Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth

Nicolas Loyer^a,b,c,1, Irina Kolotuev^a,b,c,d, Mathieu Pinot^a,b,c, and Roland Le Borgne^a,b,c,2

*CNRS, UMR 6290, F-35000 Rennes, France; ^Institut de Génétique et Développement de Rennes, Université Rennes 1, F-35000 Rennes, France; ^Equipe Labelisées Ligue Nationale Contre le Cancer, F-35000 Rennes, France; and ^CNRS, Structure Fédérative de Recherche BIOSIT, Microscopy Rennes Imaging Center-Electron Microscopy Facility, F-35000 Rennes, France

Edited by Jean-Rene Huynh, Institut Curie, Paris, France, and accepted by the Editorial Board September 9, 2015 (received for review March 19, 2015)

Intercellular bridges called “ring canals” (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During *Drosophila* oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in *Drosophila* biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs’ anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin-containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs’ anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin-dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth.

E-cadherin | membrane tension | tissue growth | ring canals | trafficking

E-cadherin (E-Cad) is a core component of intercellular adhesion complexes in cohesive metazoan tissues. E-Cad assembles into clusters that are stabilized by actin filaments via β- and α-catenin at the level of adherens junctions and form an adhesive belt mechanically linking cells together. A key feature of adherens junctions is their plasticity, which enables tissue remodeling, sustained by a constant endocytosis- and exocytosis-regulated E-Cad turnover (1) that is critical for various morphogenetic processes in epithelia (2-5). *Drosophila* oogenesis is a rich, multifaceted developmental process during which E-Cad function is not limited to epithelia, because it also regulates intercellular collective migration (6, 7) and the adhesion of stem cells to their niche (8). Cells derived from two different stem cell populations initially assemble into egg chambers composed of a follicular epithelium surrounding a 16-cell germline cyst (GC), itself composed of one oocyte and 15 nurse cells. During the next 64 h, GC cells grow to hundreds of times their initial volume. Oocyte growth is supported by cytoplasmic connections with nurse cells through ring canals (RCs) (Fig. 1A and B), intercellular bridges that, instead of undergoing abscission, are stabilized on arrested cleavage furrows (9, 10). Recent findings revealed that RCs play a vital role in germline as well as in somatic tissues (10). RCs are composed of a noncontracting subcortical actin ring (11), the inner rim, attached to an electron-dense plasma membrane (PM) (12), the outer rim (Fig. 1A). RCs have been studied mainly in *Drosophila* female GCs (9) where genetic screens uncovered a variety of actin regulators controlling their establishment at the onset of oogenesis and their growth throughout the entire process (13–17). However, the molecular machinery involved in anchoring the PM to the RC remains unknown. Mutations in several membrane-traffic regulators affect the integrity of nurse cells’ PM, causing multinucleation and giving rise to remnants of detached RCs (18–24); these observations suggest that an unidentified membrane cargo is required for anchoring RCs to the PM. Here we describe an RC detachment phenotype in mutants of the clathrin adaptor protein 1 (AP-1), a protein complex regulating polarized membrane protein sorting from the trans-Golgi network and endosomal compartments (25), and provide direct evidence that polarized membrane trafficking to RCs allows an E-Cad-mediated mechanical strengthening of RC anchoring necessary to resist the membrane tension generated by cellular growth.

Results

Loss of AP-1 Induces Multinucleation of Nurse Cells in Female GCs. In this study we generated homozygous AP-1^−/−^ mutant GCs in the female germline (the μ subunit of AP-1, hereafter referred to as “AP-1 mutants”). Actin staining revealed that nurse cells of AP-1

Author contributions: N.L. and R.L.B. designed research; N.L., I.K., and M.P. performed research; N.L. contributed new reagents/analytic tools; N.L., I.K., M.P., and R.L.B. analyzed data; and N.L. and R.L.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.-R.H. is a guest editor invited by the Editorial Board.

1Present address: College of Life Sciences, University of Dundee, Dundee DD15EH, Scotland, United Kingdom.

2To whom correspondence should be addressed. Email: roland.leborgne@univ-rennes1.fr.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504455112/-/DCSupplemental.

Significance

This work addresses the interplay among membrane trafficking, cell adhesion, and tissue integrity maintenance in the *Drosophila* female germline. The clathrin adaptor protein 1 (AP-1) complex is shown to regulate the trafficking of E-cadherin to ring canals (RCs), a structure resulting from incomplete cytokinesis and allowing intercellular communication. E-cadherin assembles adhesive clusters that, as revealed by EM analyses, organize a dense microvilli meshwork wrapping around RCs. Although dispensable for *Drosophila* biogenesis and maturation, AP-1 and E-cadherin are required to maintain RCs’ anchoring to the plasma membrane at the onset of vitellogenesis, when cells experience exponential growth and increased mechanical stress. Our study unravels a previously unidentified function for E-cadherin in maintaining RC anchoring to the plasma membrane.

www.pnas.org/cgi/doi/10.1073/pnas.1504455112

PNAS | October 13, 2015 | vol. 112 | no. 41 | 12717–12722
Mutant GCs progressively became multicellular, exhibiting floating RCs organized in clusters (Fig. 1 C and D). Multinucleation, indicating a defect in membrane stability, was first observed at the onset of vitellogenesis (stage 8). Loss of AP-1 never caused loss of oocyte membrane integrity, suggesting that this membrane is more robust than that of nurse cells, presumably because of its differential organization and composition (26).

A Faster Growth Rate Correlates with Higher PM Tension. Multinucleation begins at a stage during which the oocyte accumulates yolk and GCs grow 4.6 (stage 8) to 34 (stage 10a) times faster than at previous stages (Fig. 2 A and B). Because a faster growth rate could affect mechanical membrane properties, providing a rational for this stage-dependent multinucleation phenotype, we probed PM tension by making 5-μm-wide holes in nurse cells’ PM using laser ablation. Such holes did not heal but instead propagated until they reached the PM of neighboring nurse cells, leading to multinucleation (Fig. 2 C and Movie S1). We measured the retractions of PM extremities and vertices after ablation and found that membrane recoil was about four times slower (1 μm/min) than in epidermal cells and did not differ significantly in slow- and fast-growing GCs (Fig. 2 D and Fig. S1 B–E). However, cutting the sheet-like nurse cell–nurse cell interface may not release tension as efficiently as cutting the string-like belt of adherens junctions in epithelia. Furthermore, tensions may not be released as efficiently at later stages as at the earlier ones, because we made holes of the same size in nurse cell–nurse cell interfaces although the surfaces of these interfaces differ by 4.5-fold between stages 5 and 9.

Although these two experimental biases prevented us from assessing PM tension directly, we noticed that adjacent nurse cells were subjected to more fluctuations in cell shape when ablation was performed at early stages rather than later stages (Fig. S1 A and A’). This observation indicates that PMs are more prone to deformations at early stages, possibly because of lower PM tension. Accordingly, we observed that after ablation, tubular pleckstrin homology domain::GFP+ (PH::GFP+) deformations appeared on the PM contacting adjacent nurse cells (Fig. 2 E, arrowheads). Because such tubular deformations are reminiscent of those observed in vitro at the surface of giant unilamellar vesicles and in vivo at the PM of cells upon the reduction of PM tension (27, 28), we reasoned that tension release induced by ablation is causal to the appearance of deformations. We found that tubular deformations were frequent in slow-growing GCs but were hardly detectable in fast-growing ones (Fig. 2 E and F, Fig. S1 H, and Movies S2 and S3). Strikingly, PM tubular deformations already were present before ablation in slow-growing GCs but not in fast-growing ones (Fig. 2 E and F) and therefore (because their presence does not rely on laser ablation) could be used as a reliable readout for PM tension. Thus, we concluded that the PM tension is higher in stages 8-10a GCs than at earlier stages. Finally, similar recoil velocities and tubular deformations following laser ablation were obtained upon loss of AP-1, indicating that AP-1 does not significantly regulate PM tension (Fig. S1 F–H). PM tension is the sum of the in-plane lipid bilayer tension and the protein-dependent membrane-to-cortex attachment (29). We did not further assess the respective contributions of these factors to changes in PM tension during oogenesis, but we propose that the exponential growth that begins at stage 8 affects the mechanical membrane properties, eventually causing multinucleation in AP-1 mutants.

AP-1 and Rab11 Control the Maintenance of RC Anchoring to the PM and E-Cad Localization in Nurse Cells. To follow the dynamics of the disappearance of the PM, we monitored the distribution of the PM marker E-Cad using an E-Cad::GFP knockin line (30) in AP-1 mutant GCs. Live imaging revealed that multinucleation was caused by the detachment of the PM from RCs, immediately followed by PM fragmentation (Fig. A4). We never observed fragmentation of portions of PM devoid of RCs, suggesting that multinucleation was caused exclusively by the detachment of the PM from the RCs. This notion was supported further by our analysis of fixed tissue: According to the stereotyped organization of the GC, loss of all RCs connecting nurse cells to nurse cells but not of RCs connecting nurse cells to the oocyte should lead to the formation of three syncytia containing two, four, and eight somatic follicle cells (green). (Inset) Schematic representation of a transverse section through the RCs composed of an inner rim (red, containing the Adducin-like Hu-li tai shao (Hts) (13, 15) and the filamin Cheerio (16) contacting an electron-dense PM (outer rim, black) that itself is connected to the rest of the nurse cell PM (gray). (b) Stereotyped organization of the female GC before and after detachment of nurse cells’ RCs. The oocyte has a gray nucleus; nurse cells have colored nuclei. (c) Stage 8 wild-type and AP-1 mutant [identified by the loss of nuclear localization signal (NLS)::GFP, blue] GCs stained for actin (green) and DAPI (red). Arrows indicate RCs connecting nurse cells in control GCs. Arrowheads indicate RCs floating in the cytoplasm of multinucleated nurse cells in AP-1 mutant GCs (at least one floating ring was observed in 29 of 34 mutant stage 8 or older GCs). (c) Quantitation of multinucleated AP-1 mutant GCs at stage 7 to stage 9 or older. (d) Maximal projections of 5 μm of anchored and clustered floating RCs in control and AP-1 mutant GCs.

Fig. 2. A faster growth rate correlates with an increase in PM tension. (A) The change in GC volume after exit from the germarium. Oogenesis stages are indicated above the curve. The arrow indicates the onset of vitellogenesis. (B) GC growth rates from stages 3–10a. The arrow indicates the onset of vitellogenesis. (C) Nano-ablation of a PM from the nurse cell of a stage 7 GC expressing PH::GFP. The PM retracts progressively after a 5-μm-long wound was made. (Upper) Confocal planes where the wound was made. (Lower) Orthogonal views to visualize the entire targeted portion of the PM. (D) Displacement of the free PM extremities (arrows in the Inset) generated by PM laser ablation in stage 5 and stage 9 nurse cells. (E) Representative cases of ablation of nurse cells’ PM from stage 6 (Upper) and stage 9 (Lower) GCs. PM deformations were observed before the cut (arrows) in stage 6 GCs but not in stage 9 GCs, and more deformations appear after the cut in the PM contiguous to ablated PM (arrowheads) in stage 6 GCs than in stage 9 GCs. (F) Density of deformations in the PM contiguous to the ablated PM before and after the cut (stages 5 and 6, n = 14; stage 7, n = 26; stage 8, n = 23; and stages 9 and 10, n = 23).
nurse cell nuclei. This exact configuration was observed in AP-1 mutants (Figs. 1B and 3B), further indicating that nurse cell–nurse cell interfaces devoid of RCs remain stable in the AP-1 mutant and that nurse cells' multinucleation is caused by RC detachment. Thus, although dispensable for RC establishment, AP-1 activity is required to maintain RCs' anchoring to the PM beginning at stage 8.

Live imaging of E-Cad::GFP and immunostaining of endogenous untagged E-Cad revealed that the whole surface of nurse cells' PM is decorated by E-Cad clusters visibly enriched around RCs (Fig. 3C). In AP-1 mutant GCs, this enrichment started to disappear at stage 8 (Fig. 3C and D). In mutant GCs, E-Cad also localized to cytoplasmic puncta that were absent from control cells and already were present in non-multinucleated GCs at stage 8 (Fig. 3E), indicating that cytoplasmic mislocalization of E-Cad in AP-1 mutant GCs precedes multinucleation. In mammalian cells, AP-1 controls the subcellular localization and function of the Rab11+ recycling endosome compartment (31, 32), and E-Cad transits through Rab11+ compartments (33–35). This function raises the possibility that E-Cad mislocalization in AP-1 mutants involves a defect in Rab11-dependent trafficking. Consistent with this proposition, Rab11 localization changed from small endosomes distributed throughout the entire cytoplasm in control nurse cells to enlarged endosomes in AP-1 mutant nurse cells (Fig. 3D), and the majority of E-Cad cytoplasmic puncta localized to Rab11+ compartments (Fig. 3E). To assess the effect of Rab11 on E-Cad trafficking, we overexpressed a dominant-negative form of Rab11 (Rab11[N136K]) that was reported to block entry into recycling endosomes in mammalian cells (36). Overexpression of Rab11[N136K] phenocopied AP-1 mutants with loss of E-Cad enrichment around RCs (Fig. 3F) and multinucleation of stage 8 and older nurse cells (Fig. 3G). Thus, in both AP-1 and Rab11 mutant backgrounds, the presence of fewer E-Cad clusters surrounding RCs correlates with RC detachment leading to multinucleation.

E-Cad Controls RCs Anchoring to the PM. This correlation raises the possibility that E-CadShotgun (Shg) is necessary to anchor RCs. Consistent with this suggestion, GCs mutant for the shg^{YD35} loss-of-function allele (37) and null β-catenin (β-Cat) alleles <i>arm^{AP-1}</i> (Fig. 4A), <i>arm^{YD35}</i>, or <i>arm^{S2522}</i> (6, 37, 38) display nurse cell multinucleation. However, the amorphic shg^{YD35} and the null shg^{S2522} mutant alleles do not cause nurse cell multinucleation (6, 39). We reasoned that this apparent discrepancy could be explained by functional compensation by the classical cadherin N-cadherin (N-Cad) in E-Cad-null mutant GCs, as reported in other tissues in ref. 40. We found that N-Cad was not detected in control GCs, but in E-Cad-null mutant GCs N-Cad was expressed ectopically and was localized to the PM (Fig. 4B). We propose that E-Cad somehow negatively regulates N-Cad transcription and/or translation, although we cannot rule out the possibility that N-Cad is translated in control GCs but is targeted to degradation and is below our detection threshold. Nevertheless, in the absence of E-Cad, β-Cat still localized to the PM of nurse cells, albeit at lower levels than in controls (Fig. 4B), as is consistent with functional compensation. This observation prompted us to prevent N-Cad ectopic expression by using N-Cad^{D_{β1}} in E-Cad–null mutant GCs. N-Cad silencing in shg^{YD35} GGs did not cause any detectable phenotype (n = 30), but N-Cad silencing in shg^{S2522} mutant GCs induced multinucleation (Fig. 4C) in addition to the oocyte mispositioning defects expected from the loss of E-Cad (39). Furthermore, we observed that shRNA-mediated E-Cad depletion also caused nurse cell multinucleation (Fig. 4D). In this situation, we speculate that incomplete E-Cad depletion is sufficient to disrupt E-Cad function in RC anchoring but not in repressing N-Cad expression. Accordingly, N-Cad was not ectopically expressed, and β-Cat was no longer recruited to the PM in E-Cad-depleted GCs (Fig. S2). Together, our results show that N-Cad is responsible for a functional compensation of E-Cad loss in RC anchoring, explaining why nurse cell multinucleation is observed in β-Cat–but not in E-Cad–null alleles, and enable us to conclude that E-Cad participates in RCs anchoring.
Disruption of a Microvillocities-Rich PM Around RCs in AP-1 Mutant GCs. How exactly could the cadherin–catenin complex participate in the maintenance of RC anchorage? Transmission electron microscopy (TEM) analysis of multinucleated AP-1 mutant GCs revealed that the inner rim of detached RCs remained attached to the outer rim, which itself was still connected to portions of the PM surrounding the RC (Fig. 5A). Thus, RC detachment does not result from the detachment of the inner rim from the outer rim but rather from the disconnection of a portion of the PM surrounding RCs. TEM further revealed that in control GCs the PM surrounding RCs appeared highly convoluted (Fig. 5A–B′). In striking contrast, this region appeared devoid of such convolutions in RCs still anchored in AP-1 mutant GCs, (Fig. 5 B and B′). We further examined the ultrastructural topology of the nurse cells’ PMs using scanning block-face EM (41). This analysis shows that the complex convolutions surrounding RCs are caused by tightly packed tubular extensions of PM, 65 ± 14 nm in diameter and 1,500 ± 400 nm in length, that protrude into the intercellular space between nurse cells (Fig. 5C and Movies S4 and S5). Such protrusions also were observed at lower density over the rest of the PM distant from RCs (Fig. 5 C and D and Movies S4 and S5). We further characterized these structures using light microscopy. We propose that actin-positive filaments at the PM at a distance from RCs (Fig. 6A) correspond to individual protrusions and that the high density of actin (Fig. 6A) and the presence of the actin crosslinker α-Actinin (Actn) (Fig. 6 C and D) (42), the actin regulator Enabled (43), and the microvilli marker phospho-Moesin (Fig. 6D) at the PM surrounding RCs is caused by the local abundance of the protrusions revealed by TEM (Fig. 5A). AP-1 mutant cells displayed lower levels of Actn around RCs (Fig. S3A), consistent with the loss of PM convolutions around RCs (Fig. 5 B and B′), further indicating that AP-1 is necessary for protrusions organization around RCs.

E-Cad Organizes Microvillocities-Like Structures in Nurse Cells. Loss of E-Cad enrichment and loss of protrusions around RCs in AP-1 mutants prompted us to analyze the direct requirement for E-Cad in protrusion organization. In E-Cad-depleted GCs, lower PH::GFP signals (Fig. 6B) and an almost complete loss of Actn signals around RCs indicate that protrusions surrounding RCs are severely affected (Fig. 6C). Furthermore, protrusions distributed all over the PM of nurse cells were visibly affected (Fig. S4 A and A′). Although this effect indicates that E-Cad controls the organization of protrusions, the E-Cad clusters enriched around RCs do not localize to the protrusion-dense region but rather to its immediate periphery (Fig. 6 A and D), and clusters distributed all over the rest of the PM do not colocalize with actin-positive linear structures (Fig. 6A). Finally, we found that the polarity markers Par-3 and Discs large 1 (Dlg) that are enriched around RCs (Fig. S3B) also localized to the rest of the nurse cells’ PM, but neither localized to microvilli (Fig. S3 C and D). Thus, we propose that AP-1-dependent E-Cad clusters organize protrusions independently of a polarized distribution of Par3 and Dlg.

Discussion

In this article, we report that AP-1/Rab11 regulate the polarized trafficking of E-Cad and that E-Cad assembles adhesive clusters that are needed to maintain the anchoring of RCs to the PM at the time of exponential GC growth; this growth is associated with a change in mechanical membrane properties that probably is caused by increased membrane tension.

We show that in Drosophila nurse cells, defects in AP-1/Rab11 function lead to the progressive disappearance of E-Cad complexes, similar to what happens in E-Cad mutants...
surrounding RCs, suggesting that AP-1/Rab11 ensure the polarized delivery of E-Cad to RCs. Several studies in Drosophila, Caenorhabditis elegans, and mammals have implicated AP-1/Rab11 in E-Cad trafficking (33–35, 44, 45). Mammalian E-Cad carries a tyrosine-based AP-1 sorting signal, but the absence of such a motif in Drosophila E-Cad argues against a direct recognition of E-Cad by AP-1. Instead, interactions between E-Cad and membrane-trafficking regulators can be mediated by adaptors such as β-Cat (46) and the type I γ phosphatidylinositol phosphate kinase PIPKIIγ (34). Alternatively, because AP-1 also controls the position and morphology of recycling endosomes (31, 32), the E-Cad trafficking defect we describe could result from malfunctioning recycling endosomes. Nurse cells’ multinucleation also has been described for Rab6 (18), Rab11 (24), PI4KIIIα (23), and components of the Exocyst (20, 21) and ESCRT (19) complexes. Although the involvement of PI4KIIIα and ESCRT in E-Cad trafficking is unknown, E-Cad trafficking requires the activity of Rab6, Rab11, and the exocyst complex (46, 47). We therefore anticipate that defective intracellular trafficking of E-Cad toward adhesive clusters contributes to the multinucleation phenotypes in these trafficking regulators. Whether AP-1 acts directly or not, this study unravels previously unidentified E-Cad functions. We show that E-Cad is required for the maintenance of RCs’ anchorage. Intriguingly, E-Cad also organizes microvilli at the surface of nurse cells, even though it does not localize to these microvilli but rather to adhesive clusters interspersed between them. How could E-Cad organize microvilli remotely? One could speculate that close apposition of membranes through E-Cad-dependent adhesion somehow stabilizes protrusions, possibly by allowing specific contacts between protrusions. In epithelia, intermicrovillar adhesion is assured by protocadherins (48–50), and although any requirement for microvilli remains to be demonstrated, we envisage that they reinforce RCs anchorage. This remote action of E-Cad is somewhat reminiscent of another E-Cad function during oogenesis: E-Cad clusters at the nurse cells’ PM control the orientation of the filopodia-like actin cables that position nuclei during later stages of oogenesis. In a similar fashion, these E-Cad clusters are interspersed between the membrane-originating tips of filopodia (51).

E-Cad functions in cell adhesion, migration, and stem cell maintenance during Drosophila oogenesis have been studied extensively. However, as illustrated by this study and ref. 49, additional unsuspected roles for E-Cad remain to be identified.
Faculty of Life Sciences for their assistance, and the Wellcome Trust for equipment grant support to the EM facility; the Microscopy Rennes Imaging Center; and A. Guichet, S. Le Bras, J. Mathieu, A. Pacquelet, and P. Thérond for critical reading of the manuscript. This work was funded by the CNRS, Ligue Nationale Contre le Cancer, and Agence Nationale pour la Recherche.

