pseudogap (PG) metal (Fig. 1). A characterizing feature of this phase is a depletion of the electronic density of states at the Fermi energy ($\omega = 0$), anisotropically distributed in momentum space, that persists up to room temperature.

Attempts have been made to explain the pseudogap metal using thermally fluctuating order parameters; we argue below that such approaches are difficult to reconcile with recent transport experiments. Instead, we introduce a new microscopic model that realizes an alternative perspective (3), in which the pseudogap metal is a finite temperature (T) realization of an interesting quantum state: the fractionalized Fermi liquid (FL*). We show that our model is consistent with key features of the pseudogap metal observed by both transport and spectroscopic probes.

The crucial observation that motivates our work is the tension between photoemission and transport experiments. In the cuprates, the hole density p is conventionally measured relative to that of the insulating antiferromagnet (AF), which has one electron per site in the Cu d band. Therefore, the hole density relative to a filled Cu band, with two electrons per site, is actually $1+p$. In fact, photoemission experiments at large hole doping observe a Fermi surface enclosing an area determined by the hole density $1+p$ (4), in agreement with the Luttinger relation. In contrast, in the pseudogap metal, a mysterious “Fermi arc” spectrum is observed (5–7), with no clear evidence of closed Fermi surfaces. However, despite this unusual spectroscopic feature, transport measurements report vanilla Fermi liquid properties, but associated with carrier density p, rather than $1+p$.

The carrier density of p was indicated directly in Hall measurements (8), whereas other early experiments indicated suppression of the Drude weight (9–11). Although the latter could be compatible with a carrier density of $1+p$ but with a suppressed kinetic term, the Hall measurements indicate the suppression of the Drude weight is more likely due to a small carrier density. Two recent experiments displaying Fermi liquid behavior at low p are especially notable: (i) the quasiparticle lifetime τ (T) determined from optical conductivity experiments (12) has the Fermi liquid-like dependence $1/\tau \propto (\hbar \omega)^{1/2} + (\epsilon - \epsilon_{F})^{2}T^{2} = $, with c an order unity constant; and (ii) the in-plane magnetoresponse of the pseudogap (13) is proportional to T in an applied field H, where $\tau - T^{-2}$ and b is a T-independent constant; this is Kohler’s rule for a Fermi liquid.

It is difficult to account for the nearly perfect Fermi liquid-like T dependence in transport properties of the pseudogap in a theory in which a large Fermi surface of size $1+p$ (14) is disrupted by a thermally fluctuating order. In such a theory, we expect that transport should instead reflect the T dependence of the correlation length of the order.

Moreover, a reasonable candidate for the fluctuating order has not yet been identified. The density wave (DW) order present at lower temperature in the pseudogap regime has been identified to have a d-form factor (15–18), and its temperature dependence (19–25) indicates that it is unlikely to be the origin of the pseudogap present at higher temperature. Similar considerations apply to other fluctuating order models (26) based on AF or d-wave superconductor.

We are therefore led to an alternative perspective (3), in which the pseudogap metal represents a new quantum state that could be stable down to very low T, at least for model Hamiltonians not too different from realistic cuprate models. The observed low-T DW order is then presumed to be an instability of the pseudogap metal (27–31). An early discussion (32) of the pseudogap metal proposed a state that was a doped spin liquid with “spinon” and “holon” excitations fractionalizing the spin and charge of an electron: the spinon carries spin $S = 1/2$ and is charge neutral, whereas the holon is spinless and carries charge $+e$. However, this state is incompatible with the sharp “Fermi arc” photoemission spectrum (7) around the diagonals of the Brillouin zone: the spin liquid has no sharp excitations with the quantum number of an electron and so will only produce broad multiparticle continua in photoemission.

Instead, we need a quantum state that has long-lived electron-like quasiparticles around a Fermi surface of size p, even though such a Fermi surface would violate the Luttinger relation of a Fermi liquid. The fractionalized Fermi liquid (FL*) (33) fulfills these requirements.

Significance

The most interesting states of the copper oxide compounds are not the high-temperature superconductors with high critical temperatures. Instead, the novelty lies primarily in the higher temperature metallic “normal” states from which the superconductors descend. Here, we develop a simple, intuitive model for the physics of the metal at low carrier density, in the “pseudogap” regime. This model describes an exotic metal that is similar in many respects to simple metals like silver. However, the simple metallic character coexists with “topological order” and long-range quantum entanglement previously observed only in exotic insulators or fractional quantum Hall states in very high magnetic fields. Our model is compatible with many recent observations, and we discuss more definitive experimental tests.

Author contributions: M.P., A.A., and S.S. performed research; and M.P., A.A., and S.S. wrote the paper.

Reviewers: A.G., College de France; and M.O., Institute for Solid State Physics, University of Tokyo.

The authors declare no conflict of interest.

Author contributions: M.P., A.A., and S.S. performed research; and M.P., A.A., and S.S. wrote the paper.

Reviewers: A.G., College de France; and M.O., Institute for Solid State Physics, University of Tokyo.

1To whom correspondence should be addressed. Email: sachdev@h.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512206112/-/DCSupplemental.
Fractionalized Fermi Liquids

The key to understanding the FL* state is the topological nature of the Luttinger relation for the area enclosed by the Fermi surface. For the case of a conventional FL state, Oshikawa (34) provided a nonperturbative proof of the Luttinger relation by placing the system on a torus, and computing the response to a single flux quantum threaded through one of the holes of the torus. His primary assumption about the many-body state was that its only low-energy excitations were fermionic quasiparticles around a Fermi surface. This assumption then points to a route to obtaining a Fermi surface of a different size (35): we need a metal that, in addition to the quasiparticle excitations around the Fermi surface, has global topological excitations nearly degenerate with the ground state, similar to those found in insulating spin liquids (36, 37). In the context of the doped spin liquids noted earlier, we obtain a FL* state when the holon and spinon bind to form a fermionic state with spin $\Sigma = 1/2$ and charge $+e$ (a possible origin of the binding is the attraction because of confinement but because of a short-range attraction. The phase factors η depend upon a gauge choice: for the choice made by RK, $\eta_0 = 1$ and $\eta_{\tilde{r}} = (-1)_{\tilde{r}}$. The second species of dimers are “fermions,” $F_{\alpha \beta}$, with $\alpha = \uparrow, \downarrow$, which carry spin $S = 1/2$ and charge $+e$ relative to the half-filled insulator, and are present with a density p. Each fermionic dimer maps to a bound state of a holon and a spinon, which we take to reside on a bonding orbital between nearest-neighbor sites:

$$D_{\eta i}^\dagger |0\rangle \Rightarrow Y_{\eta i} \left(c_{\eta i}^\dagger c_{\eta i+\Gamma_{i,j}} + c_{\eta i}^\dagger c_{\eta i+\Gamma_{i,j}}^\dagger \right) |0\rangle / \sqrt{2},$$

where $c_{\eta i}$ is the electron annihilation operator on Cu site i with spin α, $|0\rangle$ is the empty state with no dimers or electrons. The phase factors $Y_{\eta i}$ depend upon a gauge choice: for the choice made by RK, $Y_{\eta i} = 1$ and $Y_{\eta_{\tilde{r}}} = (-1)_{\tilde{r}}$. In a three-band model (57, 58), the state $F_{\eta i}^\dagger |0\rangle$ can be identified with the $S = 1/2$ state of a hole delocalized over a O site and its two Cu neighbors, considered by Emery and Reiter (59, 60).

Let us stress our assumption that spinon and holon bind not because of confinement but because of a short-range attraction. Therefore, the bound state (2) can break up at an energy cost of order the antiferromagnetic exchange, and the holon and spinon appear as gapped, free excitations that would contribute two-particle continuum spectra to photoemission or neutron scattering.

Quantum Dimer Models

Quantum dimer models (49–51) have been powerful tools in uncovering the physics of spin liquid phases, and of their instabilities to conventional confining phases (52–54). Dimer models of doped spin liquids have also been studied (49, 55, 56), but all of these involve doping the insulating models by monomers that carry charge $+e$, but no spin. Here, we introduce an alternative route to doping, in which the dopants are dimers, carrying both charge and spin.

The Hilbert space of our dimer model is spanned by the close-packing coverings of the square lattice with two species of dimers (Fig. 2), with an additional twofold spin degeneracy of the second species. It can be mapped by an appropriate similarity transform (49) to a truncation of the Hilbert space of the t-J model.

The first species of dimers are bosons, $D_{\eta i}$, which reside on the link connecting the square lattice site $i \equiv (i_x,i_y)$ to the site $i + \tilde{r}$, where $\tilde{r} = k \equiv (1,0)$ or $\tilde{r} \equiv (0,1)$. These are the same as the dimers in the Rokhsar–Kivelson (RK) model (49), to which our model reduces at zero doping. When connecting to the Hilbert space of the t-J model, each bosonic dimer maps to a pair of electrons in a spin-singlet state:

$$D_{\eta i}^\dagger |0\rangle \Rightarrow Y_{\eta i} \left(c_{\eta i}^\dagger c_{\eta i+\Gamma_{i,j}} + c_{\eta i}^\dagger c_{\eta i+\Gamma_{i,j}}^\dagger \right) |0\rangle / \sqrt{2}.$$
spectra. These fractionalized states can be included in our dimer model by expanding the Hilbert space to include monomers, but we will not do so here because we focus on the lowest energy sector. As a consequence, there is no monomer Fermi surface (42) in the present model of the pseudogap metal.

The states 1 and 2 are precisely those that dominate in the two-site dynamical mean field theory (DMFT) analysis of the Hubbard model by Ferrero et al. (61); they correspond to the S and 1+ states of ref. 61, respectively, which are shown in figure 15 of this study to be the dominant components of the ground-state wave function at small p (see also ref. 62). The DMFT analysis captures important aspects of pseudogap physics, but with a coarse momentum resolution of the Brillouin zone. In DMFT, the states on the two-site cluster interact with a self-consistent environment in a mean-field way: the equations have so far only been solved at moderate temperatures and the nature of the ultimate ground state at low doping remains unclear. Our approach – produced by allowing for diagonal dimers (54, 65 – illustrated in Fig. 3, acting on the dimer Hilbert space de-

The original RK model can be mapped to a compact U(1) lattice gauge theory (50, 52, 53). In the doped dimer models studied earlier, the monomers then carry U(1) gauge charges of ±1 on the two sublattices. By the same reasoning, we see that the F_{qy} fermions carry no net gauge charge, but are instead dipoles un-

We envisage a state where the confinement length scale of the compact U(1) gauge field is large, and specifically, larger than the spacing between the monomer Fermi surface at small p, (42) in the present model of the pseudogap metal. Thus, there is no monomer Fermi surface in the case of zero winding numbers. We extend these results to non-zero fermion density by interpolation in SI Appendix.

Our numerical study explores the dispersion of a single fermion over a range of values of the hopping parameters. We show in Fig. 4 the dispersion ε(k) for a single F_{qy} fermion for hopping parameters obtained by a perturbative connection on a t-J model appropriate for the cuprates at the RK point V=J=1. SI Appendix has similar results for additional parameter values.

The minima of the fermion dispersion were found at different points in the Brillouin zone, but there was a wide regime with minima near momenta k=(±π/2, ±π/2). In fact, for the momenta points allowed on a 8×8 lattice, the global minimum of the dispersion in Fig. 4 is exactly at (π/2, π/2). However, it is also clear from the figure that the dispersion is not symmetric about the antiferromagnetic Brillouin zone boundary, and that any interpolating function will actually have a minimum at π+π/2=3π/2. However, it is also clear from the figure that the dispersion is not symmetric about the antiferromagnetic Brillouin zone boundary, and that any interpolating function will actually have a minimum.

where all such terms must preserve the dimer constraint and spin rotation invariance. Purely fermionic dimer models with similar dimer hopping terms have been considered by Pollmann et al. (68).

Results

We now present results for the dispersion and quasiparticle residue of a single fermion described by $H_{RK}+H_1$; the interaction terms in H_2 play no role here. At a small p, the interactions between the fermionic dimers can be treated by a dilute gas expansion in p, whereas the dominant contributions to the quasiparticle dispersion and residue arise from the interaction between a single fermion and the close-packed sea of bosonic dimers. We computed the latter effects by exactly diagonalizing the singe fermion Hamiltonian on lattice sizes up to 8×8 with periodic boundary conditions, with the largest matrix of linear size 76,861,458. The RK model has two conserved winding numbers in a torus geometry, and these conservation laws also hold for our model: all results presented here are for the case of zero winding numbers. We extend these results to non-zero fermion density by interpolation in SI Appendix.

Our numerical study explored the dispersion of a single fermion over a range of values of the hopping parameters. We show in Fig. 4 the dispersion ε(k) for a single F_{qy} fermion for hopping parameters obtained by a perturbative connection on a t-J model appropriate for the cuprates at the RK point V=J=1. SI Appendix has similar results for additional parameter values.

The minima of the fermion dispersion were found at different points in the Brillouin zone, but there was a wide regime with minima near momenta k=(±π/2, ±π/2). In fact, for the momenta points allowed on a 8×8 lattice, the global minimum of the dispersion in Fig. 4 is exactly at (π/2, π/2). However, it is also clear from the figure that the dispersion is not symmetric about the antiferromagnetic Brillouin zone boundary, and that any interpolating function will actually have a minimum at (km, km) with km<π/2. A dispersion with these properties is of experimental interest because it will lead to formation of hole pockets near the minima for the dimer model with a nonzero density of F_{qy} fermions. Fig. 5 shows that changes to the dispersion from a 6×6 lattice are smaller than 5%.
Our numerical results also yield interesting information on the quasiparticle residue of the electron operator. This is nontrivial even for the case of a single fermionic dimer, because, unlike a free electron, a fermionic dimer can only move by “resonating” with the background of bosonic dimers, as is clear from Fig. 3. In the presence of a finite density of fermionic dimers, there will be an additional renormalization from the interaction between the fermions that we will not compute here. We do not expect this to have a significant \(k \) dependence around the hole pockets. In the dimer model subspace defined by the states in Eqs. 1 and 2, the electron annihilation operator on site \(i \) has the same matrix elements as the following:

\[
C_{ia} = \frac{\epsilon_{a\beta}}{2} \left(F_{iam}^a D_{\alpha\beta} + F_{i-\alpha,\beta}^a D_{\alpha m} + F_{i\beta m}^a D_{\alpha\beta} + F_{i-\alpha,\beta}^a D_{\alpha m} \right),
\]

relating the site to the four bonds around it (\(\epsilon_{a\beta} \) is the unit anti-symmetric tensor). Then the quasiparticle residue is obtained by computing the following:

\[
Z(k) = |\langle \Psi_F(k) | C_{ia} (-k) | \Psi_{R K} \rangle|^2,
\]

where \(| \Psi_{R K} \rangle \) is the ground state of the undoped model \(H_{R K} \), and \(| \Psi_F(k) \rangle \) is the ground state of \(H_{R K} + H_1 + H_2 \) in the sector with one \(F_{am} \) fermion and total momentum \(k \) [the energy difference between these two states is \(\varepsilon(k) \)]. We show the values of \(Z(k) \) in Fig. 6, with parameters the same as those in Fig. 4. Note the strong suppression of the residue in the second antiferromagnetic Brillouin zone; line-cut plots of \(Z(k) \) in Fig. 5 highlight this suppression. We found this suppression of \(Z(k) \) to be a robust property in the regime of hopping parameters (with \(t_1 > 0 \)) that had minima in the fermion dispersion along the Brillouin zone diagonal. This result implies that the quasiparticle residue will be highly anisotropic around the hole pockets that appear in the finite fermion density case, with little spectral weight along the “back side” of the pocket.

It is also possible to study the system in perturbation theory in \(t_1/J \). We begin with the model with one fermion at \(t_1 = t_2 = t_3 = 0 \). The problem reduces to that of finding the ground state of \(H_{R K} \) in the presence of a stationary fermionic dimer: it is possible to do this analytically at the solvable RK point \(V = J \), as described in SI Appendix. The fermion hoppings at nonzero \(t_i \) is then computed perturbatively in a single-particle tight-binding model, with hopping matrix elements determined by overlaps of the wave functions with a stationary fermion. At the RK point, each matrix element reduces to the evaluation of a dimer correlation function in the classical problem of close-packed dimers on the square lattice (69). The computation of these matrix elements, and the resulting fermion dispersion, is described in SI Appendix. This perturbative dispersion is found to be in good agreement with our exact diagonalization results only for \(|t_1/J| \leq 0.01 \). This rather small upper limit is likely a consequence of the gaplessness of the RK point, so that higher order corrections involve noninteger powers of \(t_1/J \).

Discussion

In this article, we develop a new class of doped dimer models featuring coherent electronic quasiparticle excitations on top of a spin-liquid ground state. The scenario considered here is based on the assumption that spinons and holons form bound states on nearest-neighbor sites. These fermionic bound states with spin \(S = 1/2 \) and charge +e form a Fermi sea with density \(p \) and are observable as electronic quasiparticles in experiments. Such a Fermi sea realizes a topological quantum state called the “fractionalized Fermi liquid” (33), whose Fermi surfaces encloses...
Fermi liquid-like transport observed in recent optical (12) and momentum $\pi/2$. Line cuts of $Z(\mathbf{k})$ are in Fig. 5.

Fig. 6. Quasiparticle residue of a charge $+e$ fermion computed from Eq. 6 for the parameters in Fig. 4, for a 8×8 lattice. The symmetry of the wave function yields $Z(\mathbf{k}) = 0$ for all points between $\{x, 0\}$ and $(\pi, 0)$. Line cuts of $Z(\mathbf{k})$ are in Fig. 5.

an area distinct from the Luttinger value in a conventional Fermi liquid.

The undoped RK model on the square lattice features a deconfined spin liquid ground state only at the special RK point $J = V$, whereas the ground state breaks lattice symmetries from this point. Consequently, our numerical results of a single fermionic dimer coupled to the background of bosonic dimers focused at the RK point to uncover properties of the FL* state. At finite densities of fermionic dimers, we expect that our model features a FL* phase in an extended parameter range. However, similar to the RK model, we also expect a wide parameter regime where our model has a ground state with broken lattice symmetries. We leave the computation of the phase diagram of our model for future study.

The main implication of our model of the pseudogap metal (in zero applied magnetic field and at moderate T below T^*) is that there are four well-formed pockets of charge $+e$ fermions carrying spin $S = 1/2$ in the vicinity of (but not exactly centered at) momentum $(\pi/2, \pi/2)$. The total area enclosed by these pockets is $2\pi^2/3$. Clearly, such pockets can immediately explain the Fermi liquid-like transport observed in recent optical (12) and magnetoresistance (13) measurements. We also note that the hopping of electrons between CuO$_2$ layers requires to break either fermionic or bosonic dimers in our model, which naturally accounts for the observed gap in c-axis optical conductivity.

Experiments that involve removing one electron from the system (such as photoemission) have difficulty observing the back sides of the pockets because of the small (but nonzero) quasiparticle residue $Z(\mathbf{k})$ noted above (Fig. 6). We propose this feature as an explanation for the photoemission observation of ref. 7 in the pseudogap metal. For further studies of these pockets, it would be useful to use experimental probes of the Fermi surface that keep the electrons within the sample (70): possibilities include ultrasound attenuation, optical Hall, and Friedel oscillations.

Our theory can be loosely summarized by “the electron becomes a dimer in the pseudogap metal,” as in Eq. 5: with a spin-liquid background present, there can be no single-site state representing an electron, and a dimer is the simplest possibility.

The main advantage of our quantum dimer model over previous treatments (39, 40, 42–44) of fractionalized Fermi liquids (FL*) is that it properly captures lattice-scale dispersions, quasiparticle residues, and Berry phases: all of these are expected to play crucial roles in the crossovers to confinement and associated symmetry breaking at low T (48, 52, 53). Given the elongated dimer and dipolar nature of the electron, Ising-nematic order (71) is a likely possibility; the d-form factor density wave (15, 16) is then a plausible instability of such a nematic metal. The interplay between the monopole-induced crossovers to confinement (52, 53) and the density wave instabilities of the hole pockets (30, 31) can also be examined in such dimer models. The onset of superconductivity will likely require additional states, such as a spinless, charge $+2e$ boson consisting of a pair of empty sites.

ACKNOWLEDGMENTS. We thank J. Budich, D. Chowdhury, J. C. Davis, D. Drew, E. Fradkin, A. Georges, S. A. Kivelson, A. Lauchli, A. Millis, and E. Sorensen for valuable discussions. K. Fujita and J. C. Davis provided the phase diagram, which was adapted to produce Fig. 1. We thank R. Melko and D. Hawthorn for central processing unit time at the University of Waterloo. This research was supported by the National Science Foundation under Grant DMR-1360789, the Templeton Foundation, and Multidisciplinary University Research Initiative Grant W911NF-14-1-0003 from Army Research Office. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation. It is also supported by the European Research Council Synergy Grant Ultracold Quantum Matter and Sonderforschungsbereich Foundations and Application of Quantum Science of the Austrian Science Fund, as well as the Nano Initiative Munich.

A quantum dimer model for the pseudogap metal
Supplementary Information Appendix
Matthias Punk, Andrea Allais, and Subir Sachdev

CONNECTION TO THE t-J MODEL

A quantitative connection between the dimer model Hamiltonian and the t-J model can only be made in the limiting regime of a certain large N SU(N) antiferromagnet [52]; we also require $t \ll J$ to allow restriction to the dimer subspace in the doped case. Eventually, we hope that it will be possible to use e.g. DMFT methods [62] to make this connection. Nevertheless, it is useful, for now, to determine the relationship between the hopping parameters of the dimer and t-J model in the perturbative approach of large N and small t. We will directly work with the physical SU(2) case here.

The dimer hopping amplitudes are given by the matrix elements

\[
\begin{align*}
 t_1 &= -\langle \begin{array}{c} \downarrow \\ \downarrow \end{array} | H_0 | \begin{array}{c} \uparrow \\ \uparrow \end{array} \rangle \\
 t_2 &= -\langle \begin{array}{c} \uparrow \\ \uparrow \end{array} | H_0 | \begin{array}{c} \downarrow \\ \downarrow \end{array} \rangle \\
 t_3 &= -\langle \begin{array}{c} \uparrow \downarrow \\ \downarrow \uparrow \end{array} | H_0 | \begin{array}{c} \uparrow \downarrow \\ \downarrow \uparrow \end{array} \rangle ,
\end{align*}
\]

(S1)

where the fermonic (bosonic) dimer is represented by the black (open) ellipse and H_0 denotes the standard tight-binding hamiltonian of electrons including up to third-nearest neighbour hopping

\[
H_0 = -t \sum_{\langle ij \rangle} \left(c_{i\alpha}^\dagger c_{j\alpha} + \text{h.c.} \right) - t' \sum_{\langle \langle ij \rangle \rangle} \left(c_{i\alpha}^\dagger c_{j\alpha} + \text{h.c.} \right) - t'' \sum_{\langle \langle \langle ij \rangle \rangle \rangle} \left(c_{i\alpha}^\dagger c_{j\alpha} + \text{h.c.} \right).
\]

(S2)

Using the representation in terms of the dimer operators

\[
\begin{align*}
 \begin{array}{c} \downarrow \\ \downarrow \end{array} &= D_{i+\hat{x},y}^\dagger F_{iy\uparrow}^\dagger |0\rangle \\
 \begin{array}{c} \uparrow \\ \uparrow \end{array} &= D_{iy\uparrow}^\dagger F_{i+\hat{x},y\uparrow}^\dagger |0\rangle \\
 \begin{array}{c} \uparrow \downarrow \\ \downarrow \uparrow \end{array} &= D_{i+\hat{y},x}^\dagger F_{iy\uparrow}^\dagger |0\rangle \\
 \begin{array}{c} \uparrow \downarrow \\ \downarrow \uparrow \end{array} &= D_{i+\hat{y},x}^\dagger F_{iy\uparrow}^\dagger |0\rangle ,
\end{align*}
\]

(S3)

we can obtain expressions in terms of the electron operators via the mappings in Eqs. (1) and (2). Evaluating the matrix elements is now straightforward, and we obtain

\[
\begin{align*}
 t_1 &= -\frac{1}{2} (t + t') \\
 t_2 &= \frac{1}{2} (t - t') \\
 t_3 &= -\frac{1}{4} (t + t' + t'') ,
\end{align*}
\]

(S4)

where we used the mappings for the dimer operators in Eqs. (1) and (2). Choosing electron hopping parameters suitable for cuprates, $t'/t = -0.3$, $t''/t = 0.1$, we obtain

\[
\begin{align*}
 t_1 &= -0.35 t \\
 t_2 &= 0.65 t \\
 t_3 &= -0.2 t .
\end{align*}
\]

(S5)

The dispersion and residue with the hoppings obeying Eq. (S5) with $t = 3$ were shown in Figs. 4 and 5 in the main text, and their line cuts appear in Fig. 6.
This section contains additional plots of the energy eigenvalues and quasiparticle residues obtained by exact diagonalization of $H_{RK} + H_1$. We note that the exactly solvable RK point of the undoped mode at $V = J = 1$ can be extended to the doped case e.g. by including a nearest-neighbor repulsion $V_1 = t_1$ between the $F_{\alpha \beta}$ and $D_{\beta \gamma}$ dimers, and setting $t_2 = t_3 = 0$. However, the exact solution only yields the energy at zero momentum, and numerics are required for the full dispersion even at this point.

In Figs. S1 and S2 we show the results for $J = V = 1$ and $t_1 = t_2 = -t_3 = 1$. We also consider the effect of uniformly scaling all the t_i’s while keeping J fixed. Figs. S3 and S4 contain results for $t_1 = t_2 = -t_3 = 0.5$, while Figs. S5 and S6 contain results for $t_1 = t_2 = -t_3 = 2.0$. Note that while the general forms of the dispersion and quasiparticle residue remain the same when we uniformly scale the t_i, the finite size corrections become larger at larger t_i/J.

Lastly, in Fig. S7, we consider a set of parameters for which the minimum of the dispersion, $\varepsilon(k)$ remains on the diagonal near $(\pi/2, \pi/2)$, but the quasiparticle residue $Z(k)$ vanishes for k along the diagonal. This happens because the wavefunction of the $F_{x\alpha}$ fermions has the opposite sign of the wavefunction for the $F_{y\alpha}$ fermions; then by Eq. (5), $Z(k)$ will vanish for k along the diagonal.

As an alternative way of presenting the above data, we used the information on the dispersion, $\varepsilon(k)$, from Fig. 4, and the quasiparticle residue, $Z(k)$, from Fig. 5, and interpolated to all k in the Brillouin zone. The resulting electronic
FIG. S3. As in Fig. S1, with the parameters $t_1 = t_2 = -t_3 = 0.5$ at the RK point $V = J = 1$.

FIG. S4. As in Fig. S2, with the parameters $t_1 = t_2 = -t_3 = 0.5$ at the RK point $V = J = 1$.

FIG. S5. As in Fig. S1, with the parameters $t_1 = t_2 = -t_3 = 2$ at the RK point $V = J = 1$.
FIG. S6. As in Fig. S2, with the parameters $t_1 = t_2 = -t_3 = 2$ at the RK point $V = J = 1$.

FIG. S7. Dispersion and quasiparticles residue for $J = V = 1$, and hopping parameters $t_1 = -0.5$, $t_2 = -1$ and $t_3 = 0.5$ on a 6×6 lattice. For this case, the quasiparticle residue $Z(k)$ vanishes for k along the diagonal because the wavefunction is odd under reflections about the diagonal.

spectral weights at the Fermi energy are shown in Fig. S8 at two different doping densities.
FIG. S8. Electronic spectral functions $A(k) = Z(k) \delta(\varepsilon(k) - \mu)$ at the Fermi level obtained by interpolating the data in Figs. 4 and 5. For illustrative purposes, we replace the delta function by a Lorentzian with finite width. Chemical potentials μ are chosen to obtain doping densities of $p = 0.083$ (left) and 0.225 (right).
PERTURBATIVE COMPUTATION

This supplement will describe the perturbative evaluation of the single fermion dispersion for small t_i under the Hamiltonian $H_{RR} + H_1$ in Eq. (3) at the RK point $V = J$.

At zeroth order in the t_i, we need the ground state of a stationary fermion. This ground state is given by an equal weight superposition of all dimer configurations with the fermionic dimer in a fixed position:

$$\left| \begin{array}{c} \bar{\phi} \phi \\ \phi \end{array} \right\rangle = \frac{1}{\sqrt{N}} \left(\left| \begin{array}{c} \bar{\phi} \\ \phi \end{array} \right\rangle + \left| \begin{array}{c} \bar{\phi} \\ \phi \end{array} \right\rangle + \cdots \right),$$ \hspace{1cm} (S6)

where the fermionic dimer is represented by the red bar. The position of the fermionic dimer can be arbitrary, and so there is a large degeneracy in the ground state subspace.

Let us denote the fermionic hopping terms T_1, T_2, T_3 with matrix elements t_1, t_2, t_3 respectively. These operators T_1, T_2, T_3 lift the degeneracy of the ground state subspace. Within this subspace, the only non-zero matrix elements which are inequivalent under translations and rotations are:

$$Z_1 = \left\langle \begin{array}{c} \bar{\phi} \\ \phi \end{array} \right| T_1 \left| \begin{array}{c} \bar{\phi} \\ \phi \end{array} \right\rangle , \hspace{1cm} Z_2 = \left\langle \begin{array}{c} \bar{\phi} \\ \phi \end{array} \right| T_2 \left| \begin{array}{c} \bar{\phi} \\ \phi \end{array} \right\rangle , \hspace{1cm} Z_3 = \left\langle \begin{array}{c} \bar{\phi} \\ \phi \end{array} \right| T_3 \left| \begin{array}{c} \bar{\phi} \\ \phi \end{array} \right\rangle .$$ \hspace{1cm} (S7)

If we introduce a partition function Q that counts the number of single-flavor dimer close packing configurations with a certain number of dimers fixed, we have

$$Z_1 = Z_2 = \frac{Q \left[\begin{array}{c} \bar{\phi} \\ \phi \end{array} \right] \left[\begin{array}{c} \bar{\phi} \\ \phi \end{array} \right]}{Q \left[\begin{array}{c} \bar{\phi} \\ \phi \end{array} \right] \left[\begin{array}{c} \bar{\phi} \\ \phi \end{array} \right]}, \hspace{1cm} Z_3 = \frac{Q \left[\begin{array}{c} \bar{\phi} \\ \phi \end{array} \right] \left[\begin{array}{c} \bar{\phi} \\ \phi \end{array} \right]}{Q \left[\begin{array}{c} \bar{\phi} \\ \phi \end{array} \right] \left[\begin{array}{c} \bar{\phi} \\ \phi \end{array} \right]}.$$ \hspace{1cm} (S8)

By using a Grassmannian representation of the partition function Q we find

$$Z_1 = Z_2 = \frac{1}{2}, \hspace{1cm} Z_3 = \frac{1}{\pi}.$$ \hspace{1cm} (S9)

At this point, the problem has been reduced to a “tight-binding model” of a single fermion hopping on the links of the square lattice. So the fermion dispersion and wavefunction is determined by diagonalizing a 2×2 matrix at each momentum k:

$$H(k) = \begin{pmatrix} -2t_1Z_1 \cos(k_y) & C(k) \\ C^*(k) & -2t_1Z_1 \cos(k_x) \end{pmatrix}$$ \hspace{1cm} (S10)

with

$$C(k) = -t_2Z_2(1 + e^{ik_x})(1 + e^{-ik_x}) - t_3Z_3[(1 + e^{ik_x})(e^{ik_y} + e^{-2ik_y}) + (1 + e^{-ik_x})(e^{2ik_y} + e^{-ik_y})].$$ \hspace{1cm} (S11)

We compare this perturbative computation of the quasiparticle energy with the exact diagonalization in Fig. S9 and find good agreement at $|t_i/J| = 0.01$. At larger values of $|t_i/J|$ the perturbative computation deviates significantly from the numerics, as shown in Fig. S10.

Details of the Grassmannian approach

We use Grassmann variables to compute the function Q [70]. The partition function with no restriction can be written as

$$Q \left[\begin{array}{c} \bar{\phi} \\ \phi \end{array} \right] = \int d\eta d\bar{\eta} e^{S(\eta, \bar{\eta})},$$ \hspace{1cm} (S12)

where there is a pair $(\eta \bar{\eta})$ of Grassmann variables for every site of the lattice, and the action is quadratic. It contains a pair $(\eta \bar{\eta})$ for every colored bond in fig. S11, with unit coefficient. The circle stands for η and the cross for $\bar{\eta}$, and the arrow determines which of the two variables comes first.

When expanding the exponential, only those strings of $\eta \bar{\eta}$ and $\bar{\eta} \eta$ that contain exactly one pair for every site will contribute 1 or -1 to the integral. Pairs marked in red in fig. S11 commute with those marked in blue, and every
FIG. S9. The left panel plots the dispersion obtained from diagonalizing the 2×2 matrix in Eq. (S10), obtained from perturbation theory. The right panel compares the perturbative results (shown as the full line) with the exact diagonalization of $H_{\text{RK}} + H_1$ at $t_1 = t_2 = -t_3 = 0.01$ and $V = J = 1$. The latter results are for lattices of size 6×6 (red squares) and 8×8 (blue circles).

FIG. S10. As in Fig. S9, but at $t_1 = t_2 = -t_3 = 0.3$ and $V = J = 1$. The exact diagonalization results here are only for the 6×6 lattice (red squares).

single red pair must appear in the string. On the other hand, only a subset of the blue pairs can appear in the string, and it must form a closed packing dimer covering of the lattice, or else the string will integrate to zero. The non-trivial task is to show that the sign of the contribution will be positive. This is achieved by careful choice of the ordering structure shown by the arrows in fig. S11.
Introducing explicit integer coordinates for the lattice we have:

\[
S = \sum_{m,n} \left[\eta_{2m,2n+1} \bar{\eta}_{2m,2n} + \eta_{2m+1,2n} \bar{\eta}_{2m+1,2n+1} + \eta_{2m,2n} \bar{\eta}_{2m+1,2n+1} + \eta_{2m+1,2n} \bar{\eta}_{2m,2n+1} + \eta_{2m,2n+1} \bar{\eta}_{2m+2,2n+1} + \eta_{2m+1,2n+1} \bar{\eta}_{2m,2n+2} + \eta_{2m,2n+2} \bar{\eta}_{2m+1,2n+1} \right].
\]

(S13)

(S14)

(S15)

(S16)

(S17)

In order to simplify the action, we go to momentum space:

\[
\eta_{2m,2n} = \int dp \, dq \, e^{i(pm+qn)} \psi_{1pq}, \quad \bar{\eta}_{2m,2n} = \int dp \, dq \, e^{-i(pm+qn)} \bar{\psi}_{1pq}
\]

(S18)

\[
\eta_{2m+1,2n+1} = \int dp \, dq \, e^{i(pm+qn)} \psi_{2pq}, \quad \bar{\eta}_{2m+1,2n+1} = \int dp \, dq \, e^{-i(pm+qn)} \bar{\psi}_{2pq}
\]

(S19)

\[
\eta_{2m+1,2n} = \int dp \, dq \, e^{i(pm+qn)} \psi_{3pq}, \quad \bar{\eta}_{2m+1,2n} = \int dp \, dq \, e^{-i(pm+qn)} \bar{\psi}_{3pq}
\]

(S20)

\[
\eta_{2m,2n+1} = \int dp \, dq \, e^{i(pm+qn)} \psi_{4pq}, \quad \bar{\eta}_{2m,2n+1} = \int dp \, dq \, e^{-i(pm+qn)} \bar{\psi}_{4pq}
\]

(S21)

and we have

\[
S = \int dp \, dq \, \begin{pmatrix} \psi_{1pq} & \psi_{2pq} & \psi_{3pq} & \psi_{4pq} \end{pmatrix} \begin{pmatrix} 0 & 0 & 1-e^{ip} & 1-e^{-iq} \\ 0 & 0 & 1-e^{-iq} & -(1-e^{-ip}) \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \bar{\psi}_{1pq} \\ \bar{\psi}_{2pq} \\ \bar{\psi}_{3pq} \\ \bar{\psi}_{4pq} \end{pmatrix}
\]

(S22)

We may now use the Grassmannian representation to compute ratios of \(Q \).
Normalization

We know by symmetry that

\[A_0 = \frac{Q_{\begin{array}{c} \hline \hline \end{array}}}{Q_{\begin{array}{c} \hline \hline \end{array}}} = \frac{1}{4}, \quad (S23) \]

but it is instructive to obtain this results using the Grassmann approach. Still with reference to fig. S11 and to the discussion in the previous section, we have

\[A_0 = \langle \eta_{2m,2n}\bar{\eta}_{2m,2n+1} \rangle, \quad (S24) \]

where we have chosen the lower left vertical bond, but any other would have worked. We have

\[A_0 = \int dpdqdr \, \langle \psi_{1pq}\bar{\psi}_{4rs} \rangle = \int dpdq \, \frac{1 - e^{-iq}}{2(2 - \cos p - \cos q)} = \frac{1}{4}. \quad (S25) \]

Here we used the fact that for a quadratic action \(S = \bar{\psi}K\psi \) we have \(\bar{\psi}_{ij} = [K^{-1}]_{ji} \).

\[Z_1 \text{ and } Z_2 \]

We compute

\[A_1 = \frac{Q_{\begin{array}{c} \hline \hline \end{array}}}{Q_{\begin{array}{c} \hline \hline \end{array}}}. \quad (S26) \]

We have

\[A_1 = \langle \eta_{2m,2n}\bar{\eta}_{2m,2n+1}\eta_{2m+1,2n+1}\eta_{2m+2,2n+1} \rangle = \langle \eta_{2m,2n}\bar{\eta}_{2m,2n+1} \rangle \langle \eta_{2m+1,2n+1}\eta_{2m+2,2n+1} \rangle + \langle \eta_{2m,2n}\bar{\eta}_{2m+1,2n} \rangle \langle \eta_{2m+2,2n+1}\eta_{2m+1,2n+1} \rangle = \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{1}{8}. \quad (S27) \]

Therefore we have

\[Z_1 = Z_2 = A_1 A_0 = \frac{1}{2}. \quad (S28) \]

\[Z_3 \]

We compute

\[A_3 = \frac{Q_{\begin{array}{c} \hline \hline \end{array}}}{Q_{\begin{array}{c} \hline \hline \end{array}}}. \quad (S29) \]

We have

\[A_3 = \langle \eta_{2m,2n}\bar{\eta}_{2m+1,2n}\eta_{2m+2,2n}\bar{\eta}_{2m+2,2n+1} \rangle = \langle \eta_{2m,2n}\bar{\eta}_{2m+1,2n} \rangle \langle \eta_{2m+2,2n}\bar{\eta}_{2m+2,2n+1} \rangle + \langle \eta_{2m,2n}\bar{\eta}_{2m+2,2n+1} \rangle \langle \eta_{2m+1,2n}\bar{\eta}_{2m+1,2n+1} \rangle = \frac{1}{4} \times \frac{1}{4} + \int dpdq \, \frac{e^{-ip}(1 - e^{-iq})}{2(2 - \cos p - \cos q)} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} + \left(\frac{1}{\pi} - \frac{1}{4} \right) \times \frac{1}{4} = \frac{1}{4\pi}. \quad (S30) \]
and hence

\[Z_3 = \frac{A_3}{A_0} = \frac{1}{\pi}. \]

(S31)