The expected utility of vaccinating can be increased by either decreasing estimates of the probability of negative side effects (the second term in the equation above) or increasing estimates of positive effects of vaccines (the first term in the equation).

Efforts to directly counter vaccination myths often take aim at the second term. However, we know that parents who oppose vaccinations have strong beliefs about the side effects of vaccines—presumably, these beliefs are the reason that they do not vaccinate their children. Since attempts to influence attitudes are often thwarted by people’s tendency to discount or ignore evidence contrary to their existing attitudes (a phenomenon known as confirmation bias (10)), such manipulations may be largely ineffective. Indeed, it is known that direct attempts to dispel myths risk perpetuating those myths through their repetition, as this repetition breeds familiarity and may strengthen people’s memory for incorrect information (11, 12). Moreover, it is difficult, even in principle, to provide compelling evidence for the absence of risk (13). For these reasons, it is often easier to replace an existing belief with an alternative belief rather than attempting to directly counter it (11).

These considerations led us to consider an alternative approach to using scientific information to change attitudes: convincing parents that the probability of disease contraction is high if they do not vaccinate their children and that the consequences of getting these illnesses are severe. This approach is analogous to that taken by researchers who have effectively corrected participants’ erroneous beliefs not by refuting incorrect elements of these beliefs, but rather by replacing those elements with new information (11).

In this study, we succeeded in altering people’s vaccination attitudes by drawing attention to the consequences of not vaccinating their children. Participants were randomly assigned to the disease risk intervention, the autism correction intervention, or a control intervention (in a between-subjects design). Participants assigned to the disease risk condition read three pieces of information taken from the CDC website in randomized order: (i) a paragraph written from a mother’s perspective about her child contracting measles, (ii) a picture of a child with measles, and (iii) a picture of a child with autism.

Significance

Myths about the safety of vaccinations have led to a decline in vaccination rates and the reemergence of measles in the United States, calling for effective provaccine messages to curb this dangerous trend. Prior research on vaccine attitude change suggests that it is difficult to persuade vaccination skeptics and that direct attempts to do so can even backfire. Here, we successfully countered people’s anti-vaccination attitudes by making them appreciate the consequences of failing to vaccinate their children (using information provided by the Centers for Disease Control and Prevention). This intervention outperformed another that aimed to undermine widespread vaccination myths.

Author contributions: Z.H., D.P., J.E.H., and K.J.H. designed research; Z.H. and D.P. performed research; Z.H. and D.P. analyzed data; and Z.H., D.P., J.E.H., and K.J.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Z.H. and D.P. contributed equally to this work.

To whom correspondence should be addressed. Email: horne2@illinois.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504019112/-/DCSupplemental.
child with mumps, and an infant with rubella, and (iii) three short warnings about how important it is for people to vaccinate their children. Participants assigned to the autism correction condition read information taken from the CDC website summarizing recent research showing that vaccines do not increase the risk of autism in children. Participants assigned to a control condition read an unrelated vignette about a scientific topic.

Participants’ vaccine attitudes were compared before and after these interventions in a two-phase design (Fig. 1). Both parents and nonparents shared similar attitudes toward vaccines at pretest and both groups’ attitudes were very similarly affected by our interventions (Intervention Results; see Fig. 4). Therefore, we pooled across parents and nonparents in our analyses. We found that the disease risk intervention yielded a positive shift in participants’ attitudes toward vaccines, even among those participants who were initially most skeptical (Fig. 2).

This finding suggests that education about the risks posed by failing to vaccinate can have meaningful effects on vaccination attitudes. Moreover, this intervention was significantly more effective than corrective information aimed at dispelling myths about vaccines and autism. Despite a slight reduction in participants’ erroneous beliefs that vaccines cause autism and a strong negative relationship between provaccination attitudes and the belief that vaccines cause autism (\(r = -0.70 \)), the autism correction intervention did not significantly influence general attitudes toward vaccines compared with the control condition. We did not observe any backfire effect (6, 7) when participants’ attitudes were examined immediately after the autism correction intervention; however, these effects may be more likely to emerge after a delay (11, 14).

Future research should examine the effects of these types of interventions after a delay. Indeed, many vaccination decisions will not be made immediately after exposure to educational interventions, calling for additional research to assess the risk of backfire effects and to evaluate the longevity and robustness of the improvements in vaccine attitudes that we observed. Still, even a temporary improvement in parents’ vaccination attitudes could increase vaccination rates if such interventions were incorporated into doctor–parent interactions (5).

Effective educational messages are needed to overcome parents’ misplaced skepticism toward vaccines and convince them to vaccinate their children. Failure to overcome this skepticism places the lives of thousands of children at risk. This study offers a potential solution based on scientifically grounded education. Rather than attempting to dispel myths about the dangers of vaccinations, we recommend that the very real dangers posed by serious diseases, like measles, mumps, and rubella, be emphasized. This approach would allow media reports and health professionals to improve vaccine attitudes by communicating accurate information about disease risks without repeating inaccurate information that may further fuel antivaccination attitudes (11, 14). Our results suggest that parents are likely to be responsive to warnings (in the form of graphic pictures and anecdotes) of the severity of these diseases, and that heightened awareness of the risks associated with failure to take preventive action will improve attitudes toward vaccinations.

Experiment

Vaccine Scale. We developed a five-item vaccine attitude scale intended to measure people’s general attitudes toward vaccines (SI Appendix). Examples of scale response items are, “The risk of side effects outweighs any potential benefits of vaccines” (reverse coded) and “I plan to vaccinate my children.” The scale was highly reliable (\(\alpha = 0.84 \)) and found to correlate with past vaccine behaviors and intentions to vaccinate, supporting its validity. Among parents (\(n = 137 \)), pretest vaccination attitude scores predicted participants who were initially most skeptical (Fig. 2). Parents who were initially most skeptical (Fig. 2).

Experiment

Vaccine Scale. We developed a five-item vaccine attitude scale intended to measure people’s general attitudes toward vaccines (SI Appendix). Examples of scale response items are, “The risk of side effects outweighs any potential benefits of vaccines” (reverse coded) and “I plan to vaccinate my children.” The scale was highly reliable (\(\alpha = 0.84 \)) and found to correlate with past vaccine behaviors and intentions to vaccinate, supporting its validity. Among parents (\(n = 137 \)), pretest vaccination attitude scores predicted whether or not participants had ever refused a vaccination recommended for their children (\(r = -0.453, P < 0.001 \)) and whether they had elected to have their children vaccinated for the flu in the past year (\(r = 0.340, P = 0.001 \)). In addition, attitude scores also predicted whether participants had themselves elected to receive the flu vaccine in the past year (\(r = 0.252, P < 0.001; n = 314 \)).

Participants. In the first part of this study, we recruited 811 participants through the Amazon Mechanical Turk work distribution website. This research was approved by the University of California, Los Angeles Institutional Review Board (IRB#12-000063) and participants were presented with consent information at the beginning of the study. Based on their responses to attention check questions, 720 of 811 were invited to return for the second half of the study. On day 2, 341 participants returned, and 315 participants passed attention checks on day 2 and composed the final sample for the study. The distribution is not differ between participants who completed the study (\(n = 341 \), mean = 4.86, SD = 1.04) and those eligible participants who did not return (\(n = 379 \), mean = 4.84, SD = 1.03; \(t(718) = -0.306, P = 0.76, d = 0.02, 95\% \) highest density interval of the difference = -0.108, 0.181). Fig. 3 shows the distribution of pretest vaccine attitudes among the 315 participants who passed attention checks on day 2 and composed the final sample for the study. The distribution is strongly peaked at the maximum score of six, although there is a long tail, indicating that many participants held less favorable attitudes.

Materials and Procedure. On day 1, participants were presented with the vaccine attitudes scale and asked to rate their agreement with each item on a six-point scale ranging from “strongly disagree” to “strongly agree.” Participants also responded to an additional question about the link between vaccinations and autism (autism link question). Participants then answered questions about their beliefs on several different moral issues, such as abortion and euthanasia. These additional questions were meant to serve as distractors to prevent participants from identifying the purpose of the study on day 1 and prevent selection effects for participants returning for day 2 of the study. Finally, attention check questions were embedded within each of these scales to ensure that participants were properly attending to the task. For example, one attention question stated, “We just want to make sure you are paying attention. Select ‘somewhat disagree’ from the options below to pass this attention check.”

Fig. 1. Vaccine attitude change scores across conditions (posttest – pretest). A one-way ANOVA revealed a significant difference between the three conditions [\(F(2,312) = 5.287, P = 0.006 \)]. This effect was driven by the disease risk condition, which led to larger changes in vaccination attitudes than either the control [\(t(212) = 3.04, P = 0.003, d = 0.41, 95\% \) highest density interval (HDI); a Bayesian estimate of the most credible values of the difference] (15) = 0.058, 0.292] or the autism correction condition [\(t(203) = 2.41, P = 0.017, d = 0.33, 95\% \) HDI of the difference = 0.009, 0.269]. The effect of the autism correction condition was no greater than that observed in the control condition [\(t(209) = 0.358, P = 0.721, d = 0.05, 95\% \) HDI of the difference = –0.066, 0.138].
At the end of their participation on day 1, participants who passed attention check questions were invited to return for the second part of the experiment on the following day (day 2). They were required to wait until the next day at 9:00 AM Pacific Standard Time before they could complete the second part of the study. Access to the study was closed at 8:00 PM Pacific Standard Time that day.

On day 2, participants were randomly assigned to read the information contained in the disease risk, autism correction, or control interventions. Participants assigned to the disease risk condition read three pieces of information in randomized order: (i) a paragraph written from a mother’s perspective about her child contracting measles, (ii) a picture of a child with measles, a child with mumps, and an infant with rubella, and (iii) three short warnings about how important it is for people to vaccinate their children. Participants assigned to the autism correction condition read information summarizing recent research showing that vaccines do not increase the risk of autism in children. The materials presented in these two conditions were adapted from those used in a prior study (6) and were originally compiled from information on the CDC website (www.cdc.gov). Participants assigned to the control condition read an unrelated vignette about a scientific topic (also used in a prior study) (6). For all three conditions, timing controls ensured that participants spent a sufficient amount of time reading the materials provided to them. After reading their assigned materials, participants were again asked to complete the vaccine attitude scale followed by the same distractor questions as on day 1. Finally, participants were asked several questions about their past vaccine behaviors and their intentions.

Fig. 2. Vaccine attitude change scores across conditions (posttest − pretest) divided into terciles based on pretest score. A 3 × 3 factorial ANOVA compared conditions among each tercile and revealed significant main effects of condition \(F(2,306) = 5.362, P = 0.005, \eta^2 = 0.034 \) and tercile \(F(2,306) = 32.10, P < 0.001, \eta^2 = 0.173 \). A significant interaction was also observed between these two factors \(F(4,306) = 3.735, P = 0.006, \eta^2 = 0.047 \), indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom \(t(65) = 3.23, P = 0.002, d = 0.79, 95\% \text{ HDI of the difference} = 0.126, 0.682 \) and middle \(t(77) = 2.76, P = 0.007, d = 0.62, 95\% \text{ HDI of the difference} = 0.094, 0.473 \) terciles. Finally, in the top tercile, change scores were slightly negative for all three conditions, which might be expected because of both ceiling effects and regression to the mean. Change scores tended to be more negative for the disease risk condition than for the control condition, although this difference was not statistically significant \(t(66) = −1.79, P = 0.077, d = 0.44, 95\% \text{ HDI of the difference} = −0.030, 0.020 \). The weak regressive trend did not outweigh the overall positive effects of the disease risk intervention on vaccination attitudes for more skeptical participants.

Fig. 3. Frequency of pretest vaccine attitudes.
to vaccinate their children in the future, and were asked to provide basic demographic information.

Intervention Results

We created a vaccination attitude change score, which was computed as the difference between participants’ posttest and pretest vaccination attitude scores. As shown in Fig. 1, the disease risk condition led to larger changes in vaccination attitudes than the autism correction condition. In contrast, the autism correction condition had no greater effect in the disease risk condition than the autism correction condition. Attitude change scores were also more positive in the control condition than parental groups. Change scores between these factors, indicating that condition differences were significant among participants in the bottom tercile (summarized in Fig. 2). This analysis revealed significant main effects of condition as well as a significant interaction between these factors, indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom tercile (Fig. 2). The disease risk intervention produced effects of a similar size for the bottom and middle terciles in an earlier pilot study (6, 7). To test this possibility, we split participants into terciles based on their pretest vaccine attitudes and performed a 3 × 3 factorial ANOVA comparing conditions among each tercile (Fig. 2). This analysis revealed significant main effects of condition as well as a significant interaction between these factors, indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom tercile (Fig. 2). The disease risk intervention produced effects of a similar size for the bottom and middle terciles in an earlier pilot study (6, 7). To test this possibility, we split participants into terciles based on their pretest vaccine attitudes and performed a 3 × 3 factorial ANOVA comparing conditions among each tercile (Fig. 2). This analysis revealed significant main effects of condition as well as a significant interaction between these factors, indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom tercile (Fig. 2). The disease risk intervention produced effects of a similar size for the bottom and middle terciles in an earlier pilot study (6, 7). To test this possibility, we split participants into terciles based on their pretest vaccine attitudes and performed a 3 × 3 factorial ANOVA comparing conditions among each tercile (Fig. 2). This analysis revealed significant main effects of condition as well as a significant interaction between these factors, indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom tercile (Fig. 2). The disease risk intervention produced effects of a similar size for the bottom and middle terciles in an earlier pilot study (6, 7). To test this possibility, we split participants into terciles based on their pretest vaccine attitudes and performed a 3 × 3 factorial ANOVA comparing conditions among each tercile (Fig. 2). This analysis revealed significant main effects of condition as well as a significant interaction between these factors, indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom tercile (Fig. 2). The disease risk intervention produced effects of a similar size for the bottom and middle terciles in an earlier pilot study (6, 7). To test this possibility, we split participants into terciles based on their pretest vaccine attitudes and performed a 3 × 3 factorial ANOVA comparing conditions among each tercile (Fig. 2). This analysis revealed significant main effects of condition as well as a significant interaction between these factors, indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom tercile (Fig. 2). The disease risk intervention produced effects of a similar size for the bottom and middle terciles in an earlier pilot study (6, 7). To test this possibility, we split participants into terciles based on their pretest vaccine attitudes and performed a 3 × 3 factorial ANOVA comparing conditions among each tercile (Fig. 2). This analysis revealed significant main effects of condition as well as a significant interaction between these factors, indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom tercile (Fig. 2). The disease risk intervention produced effects of a similar size for the bottom and middle terciles in an earlier pilot study (6, 7). To test this possibility, we split participants into terciles based on their pretest vaccine attitudes and performed a 3 × 3 factorial ANOVA comparing conditions among each tercile (Fig. 2). This analysis revealed significant main effects of condition as well as a significant interaction between these factors, indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom tercile (Fig. 2). The disease risk intervention produced effects of a similar size for the bottom and middle terciles in an earlier pilot study (6, 7). To test this possibility, we split participants into terciles based on their pretest vaccine attitudes and performed a 3 × 3 factorial ANOVA comparing conditions among each tercile (Fig. 2). This analysis revealed significant main effects of condition as well as a significant interaction between these factors, indicating that condition differences were greatest among participants in the bottom tercile. Change scores were significantly larger in the disease risk condition compared with the control condition among participants in the bottom tercile (Fig. 2).
Supplemental Information

For all scales, participants were asked to rate their agreement with each of these items on a six point Likert scale from Strongly Disagree to Strongly Agree.

Vaccination Scale

1. The risk of side effects outweighs any protective benefits of vaccines.
2. Vaccinating healthy children helps protect others by stopping the spread of disease.
3. I plan to vaccinate my children.
4. Children do not need vaccines for diseases that are not common anymore.
5. Doctors would not recommend vaccines if they were unsafe.

Distractor Scales

Euthanasia

1. Terminally-ill people who are suffering should have the right to choose to die.
2. People should not be allowed to kill themselves, even when they are in a lot of pain.
3. Suffering at the end of life can be worse than death.
4. Even if a patient wishes to die, doctors have an obligation to perform life-saving procedures.
5. There are some contexts in which euthanasia should be legal.

Abortion

1. A pregnant woman has an obligation to bring her fetus to term.
2. Abortion should be illegal.
3. An unborn child’s right to life is more important than a pregnant woman’s right to make decisions about her body.
4. A pregnant woman should always have the right to choose whether to continue her pregnancy.
5. It is morally acceptable to terminate a pregnancy even if the mother’s life is not in danger.

Consequentialism

1. In life or death situations, one should take whatever means necessary to save the most lives
2. Lying is always wrong
3. The end result is the most important thing to consider when judging someone's actions
4. It is never acceptable to harm someone, even if doing so would help many other people.
5. People have an obligation to act in service of the greater good, even if that means hurting someone else.
Questions about Vaccines

Participants were also asked a series of questions about vaccines

1. Have you had a flu shot in the last year?
2. Do you expect to get a flu shot in the next year?
3. Have any of your children had a flu shot in the last year?
4. Do you expect that any of your children will get a flu shot in the next year?
5. Have you ever refused or elected to forgo a vaccine your doctor recommended for your children?
6. Does vaccinating your child (or not vaccinating your child) affect only your child or could it affect both your child and other people in your community?

Autism-Link Question

Rate how strongly you agree with this statement: Some vaccines cause autism in healthy children.

Autism Correction Condition

Please examine the following information about measles, mumps, and rubella carefully.

All children should be vaccinated for measles, mumps, and rubella. The measles, mumps, and rubella vaccine (MMR) is safe and effective.

Because signs of autism may appear around the same time children receive the MMR vaccine, some parents may worry that the vaccine causes autism. Vaccine safety experts, including experts at the Centers for Disease Control (CDC) and the American Academy of Pediatrics, agree that MMR vaccine is not responsible for recent increases in the number of children with autism. A 2004 Institute of Medicine report concluded that there is no link between autism and MMR vaccine, and that there is no link between autism and vaccines that contain thimerosal as a preservative.

Many scientific studies have found no link between MMR vaccine and autism. These studies include:

1) A September 2008 study published in Public Library of Science was conducted to determine whether results from an earlier study claiming to find measles virus RNA in the intestinal tissue of autistic children could be confirmed. The results could not be confirmed, and no link between MMR and autism was found.

3) A 2002 study by CDC in the New England Journal of Medicine followed more than 500,000 children and found no association between MMR vaccination and autism.

Disease Risk Condition

Warning

You or your child could catch these diseases by being around someone who has them. They spread from person to person through the air.

Measles, mumps, and rubella (MMR) vaccine can prevent these diseases. Most children who get their MMR shots will not get these diseases. Many more children would get them if we stopped vaccinating.

Anecdote

Here is a true story that shows why vaccination is so important.

If you hear “106 degrees” you probably think “heat wave,” not a baby’s temperature. But for Megan Campbell’s 10-month-old son, a life-threatening bout of measles caused fevers spiking to 106 degrees and sent him to the hospital. “We spent 3 days in the hospital fearing we might lose our baby boy,” Campbell said. “He couldn't drink or eat, so he was on an IV, and for a while he seemed to be wasting away. When he could drink again, we got to take him home. But the doctors told us to expect the disease to continue to run its course, including high fever – which spiked as high as 106 degrees. We spent a week waking at all hours and soothing him with damp washcloths.”

Thankfully, the baby recovered fully.

Megan now knows that her son was exposed to measles when another mother brought her ill son into their pediatrician’s waiting room.

Pictures

All children should be vaccinated for measles, mumps, and rubella. These are serious diseases. Please read the descriptions of these diseases and carefully view the pictures.

Measles

Measles virus causes rash, cough, runny nose, eye irritation, and fever. It can lead to ear infections, pneumonia, seizures (jerking and staring), brain damage, and death.
Mumps
Mumps virus causes fever, headache, and swollen glands. It can lead to deafness, meningitis (infection of the brain and spinal cord covering), painful swelling of the testicles or ovaries, and, rarely, death.
Rubella
Rubella virus causes rash, mild fever, and arthritis (mostly in women). If a woman gets rubella while she is pregnant, she could have a miscarriage or her baby could be born with serious birth defects.

Control Condition
Please examine the following information about bird feeding carefully.

Q: What are the costs and benefits of bird feeding?

A: It is difficult to assess the costs and benefits of bird feeding because it is difficult to compare the health of birds without access to feeders with birds that frequent feeders. Only one study was able to obtain some sound results. That study found that any benefits of feeding only appear to occur sporadically under extreme climactic conditions. No research has been able to demonstrate a cost. Aside from costs and benefits to birds, there is a cost and benefit to humanity. The costs are obvious – the expense of bird feeding supplies.

The benefits include learning more about birds and the joy of connecting with the natural world. Bird feeding provides a direct, intimate view of the natural world for more than 50 million Americans who feed the birds in their yards. It is most popular in winter, when birds seem to need the most help. Some people worry that birds will suffer unless they make great efforts to the feeder filled, but research indicates that most birds do not depend on feeders.