Conductance enlargement in picoscale electroburnt graphene nanojunctions

Hatef Sadeghi1,†, Jan A. Molb, Chit Siong Laua, G. Andrew D. Briggsb, Jamie Warnerb, and Colin J. Lambertab,†

Edited by Philip Kim, Harvard University, Cambridge, MA, and accepted by the Editorial Board January 21, 2015 (received for review September 26, 2014)

Provided the electrical properties of electroburnt graphene junctions can be understood and controlled, they have the potential to underpin the development of a wide range of future sub-10-nm electrical devices. We examine both theoretically and experimentally the electrical conductance of electroburnt graphene junctions at the last stages of nanogap formation. We account for the appearance of a counterintuitive increase in electrical conductance just before the gap forms. This is a manifestation of room-temperature quantum interference and arises from a combination of the semimetallic band structure of graphene and a cross-over from electrodes with multiple-path connectivity to single-path connectivity just before breaking. Therefore, our results suggest that conductance enlargement before junction rupture is a signal of the formation of electroburnt junctions, with a picoscale current path formed from a single sp2 bond.

Graphene nanojunctions are attractive as electrodes for electrical contact to single molecules (1-7), due to their excellent stability and conductivity up to high temperatures and a close match between their Fermi energy and the HOMO (highest occupied molecular orbital) or LUMO (lowest unoccupied molecular orbit) energy levels of organic materials. Graphene electrodes also facilitate electrostatic gating due to their reduced screening compared with more bulky metallic electrodes. Although different strategies for forming nanogaps in graphene such as atomic force microscopy, nanolithography (8), electrical breakdown (9), and mechanical stress (10) have been used, only electroburning delivers the required gap-size control below 10 nm (11-13). This new technology has the potential to overcome the challenges of making stable and reproducible single-molecule junctions with gating capabilities and compatibility with integrated circuit technology (14) and may provide the breakthrough that will enable molecular devices to compete with foreseeable developments in Moore’s law, at least for some niche applications (15-17).

One set of such applications is likely to be associated with room-temperature manifestations of quantum interference (QI), which are enabled by the small size of these junctions. If such interference effects could be harnessed in a single-molecule device, this would pave the way toward logic devices with energy consumption lower than the current state-of-the-art. Indirect evidence for such QI in single-molecule mechanically controlled break junctions has been reported recently in a number of papers (18), but direct control of QI has not been possible because electrostatic gating of such devices is difficult. Graphene electroburnt junctions have the potential to deliver direct control of QI in single molecules, but before this can be fully achieved, it is necessary to identify and differentiate intrinsic manifestations of room-temperature QI in the bare junctions, without molecules. In the present paper, we account for one such manifestation, which is a ubiquitous feature in the fabrication of picoscale gaps for molecular devices, namely an unexpected increase in the conductance before the formation of a tunnel gap.

Only a few groups in the world have been able to implement electroburning method to form nanogap-size junctions. In a recent study of electroburnt graphene junctions, Barreiro et al. (19) used real-time in situ transmission electron microscopy (TEM) to investigate this conductance enlargement in the last moment of gap formation and ruled out the effects of both extra edge scattering and impurities, which reduce the current density near breaking. Also, they showed that the graphene junctions can be free of contaminants before the formation of the nanogap. Having eliminated these effects, they suggested that the enlargement may arise from the formation of the seamless graphene bilayers. Here we show that the conductance enlargement occurs in monolayer graphene, which rules out an explanation based on bilayers. Moreover, we have observed the enlargement in a large number of nominally identical graphene devices and therefore we can rule out the possibility of device- or flake-specific features in the electroburning process. An alternative explanation was proposed by Lu et al. (20), who observed the enlargement in few-layer graphene nanonstricrions fabricated using TEM. They attributed the enlargement to an improvement in the quality of few-layer graphene due to current annealing, which was simply ruled out by our experiments on electroburnt single-layer graphene. They also attributed this to the reduction of the edge scattering due to the orientation of the edges (i.e., zigzag edges). However, such edge effects have been ruled out by the TEM images of Barreiro et al. (19). Therefore, although this enlargement appears to be a common feature of graphene nanojunctions, so far the origin of the increase remains unexplained.

In what follows, our aim is to demonstrate that such conductance enlargement is a universal feature of electroburnt graphene

Significance

Continuation of Moore’s law to the sub-10-nm scale requires the development of new technologies for creating electrode nanogaps, in architectures which allow a third electrostatic gate. Electroburnt graphene junctions (EGNs) have the potential to fulfill this need, provided their properties at the moment of gap formation can be understood and controlled. In contrast with mechanically controlled break junctions, whose conductance decreases monotonically as the junction approaches rupture, we show that EGNs exhibit a surprising conductance enlargement just before breaking, which signals the formation of a picoscale current path formed from a single sp2 bond. Just as Schottky barriers are a common feature of semiconductor interfaces, conductance enlargement is a common property of EGNs and will be unavoidably encountered by all research groups working on the development of this new technology.

Author contributions: H.S., G.A.D.B., and C.J.L. designed research; H.S. and C.J.L. provided theory and modeling, J.A.M. and C.S.L. fabricated the devices and performed the measurements; H.S., J.A.M., C.S.L., G.A.D.B., J.W., and C.J.L. analyzed and interpreted the data; H.S., J.A.M., G.A.D.B., and C.J.L. wrote the paper with input from all authors. The authors declare no conflict of interest.

This article is a PNAS Direct Submission. P.K. is a guest editor invited by the Editorial Board.

†To whom correspondence may be addressed. Email: h.sadeghi@lancaster.ac.uk or c.lambert@lancaster.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1418632112/-/DCSupplemental.
junctiions and arises from QI at the moment of breaking. Graphene provides an ideal platform for studying room-temperature QI effects (21) because, as well as being a suitable material for contacting single molecules, it can serve as a natural 2D grid of interfering pathways. By electroburning a graphene junction to the point where only a few carbon bonds connect the left and right electrodes, one can study the effect of QI in ring- and chain-like structures that are covalently bonded to the electrodes. In this paper, we perform feedback-controlled electroburning on single-layer graphene nanojunctions and confirm that there is an increase in conductance immediately before the formation of the tunnel junction. Transport calculations for a variety of different atomic configurations using the nonequilibrium Green’s function (NEGF) method coupled to density functional theory (DFT) show a similar behavior. To elucidate the origin of the effect, we provide a model for the observed increase in the conductance based on the transition from multipath connectivity to single-path connectivity, in close analogy to an optical double-slit experiment. The model suggests that the conductance increase is likely to occur whenever junctions are formed from any sp²-bonded material.

Conductance Through Constrictions

Experimentally we study the conductance jumps by applying the method of feedback-controlled electroburning to single-layer graphene (SLG) that was grown using chemical vapor deposition (CVD) and transferred onto a prepatterned silicon chip (Experimental Methods). The CVD graphene was patterned into 3-μm-wide ribbons with a 200-nm-wide constriction (Fig. 1A) using electron-beam lithography and oxygen plasma etching. Feedback-controlled electroburning has been demonstrated previously using few-layer graphene flakes that were deposited by mechanical exfoliation of kish graphite (11). However, by applying the method to an array of nominally identical single-layer graphene devices, we can rule out the possibility of device- or flake-specific features in the electroburning process.

We form the nanogaps by ramping up the voltage that is applied across the graphene device. As the conductance starts to decrease due to the breakdown of the graphene, we ramp the voltage back to zero. This process is repeated until the nanogap is formed. The I–V traces of the voltage ramps, as shown in SI Appendix, Figs. S1–S4, closely resemble those recorded for mechanically exfoliated graphite flakes. As the constriction narrows, the conductance of the SLG device decreases. When the conductance becomes less than the conductance quantum \(G_0 = 2 e^2/h \), the low-bias I–V traces are no longer Ohmic and start exhibiting random telegraph signal as the SLG device switches between different atomic configurations. Fig. 1B shows the full I–V trace and the final voltage ramp (Inset), which exhibits a sharp increase of the conductance just before the nanogap forms. This behavior is characteristic of many of the devices we have studied. Out of the 279 devices that were studied, 138 devices showed a sharp increase in the conductance before the formation of the nanogap (I–V traces for 12 devices are included in SI Appendix).

To investigate theoretically the transport characteristics of graphene junctions upon breaking, we used classical molecular-dynamics simulations to simulate a series of junctions with oxygen and hydrogen terminations as well as carbon-terminated edges and then used DFT combined with NEGF methods to compute the electrical conductance of each structure (Computational Methods). Fig. 1C–E shows three examples of the resulting junctions with oxygen-terminated edges (which are the most likely to arise from the burning process), in which the left and right electrodes are connected via two (Fig. 1C), one (Fig. 1D), and zero (Fig. 1E) pathways.

Surprisingly, the conductance \(G \) through the single-path junction (Fig. 1D) is larger than the conductance through the double-path junction (Fig. 1C) (e.g., \(G = 18 \) μS for one path versus \(G = 0.4 \) μS for two paths in the low-bias regime \(V = 40 \) mV).

For the nanogap junction shown in Fig. 1E, the conductance is less than both of these (\(G = 0.016 \) μS). We have calculated the conductance for 42 atomic junction configurations (SI Appendix, Figs. S6–S8), and commonly find that the conductance is larger for single-path junctions than for those with two or a few conductance paths. Approximately 40% of the total simulated junctions which were close to breaking exhibited the conductance enlargement, which is comparable to the experimental ratio of 49%.

The changes in the calculated conductances of junctions approaching rupture show a close resemblance to the experiments presented in this paper and by Barreiro et al. (19) and arise from the changes in the atomic configuration of the junction. We therefore attribute the experimentally observed jumps of the conductance to a transition from two- or few-path atomic configurations to single-path junctions, even though naive application of Ohm’s law would predict a factor of 2 decrease of the conductance upon changing from a double to a single pathway. In the remainder of this paper we will give a detailed analysis of the interference effects leading to the sudden conductance increase before the formation of a graphene nanogap.
Before proceeding to an analysis of QI effects, we first note that the conductance enlargement cannot be attributed to changes in the band structure near breaking. The band structures of the periodic chains and ribbons shown in Fig. 2 reveal that both are semimetallic, due to the formation of a π-band associated with the p orbital perpendicular to the plane of the structures. In fact, the ribbon (Fig. 2B) has more open conductance channels than the chain (Fig. 2A) around the Fermi energy (E = 0). The increase in conductance upon changing from a ribbon to a chain is therefore not due to a change in band structure, but rather due to QI in the different semimetallic pathways. A similar behavior is also found for structures with hydrogen termination and combined hydrogen–oxygen termination as shown in SI Appendix, Fig. S13.

Fig. 3B shows the calculated current–voltage curves [corresponding transmission coefficients T(E) for electrons of energy E traversing the junctions are shown in SI Appendix, Fig. S10] for the five oxygen-terminated constrictions c1–c5 of Fig. 3A, with widths varying from 3 nm (c3) down to a single atomic chain (c1). The chains and ribbons in Fig. 3A are connected to two hydrogen-terminated zigzag graphene electrodes. The blue curve of Fig. 3B shows that the current through the chain c1 is higher than the current through the ribbon c2 (green curve in Fig. 3B), particularly at higher bias voltages. A nonequilibrium I–V calculation also confirms the same trend (SI Appendix, Fig. S10B). A similar behavior is found for structures with hydrogen termination and without edge termination as shown in SI Appendix, Figs. S11 and S12). Fig. 3C shows the I–V characteristic for junctions c1 and c5 plotted over a wider voltage range. At the penultimate stage of electroburning the c5 curve is followed, until an electroburning event causes a switch from two carbon–carbon bonds to the single bond of structure c1. At this point, the I–V jumps to that of structure c1, as indicated in Fig. 3C by a dashed line.

To demonstrate that a two-path contact between two graphene electrodes typically has a lower conductance than a single-path contact, consider a graphene nanoribbon (Fig. 4A–D, Left) connected to a carbon chain (Fig. 4A and B, Right) or to hexagonal chains (Fig. 4C and D). To calculate the current flow through the junctions Fig. 4A–D and to study the effect of a bond breaking on the current when all other parameters are fixed, we built a tight-binding Hamiltonian of each system (Computational Methods). Starting from junctions Fig. 4A and C with two pathways between the leads, we examined the effect of breaking a single bond to yield junction Fig. 4B, and D, respectively, with only one pathway each. As shown in Fig. 4, the current is increased when a bond is broken. (More detailed calculations are presented in SI Appendix.) This demonstrates that in a junction formed from strong covalent bonds, the current in the one-pathway junction can be higher than in junctions with more than one pathway. This captures the feature revealed by the DFT–NEGF calculations on the structures of Fig. 1 that if bonds break in a filament with many pathways connecting two electrodes from different points, the current flow can increase. This result is highly nonclassical and, as shown in the next section, is a consequence of constructive quantum interference in picoscale graphene junctions connected by a single sp² bond (of length ~142 PM).

QI in Atomic Chains and Rings

To illustrate analytically the consequences of QI in few-pathway junctions, consider the structure shown in Fig. 5A, which consists of an atomic chain (in Fig. 5A this comprises atoms 2 and 3) connected to a single-channel lead terminating at atom i = 1 and to a second single-channel lead terminating at atom j = 4. Now consider adding another atomic chain in parallel to the first, to yield the structure shown in Fig. 5B. In physics, the optical analog of such a structure is known as a Mach–Zehnder interferometer (22).

In the following, we shall show that the single-path structure of Fig. 5A has the highest of the three conductances. This trend is the opposite of what would be expected if the lines were classical resistors (SI Appendix) and the circles were perfect connections. In that case Fig. 5A would have the lowest conductance and Fig. 5C the highest conductance. An intuitive understanding of why our case is different begins by noting that in the quantum case, electrical conductance is proportional to the transmission coefficient T(E) of de Broglie waves of energy E passing through a given structure. If we neglect the lattice nature of the system, and consider the paths simply as classical waveguides, then for a wave propagating from the left-hand end in each case, the bifurcations in Fig. 5B and C present an impedance mismatch, so that a fraction of the wave is reflected. Considering a waveguide of impedance Z with a bifurcation into two waveguides, for unit incident amplitude the total transmitted amplitude is (2√2/3), and the transmitted intensity is T = 8/9. A similar analysis can be applied to a 1D lattice formed of M semiinfinite chains.
shown (coincides with the charge neutrality point in our model), it can be at the band center (i.e., HOMO–LUMO gap center, which
cause destructive interference, because $e^{i\beta L} = e^{i\theta} = 1$ and for structure Fig. 5(B), destructive interference, because $e^{i\beta L} = e^{i\theta} = -1$). This result is unsurprising, because it is well known that the meta-coupled ring Fig. 5C should have a lower conductance than the para-coupled ring Fig. 5B (23). More surprising is the fact that the single-chain structure Fig. 5A has a higher conductance than both Fig. 5B and Fig. 5C.

To illustrate this feature, we note (see SI Appendix for more details) that the ratio of the Green’s function G_{ring} of the structure of Fig. 5B to the Green’s function of the chain Fig. 5A, evaluated between the atoms 1 and 4, is

$$G_{\text{ring}} / G_{\text{chain}} = \frac{1}{2} [1 - \alpha],$$

where α is a small self-energy correction due to the attachment of the leads. For small α, this means that the transmission of the linear chain at the gap center is $4x$ higher than the transmission of a para- ring (because transmission is proportional to the square of the Green’s function), which demonstrates that the conductances of both the two-path para- and meta-coupled structures are lower than that of a single-path chain. This result is the opposite of the behavior discussed in ref. 24, where the conductance of two identical parallel chains was found to be $4x$ higher than that of a single chain. The prediction in ref. 24 is only applicable in the limit that the coupling of the branches to the nodes is weak, whereas in sp2-bonded graphene junctions, the coupling is strong.

Conclusion

We have addressed a hitherto mysterious feature of electroburnt graphene junctions, namely a ubiquitous conductance enlargement at the final stages before nanogap formation. Through a combined experimental and theoretical investigation of electroburnt graphene nanojunctions, we have demonstrated that conductance enlargement at the point of breaking is a consequence of a transition from multiple-path to single-path quantum transport. This fundamental role of quantum interference was demonstrated using calculations based on DFT–NEGF methods.

We consider a simple tight-binding (Hückel) description, with a single orbital per atom of “site energy” ε_0 and nearest-neighbor couplings $-\gamma$. As an example, for an infinite chain of such atoms, the Schrodinger equation takes the form $\varepsilon_0 \psi_j - \gamma (\psi_{j-1} - \psi_{j+1}) = E \psi_j$, for $-\infty < j < \infty$. The solution to this equation is $\psi_j = e^{i\beta j}$, where $-\pi < k < \pi$ is wave vector. Substituting this into the Schrodinger equation yields the dispersion relation of $E = \varepsilon_0 + 2\gamma \cos k$. This means that such a 1D chain possesses a continuous band of energies between $E = \varepsilon_0 - 2\gamma$ and $E = \varepsilon_0 + 2\gamma$. Because the 1D leads in Fig. 5 are infinitely long and connected to macroscopic reservoirs, systems Fig. 5 A–C are open systems. In these cases, the transmission coefficient $T(E)$ for electrons of energy E incident from the first lead is obtained by noting that the wave vector $k(E)$ of an electron of energy E traversing the ring is given by $k(E) = \cos^{-1} (\varepsilon_0 - E) / 2\gamma$. When E coincides with the midpoint of the HOMO–LUMO gap of the bridge, i.e., when $E = \varepsilon_0$, this yields $k(E) = \pi / 2$. Because $T(E)$ is proportional to $|1 + e^{i\beta L}|^2$, where L is the difference in path lengths between the upper and lower branches, for structure Fig. 5B, one obtains constructive interference, because $e^{i\beta L} = e^{i\theta} = 1$ and for structure Fig. 5C destructive interference, because $e^{i\beta L} = e^{i\theta} = -1$. This result is unsurprising, because it is well known that the meta-coupled ring Fig. 5C should have a lower conductance than the para-coupled ring Fig. 5B (23).

Conclusion

We have addressed a hitherto mysterious feature of electroburnt graphene junctions, namely a ubiquitous conductance enlargement at the final stages before nanogap formation. Through a combined experimental and theoretical investigation of electroburnt graphene nanojunctions, we have demonstrated that conductance enlargement at the point of breaking is a consequence of a transition from multiple-path to single-path quantum transport. This fundamental role of quantum interference was demonstrated using calculations based on DFT–NEGF methods.

We consider a simple tight-binding (Hückel) description, with a single orbital per atom of “site energy” ε_0 and nearest-neighbor couplings $-\gamma$. As an example, for an infinite chain of such atoms, the Schrodinger equation takes the form $\varepsilon_0 \psi_j - \gamma (\psi_{j-1} - \psi_{j+1}) = E \psi_j$, for $-\infty < j < \infty$. The solution to this equation is $\psi_j = e^{i\beta j}$, where $-\pi < k < \pi$ is wave vector. Substituting this into the Schrodinger equation yields the dispersion relation of $E = \varepsilon_0 + 2\gamma \cos k$. This means that such a 1D chain possesses a continuous band of energies between $E = \varepsilon_0 - 2\gamma$ and $E = \varepsilon_0 + 2\gamma$. Because the 1D leads in Fig. 5 are infinitely long and connected to macroscopic reservoirs, systems Fig. 5 A–C are open systems. In these cases, the transmission coefficient $T(E)$ for electrons of energy E incident from the first lead is obtained by noting that the wave vector $k(E)$ of an electron of energy E traversing the ring is given by $k(E) = \cos^{-1} (\varepsilon_0 - E) / 2\gamma$. When E coincides with the midpoint of the HOMO–LUMO gap of the bridge, i.e., when $E = \varepsilon_0$, this yields $k(E) = \pi / 2$. Because $T(E)$ is proportional to $|1 + e^{i\beta L}|^2$, where L is the difference in path lengths between the upper and lower branches, for structure Fig. 5B, one obtains constructive interference, because $e^{i\beta L} = e^{i\theta} = 1$ and for structure Fig. 5C destructive interference, because $e^{i\beta L} = e^{i\theta} = -1$. This result is unsurprising, because it is well known that the meta-coupled ring Fig. 5C should have a lower conductance than the para-coupled ring Fig. 5B (23).

More surprising is the fact that the single-chain structure Fig. 5A has a higher conductance than both Fig. 5B and Fig. 5C. To illustrate this feature, we note (see SI Appendix for more details) that the ratio of the Green’s function G_{ring} of the structure of Fig. 5B to the Green’s function of the chain Fig. 5A, evaluated between the atoms 1 and 4, is

$$G_{\text{ring}} / G_{\text{chain}} = \frac{1}{2} [1 - \alpha],$$

where α is a small self-energy correction due to the attachment of the leads. For small α, this means that the transmission of the linear chain at the gap center is $4x$ higher than the transmission of a para- ring (because transmission is proportional to the square of the Green’s function), which demonstrates that the conductances of both the two-path para- and meta-coupled structures are lower than that of a single-path chain. This result is the opposite of the behavior discussed in ref. 24, where the conductance of two identical parallel chains was found to be $4x$ higher than that of a single chain. The prediction in ref. 24 is only applicable in the limit that the coupling of the branches to the nodes is weak, whereas in sp2-bonded graphene junctions, the coupling is strong.

Conclusion

We have addressed a hitherto mysterious feature of electroburnt graphene junctions, namely a ubiquitous conductance enlargement at the final stages before nanogap formation. Through a combined experimental and theoretical investigation of electroburnt graphene nanojunctions, we have demonstrated that conductance enlargement at the point of breaking is a consequence of a transition from multiple-path to single-path quantum transport. This fundamental role of quantum interference was demonstrated using calculations based on DFT–NEGF methods.

Fig. 4. (A–D) Each shows an electrode formed from a graphene nanoribbon (Left) in contact with an electrode (Right) formed from a linear chain (A and B) or a chain of hexagons (C and D). For A and C the contact to the chain is via a two bond. For B and D the contact to the chain is via single bonds. The arrows indicate that upon switching from a two-bond contact to a single-bond contact, the current increases. $I_0 = 77.4 \mu A$ is the current carried by a quantum of conductance G_0 at 1 V.

This is illustrated in Fig. 6A for $M = 2$ (a continuous chain) and Fig. 6B for $M = 3$ (a bifurcation).

Within a tight-binding or Hückel description of such systems, the transmission and reflection amplitudes r and t are obtained from matching conditions at site “0.” Then for electron energies E at the band center (i.e., HOMO–LUMO gap center, which coincides with the charge neutrality point in our model), it can be shown (SI Appendix) that the transmission coefficient $T = |t|^2$ is given by

$$T = \frac{4(M - 1)}{M^2}.$$

For $M = 2$, this formula yields $T = 1$, as expected, because system Fig. 6A is just a continuous chain with no scattering. Because T cannot exceed unity, any changes can only serve to decrease T.

For a bifurcation ($M = 3$), Eq. 1 yields $T = \frac{8}{9}$, which is the same result as a continuum bifurcated waveguide.

When the two branches of Fig. 6B come together again to form a ring, there can be further interference effects, associated with additional reflections where the branches rejoin. These may serve to decrease or increase the transmission. At most the transmission will increase to $T = 1$, but in general T will remain less than unity. It might be expected that the asymmetrical ring in Fig. 5C will be more likely to manifest destructive interference than the symmetrical ring in Fig. 5B. These intuitive conclusions from continuous and discrete models are confirmed by the following rigorous analysis based on a tight-binding model of the actual atomic configurations, which captures the key features of the full DFT–NEGF calculations.

Fig. 5. (A) A 1D chain connected to 1D semiinfinite leads on the left and right. (B) Two parallel chains forming a ring with para- coupling to the leads and (C) two parallel chains with meta- coupling to the leads.

Sadeghi et al.
tightly-binding modeling, and analytic results for the structures of Fig. 5. Therefore, our results suggest that conductance jumps provide a tool for characterizing the atomic-scale properties of sp2 bonded junctions and in particular, conductance enlargement before junction rupture is a signal of the formation of electroburnt junctions, with a current path formed from a single sp2 bond. Conductance enlargement is common, but does not occur in all electroburnt nanojunctions, because direct jumps from two-path to broken junctions can occur. With greater control of the electroburning feedback, our analysis suggests that one could create carbon-based atomic chains and filaments, which possess many of the characteristics of single molecules without the need for anchor groups, because the chains are already covalently bonded to electrodes.

Computational Methods

The Hamiltonian of the structures described in this paper was obtained using DFT as described below or constructed from a simple tight-binding model with a single orbital per atom of site energy $\varepsilon_0 = 0$ and nearest-neighbor couplings $t = 1$.

DFT Calculation. The optimized geometry and ground-state Hamiltonian and overlap matrix elements of each structure were self-consistently obtained using the SIESTA (25) implementation of DFT. SIESTA employs norm-conserving pseudopotentials to account for the core electrons and linear combinations of atomic orbitals to construct the valence states. The generalized gradient approximation (GGA) of the exchange and correlation functional is used with the Perdew–Burke–Ernzerhof parameterization (26), a double-ζ polarized basis set, a real-space grid defined with an equivalent energy cutoff of 250 Ry. The geometry optimization for each structure is performed for the forces smaller than 40 meV/Å. For the band structure calculation, the given structure was sampled by a 1 × 1 × 500 Monkhorst-Pack k-point grid.

Transport Calculation. The mean-field Hamiltonian obtained from the converged DFT calculation or a simple tight-binding Hamiltonian was combined with our implementation of the nonequilibrium Green’s function method [the GOLLUM (27)] to calculate the phase-coherent, elastic scattering properties of the each system consist of left (source) and right (drain) leads and the scattering region. The transmission coefficient $T(E)$ for electrons of energy E (passing from the source to the drain) is calculated via the relation

$$T(E) = \text{trace} \{\Gamma_L(E)G^R(E)\Gamma_R(E)G^L(E)\}. \quad [3]$$

In this expression, $\Gamma_{L,R}(E) = \sum_n \left[\Gamma_n(E) - \sum_m \Gamma_m(E)\right]$ describes the level broadening due to the coupling between left (L) and right (R) electrodes and the central scattering region, $\sum_n \Gamma_n(E)$ are the retarded self-energies associated with this coupling, and $G^R(E) = (E - H - \Sigma_n - \Sigma_m)^{-1}$ is the retarded Green’s function, where H is the Hamiltonian and Σ is overlap matrix. Using the obtained transmission coefficient $[\Gamma(E)]$, the conductance could be calculated by the Landauer formula $G = G_0 \int dE T(E)(-df/dE)$, where $G_0 = 2e^2/h$ is the conductance quantum. In addition, the current through the device at voltage V could be calculated as

$$I(V) = \frac{2e}{h} \int \frac{dE}{2\pi} T(E) \left[\left(E - V - \frac{\Delta\Psi}{2}\right)^+ - \left(E - V + \frac{\Delta\Psi}{2}\right)^-\right], \quad [4]$$

where $\Gamma(E) = (1 + \exp(E - E_k)/k_B T)^{-1}$ is the Fermi–Dirac distribution function, T is the temperature, and $k_B = 8.6 \times 10^{-5}$ eV/K is Boltzmann’s constant.

Molecular Dynamics. Left and right leads (Fig. 1 C–E) were pulled in the transport direction by −0.1 A and 0.1 A every 40 fs (200 time steps) using the molecular dynamic code LAMMPS (28). Energy minimization of the system was achieved in each 200 time steps by iteratively adjusting atomic coordinates using the following parameters: the stopping energy of 0.2, the force tolerances of 10^{-6}, the maximum minimizer iterations of 1,000, and the number of force–energy evaluations of 10,000. The atoms were treated in the REAX (reactive) force-field model with reaxc parameterization and charge equilibration method as described in ref. 28. The whole procedure was performed twice and a total of 42 configurations was extracted. Each obtained set of coordinates was used as an initial set of coordinates for the subsequent self-consistent DFT loops as described above.

Experimental Methods

Similar to previous studies using few-layer graphene flakes, the feedback-controlled electroburning is performed in air at room temperature. The feedback-controlled electroburning of the SLG devices (29) is based on the same method as previously used for electroburning of few-layer graphene flakes (11) and electromigration of metal nanowires (30). A voltage (V) applied between the two metal electrodes is ramped up at a rate of 0.75 V/s, while the current (I) is recorded with a 200-µs sampling rate. When the feedback condition which is set at a drop ΔI of the current within the past 15 ms is met, the voltage is ramped down to zero at a rate of 225 V/s. After each voltage ramp the resistance of the SGL device is measured and the process is repeated until the low-bias resistance exceeds 500 MΩ. To prevent the SGL device from burning too abruptly at the initial voltage ramps we adjust the feedback condition for the each voltage ramp depending on the voltage at which the previous current drop occurred. The feedback conditions used were $\Delta I_{\text{set}} = 6, 9, 12,$ and 15 mA for $V_0 = 1.9, 1.6, 1.3,$ and 1.0 V, respectively.

Acknowledgments. This work is supported by the UK EPSRC (Engineering and Physical Sciences Research Council), EP/K001507/1, EP/J014753/1, EP/H035818/1, EP/J015067/1, and by the EU Marie Curie Initial Training Network Molecular-Scale Electronics (MOLECETO) 606728, Agency for Science Technology and Research (A*STAR), Oxford Martin School, the Royal Society, and the Templeton World Charity Foundation.

Supplementary Information

Conductance Enlargement in Pico-scale Electro-burnt Graphene Nanojunctions

Hatef Sadeghi,¹* Jan Mol,² Chat Lau,² Andrew Briggs,² Jamie Warner,² and Colin J Lambert¹†

¹ Quantum Technology Centre, Physics Department, Lancaster University, LA14YB Lancaster, UK
² Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, UK

CONTENTS
A. Supporting Figures
1. Fig. S1-3: The I-V traces of the voltage ramps (Experiments)
2. Fig. S4: Full set of burning traces for device c29, k27 and e18 (Experiments)
3. Fig. S5: I-V trace of the fully burned device (Experiments)
4. Fig. S6,8: The break junctions obtained from MD simulations combined with DFT relaxation
5. Fig. S7,9: Current at various voltages obtained from DFT-NEGF calculations for the junctions of figs S6 and S8
6. Fig. S10: Transmission coefficients for the junctions of fig. 3a. and non-equilibrium I-V calculation for structures c₁ and c₂ fig 3a
7. Fig. S11: Five ideal configurations with different edge termination (DFT)
8. Fig S12: Transmission coefficients and I-V traces for the junctions of fig S11
9. Fig. S13: DFT band structures of some possible chains and ribbons
10. Fig. S14: Classical model of single and double-pathways
11. Fig. S15: A multi-path structure whose conductance can be calculated analytically
12. Fig. S16: Linear atomic carbon and benzene chains with double bond and single bond in contact with a graphene nanoribbon
13. Fig. S17: Current jumps for the tight-binding junctions of fig 6 for various positions z.
14. Fig. S18: An example of transmission coefficient and current-voltage relations for the structures of fig 6

B. Note on inelastic scattering

C. Analytic calculation for the electrical conductance of rings and chains

A. Supporting Figures:

Figure S1-3 show characteristic I-V traces that are recorded during the electro-burning process. Each row shows examples of I-V traces for individual devices. The first panel in each row shows the initial voltage ramps, which possess

* h.sadeghi@lancaster.ac.uk
† c.lambert@lancaster.ac.uk
a ‘kink’ in the I-V curve due to bipolar transport in the graphene ribbon. After several consecutive voltage ramps the conductance becomes less than G_0 and the I-V traces start to display switching behavior. This switching between different conductance states is due to the changes in atomic configuration of the junction. The rightmost panel in each row shows the final stage of burning before gap formation. At the last stage prior to breaking, sharp current spikes can be observed in the I-V traces. We attribute these spikes to the transition from a multiple- to a single-path configuration.

Fig. S1: Measured I-V traces of the voltage ramps for samples g10, e22, o6 and g29. The bold traces are the ramp-up traces, the plain traces are the ramp-down.
Fig. S2: Measured I-V traces of the voltage ramps for samples m24, e14, l4 and d12. The bold traces are the ramp-up traces, the plain traces are the ramp-down.
Fig. S3: Measured I-V traces of the voltage ramps for samples e10, e18, k27 and c9. The bold traces are the ramp-up traces, the plain traces are the ramp-down.

Fig. S4 shows the full I-V traces for three different devices labeled by c9, k27 and e18 in figs. S1-3.
Fig. S4: Full set of burning traces for device c9, k27 and e18

Fig. S5 shows an I-V trace measured after the ‘spiked’ trace shown in inset of fig 1b. The exponential I-V characteristic is indicative for tunnelling through a barrier and is evidence that the device is fully burned.

Fig. S5: I-V trace of the fully burned device measured after the final spike indicates tunnelling through a barrier

Fig. S7 and S9 show the currents for the junctions shown in fig. S6 and S8 in different bias voltages in the interval $V=[0, 0.67]$ volts. It is clear that the current suddenly increase when the chain of the carbon atoms forms (fig. S4(15)) in all bias voltages from very low to high.

Fig. S6: The break junction traces configurations [1,4,8, 9,10,11,12,13,14,15,16,17,18,19,20,21].
Fig. S7: Calculated current in different applied bias voltages for 21 different configurations shown in fig. S6(1-21).

Fig. S8: Second set of the break junction traces [1,4,8,9,10,11,12,13,14,15,16,17,18,19,20,21].

Fig. S9: Current in different applied bias voltages for 21 different configurations shown in fig. S8. Inset: the non-equilibrium I-V characteristic of the single path structure (15) shown in figure S6 and the double path structure (12) shown in figure S8.

Figure S10 shows the calculated electrical conductance for the oxygen-terminated constrictions (fig. 3a) and the non-equilibrium I-V characteristic of the structure c₁ and c₂.
Figure S10: (a) Calculated conductance vs. electrons energy in oxygen-terminated junctions, (b) the non-equilibrium I-V characteristic of the structure c_1 and c_2.

Figure S11a,b shows the electrical conductance and current-voltage relation for without termination constrictions (fig. S11a) and the hydrogen-terminated constrictions (fig. S11b) for the 7 different scattering width from 3 nm (c_5) down to a single atomic chain (c_1). In all different termination, the current associated with the single pathway (blue curve) is higher than the other constrictions c_2-c_5.

Fig. S11: Five ideal configurations with reduced junction width down to the atomic chain (a) without termination or (b) with hydrogen termination.

Fig. S12: Calculated conductance vs. electrons energy (top) and I-V curves (bottom) in (a) no terminated, (b) hydrogen-terminated.
To eliminate band-structure effects as a cause of the conductance enlargement, we examine the energy bands of the structures as shown in fig. S13, which may be formed just before junction rupture. Except for the alkane shown in fig S13c, the other molecules show metallic behaviour due to the formation of π bands. Since the numbers of open transport channels near $E_F=0$ for ribbons (b,e,g,h) are greater than or equal to those of the chains (a,c,d,f), band structure alone cannot account for the conductance enlargement. The presence of 3 open channels in the case of oxygen and 4 open channels with –COOH terminations suggests that the latter will have a slightly higher conductance than the former.

Classically as shown in fig S14, since $G_a = \frac{1}{2R_1+R_2}$, $G_b = \frac{1}{2R_1+R_2}$ and $G_c = \frac{1}{2R_1+R_2+2R_3}$. G_a is always smaller than G_b and G_c.

Fig. S14: Classical model of single and double-pathways
B. Note on inelastic scattering:

The crucial point is that inelastic scattering takes place in the electrodes, but is negligible within the molecular-scale junction, because the electrons do not spend sufficient time within the junction to scatter. In the literature, there are two sets of experiments which demonstrate that for small molecular junctions, inelastic scattering is negligible. In the experiments of [1] on OPE molecular wires, it is shown that junctions of length less than 3nm are phase coherent with negligible inelastic scattering, whereas longer junctions exhibit a transition to incoherent transport. In our paper, the junctions comprise a few carbon atoms and are at most of length 1nm, which is smaller than the 3nm threshold. Other experiments on porphyrin wires also demonstrate phase coherent transport in molecules up to 3nm [2]. In addition to these literature precedents, experiments using inelastic tunnelling spectroscopic, which directly measure electron-phonon scattering in molecular-scale junction demonstrate that typically such scattering makes only a small contribution to the measured conductance [3].

C. Analytic calculation for the electrical conductance of rings and chains

To derive equations (1 and 2) of the main text, consider the multi-branched structure shown below, which is composed of (generally different) left and right leads connected to a structure containing M (generally different) branches.

![Diagram](image)

Fig. S15: A multi-branch structure described by a tight-binding model, with nodal sites L and R (on the left and right) connecting external current-carrying leads, by hopping matrix elements $-\alpha_L$ (on the left) and $-\beta_R$ (on the right), and to internal branches (l), by hopping matrix elements $-\alpha_l$ and $-\beta_l$, respectively. The energies of the nodal sites are ε_L and ε_R. The site energy and hopping matrix element of branch l are ε_l and $-\gamma_l$, respectively.

An analytic formula for the transmission coefficient of the above structure is presented in [4], where it is shown that the transmission coefficient is given by

$$T(E) = v_L \left(\frac{\alpha_L}{v_L}\right)^2 |G_{RL}|^2 \left(\frac{\beta_R}{v_R}\right)^2 v_R \quad (S1)$$

In this expression, v_L (v_R) is the electron group velocity in the left (right) lead, γ_L (γ_R) is the hopping element in the left (right) lead, α_L (β_R) are the coupling between the left (L) and right (R) nodal atom to the left (right) lead and G_{RL} is the Green’s function of the whole structure describing a wave propagating from nodal atom L to nodal atom R.

To evaluate equation (S1), the hopping elements γ_L, γ_R, α_L, α_R, and orbital energies ε_L, ε_R, ε_l defining the left (L) and right (R) leads and each branch l should be chosen. For a given energy E, the wave-vectors in L, R and l are then given by $k_L(E) = \cos^{-1}(\varepsilon_L - E)/2\gamma_L$, $k_R(E) = \cos^{-1}(\varepsilon_R - E)/2\gamma_R$ and $k_l(E) = \cos^{-1}(\varepsilon_l - E)/2\gamma_l$. The sign of the wave vectors is chosen such that the corresponding group velocities $v_L = 2\gamma_L \sin k_L(E)$, $v_R = 2\gamma_R \sin k_R(E)$ and $v_l =$
are positive, or if the wavevector is complex, such that the imaginary part is positive. Next the orbital energies ϵ_L, ϵ_R of the nodal sites L and R and their respective couplings $-\alpha, -\alpha'$ and $-\beta, -\beta'$ to the leads and branches should be chosen.

The final step in evaluating equation (S1) is to compute the Green's function G_{RL} connecting the left nodal site L to the right nodal site R via the expression:

$$G_{RL} = y / \Delta$$

(S2)

In this equation, the numerator y is given by the following superposition of contributions from each of the M branches:

$$y = \sum_{l=1}^{M} y_l$$

(S3)

where

$$y_l = \frac{\alpha \beta_l \sin k_l}{\gamma_l \sin k_l (N_l+1)}$$

(S4)

and N_l is the number of atoms in branch l. (For the special case $N_l = 1$, one should choose $\alpha = \beta = y_l$.)

The denominator Δ of equation (S2), which is given by

$$\Delta = y^2 - (\alpha^L - x^L)(\alpha^R - x^R)$$

(S5)

In this expression, the quantities x^L and x^R describe how a wave from the left or right nodal sites is reflected back to those sites and are given by

$$x^L = \sum_{l=1}^{M} x^L_l$$

(S6)

$$x^R = \sum_{l=1}^{M} x^R_l$$

(S7)

where

$$x^L_l = \frac{\alpha^2 \beta \sin k_l (N_l)}{\gamma_l \sin k_l (N_l+1)}$$

(S8)

and

$$x^R_l = \frac{\beta^2 \gamma \sin k_l (N_l)}{\gamma_l \sin k_l (N_l+1)}$$

(S9)

Finally, the quantities a_L and a_R contain information about the nodal site energies and their coupling to the left and right leads and are given by

$$a_L = (\epsilon^0_L - E) - \frac{\alpha^2}{\gamma_L} e^{ik_L}$$

(S10)

and

$$a_R = (\epsilon^0_R - E) - \frac{\beta^2}{\gamma_R} e^{ik_R}$$

(S11)

We now derive equation (4) for the Green’s function G_{RL} of a ring of atoms with N_1 atoms in branch 1 and N_2 atoms in branch 2. For a para-connected phenyl ring, $N_1 = N_2 = 2$, while for a meta connected ring, $N_1 = 1$ and $N_2 = 3$. Since all atoms are identical, all site energies within the branches are equal to a constant ϵ_0 and all couplings in fig. S15 (except α_R and
\(\alpha_l \) are equal to \(\gamma \), ie \(\alpha = \beta = \gamma \). This means that all wave vectors are equal to \(k(E) = \cos^{-1}(\varepsilon_0 - E)/2\gamma \) and \(x_l \times x_R \).

First consider the case of an isolated ring for which \(\alpha_l = \beta_R = 0 \), in which case \(a_L = a_R = 2\gamma \cos k, \ x_l = \frac{\gamma \sin k}{\sin k/N + 1} \)

\[
y_l = \frac{\gamma \sin k}{\sin k(N+1) + 1}.
\]

Since \(\gamma \cos k - x_l = \gamma \sin k \frac{C_l}{S_1} \) where \(S_1 = \sin k(N_l + 1) \) and \(C_l = \cos k(N_l + 1) \), one obtains \(a_L - x = \gamma \sin k \left(\frac{C_l}{S_1} + \frac{C_j}{S_2} \right) \)

\[
y = \gamma \sin k(S_1 + S_2)/S_1S_2 \quad \text{and} \quad \Delta = \frac{4\gamma^2 \sin^2 k}{S_1S_2} \sin^2 kN/2, \quad \text{where} \ N = N_l + N_j + 2. \]

These combine to yield

\[
G_{RL} = \frac{\gamma}{\Delta} \cos k \left(\frac{N_l - N_j}{2} \right)
\]

which is identical to equation (4), because for any choice of \(i \) and \(j \) in equation (4) \(|i-j| = N_l + 1 \) and \(N = N_l + N_j + 2 \). More generally, when the coupling to the left and right leads (\(\alpha_l \) and \(\beta_R \)) are not zero, \(a_L = 2\gamma \cos k + \sigma_L \) where \(\sigma_L = \left(\varepsilon_0^L - \varepsilon_0 \right) - \frac{\alpha_L}{\gamma} e^{ikx} \), and similarly for \(a_R \). In this case, we obtain equation (S13)

\[
G_{RL} = \frac{\cos k \left(\frac{N_l - N_j}{2} \right)}{2\gamma \sin k \sin kN/2 + \sigma_{\text{ring}}}
\]

where

\[
\sigma_{\text{ring}} = \frac{2\gamma \sin k \sin kN(\sigma_L + \sigma_R) - S_1S_2\sigma_L\sigma_R}{2\gamma \sin k \sin kN/2}
\]

Furthermore, the calculation can easily be repeated for a single branch to yield

\[
G_{RL} = \frac{-\sin k}{\gamma \sin k(N_l + 3) + \sigma_{\text{chain}}}
\]

where

\[
\sigma_{\text{chain}} = -2\sin k(N_l + 2) (\sigma_L + \sigma_R) - \sin k(N_l + 1) \sigma_L \sigma_R / \gamma
\]

(Note that in the notation of equation (6), \(M = N = N_l + 2 \). As an example, for \(N = 6, k = \pi/2 \), equation (S13) for the \(a \) ring yields

\[
G_{RL} = \frac{-2\gamma \cos k \left(\frac{N_l - N_j}{2} \right)}{4\gamma^2 - \sin k(N_l + 1) \sin k(N_j + 1) \sigma_L \sigma_R}
\]

For the para case, where \(N_l = N_j = 2 \), this yields

\[
G_{RL} = \frac{-2\gamma}{4\gamma^2 - \sigma_L \sigma_R}
\]

For the meta case, where \(N_l = 1, N_j = 3 \), it yields \(G_{RL} = 0 \) and for the ortho case, where \(N_l = 0, N_j = 4 \), it yields

\[
G_{RL} = \frac{2\gamma}{4\gamma^2 - \sigma_L \sigma_R}
\]

These expressions demonstrate that at the centre of the HOMO-LUMO gap, ortho and para couplings lead to the same electrical conductance.
As a second example, of this odd-even conductance variation as a function of N_f, consider the Greens function of a linear chain at $k=\pi/2$. In this case equation (S14) yields

$$G_{RL} = (-1)^{N_f+1} \frac{1}{2(\sigma_L + \sigma_R)} \quad \text{for } N_f \text{ odd} \quad (S20)$$

and

$$G_{RL} = (-1)^{N_f} \frac{1}{\gamma + \sigma_L \sigma_R / \gamma} \quad \text{for } N_f \text{ even} \quad (S21)$$

which shows that the conductance of such a chain also exhibits an odd-even oscillation as a function of the chain length. Furthermore, after dividing equation S19 by equation S21, one obtains equation (2) of the main text, where $\alpha = \frac{3\sigma_L \sigma_R / 4\gamma^2}{1 - \sigma_L \sigma_R / 4 \gamma^2}$.

![Diagram](image)

Fig. S16: Each of figs a-d show an electrode formed from a graphene nanoribbon (on the left) in contact with an electrode (on the right) formed from a linear chain (a and b) or a chain of hexagons (c and d). For (a) and (c) the contact to the chain is via a single bond. For (b) and (d) the contact to the chain is via two bonds. For a voltage $v=20\text{mV}$, the circles show the current through each structure. The arrows indicate that upon switching from a two-bond contact to a single-bond contact, the current increases. $I_v=77.4 \mu\text{A}$ is the current carried by a quantum of conductance G_0 at 1 volt. The blue, green and red circles correspond to different positions $z=0, 1, 2$ of the contact.

To demonstrate further that a two-path contact between two graphene electrodes typically has a lower conductance than a single-path contact, consider the four structures shown in fig. S16a-d. The structures in fig S16a,b consist of a linear atomic chain in contact with a graphene nanoribbon, with either two (fig. S16a) or one (fig. S16b) bonds between the chain and ribbon. Structure in fig. S16c consists of a linear chain of hexagons in contact with a graphene nanoribbons via two bonds, while S14d has only a single bond at the contact.
Figure S16e shows the effect of breaking a single bond (to switch from junction a to b or from junction c to d), when the connection point \(z = [0,1,2] \) of the linear chains is varied relative to the lower edge of the left-hand graphene nanoribbon and demonstrates that typically the single-bonded structures shown in fig. S16b and fig. S16d have higher currents. This demonstrates how constructive quantum interference in pico-scale graphene junctions produces a significant jump in the current before breakdown. As an example, fig. S16e shows that when only one of two single bonds in the hexagon–graphene junction is broken (fig. S16d), the current (fig. S16e\(z = 1 \)) increases by a factor of 11.5. (For further results see figure S17.) To illustrate the relationship between the current and the underlying transmission coefficient, for the structures shown in fig. S16d with \(z = 0 \), fig. S18 shows examples of the transmission coefficient and current-voltage relations, which reflects the fact that graphene-single-path junction carries higher current.

Fig. S17 shows the current at 0.02V for each of the structures of figs. S16(a–d) and for a variety of contact positions \(z \). Comparison between S16b and S16a or between S16d and S16c shows that for almost all positions \(z \), the single-path junction carries a higher current than the double-path junction. However conductance enlargement may be absent for contacts near the edges of the graphene electrode, where the local density of states of the electrode plays a role.

To illustrate the origin of the jumps, fig. S18 shows examples of the transmission coefficient and current-voltage relations calculated based on the simple tight-binding model with a single orbital per atom \(\epsilon_0 = 0eV \) and nearest neighbour couplings \(= -1eV \), as described in method section. The graphs labelled NC, NB and NG are the number of open channels in a 1d carbon chain (right hand lead in fig. S16a,b), benzene chain (right hand lead in fig. S16c,d) and 6N-zigzag graphene ribbon (left hand lead in fig. S16a–d), respectively. In all cases only one channel is open at low energies, due to the band structure of the graphene nanoribbon. The corresponding transmission coefficients and I-V curves for the structures shown in fig. 16a–d are labelled a-d in fig. S16e. The inset of fig. S18 shows that the current of the structure shown in fig. S16b is higher than all other structures in fig. S16, reflecting the fact that graphene-1d carbon chain single junction carries higher current. When an extra coupling is added to the junction as shown in fig. S16a, the current drops as shown by the dashed red curve in fig. S18. Similarly for the hexagonal chain connected to the ribbon,
cutting one of the two couplings (fig. S16c to fig. S16d) causes the current to increase, as shown by the dashed blue curves in fig. S18.

SI References