Correction

BIOCHEMISTRY

The authors note that Fig. 4 appeared incorrectly. The corrected figure and its legend appear below.

![Updated reaction mechanism of nitrite reduction](https://www.pnas.org/figs/doi/10.1073/pnas.1604061113)

Fig. 4. Updated reaction mechanism of nitrite reduction. Dashed lines represent H-bonds. Strong and weak H-bonds involved in PCET are colored as in Fig. 28. Chain lines mean steric hindrance between the near face-on substrate and His255.

www.pnas.org/cgi/doi/10.1073/pnas.1604061113
Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography

Yohta Fukudab,1,2, Ka Man Tse1,3, Takebori Nakanea (中根 崇智)4,5, Toru Nakatsu6,7, Mamoru Suzuki8,9, Michihiro Sugaharaa, Shigeyuki Inouee,7, Tetsuya Masudab,8, Fumiaki Yumotob, Naohiro Matsugakia, Eriko Nangoa, Kensuke Tonoa, Yasumasatot, Takashi Kameshima, Changyong Songab,1, Takaki Hatsuia, Makina Yabashia, Osamu Nurekici, Michael E. P. Murphy10, Tsuyoshi Inouee,7, So Iwata1,2, and Eiichi Mizohata (満博 光)1,2

*Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yama-daoka, Suita, Osaka 565-0871, Japan; †Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032; ‖Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; ‡Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan; §RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; ¶Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan; ††Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; ‡‡Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; ¶¶Structural Biology Research Center, KEK High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0001, Japan; †††Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan; ††††Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea; †††‡Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; †‡‡Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and †‡‡‡Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto, 606-8501, Japan

Edited by Edward I. Solomon, Stanford University, Stanford, CA, and approved February 2, 2016 (received for review September 9, 2015)

Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoelectron changes the native structures of metal centers and the enzyme–substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SFX NC structure revealed a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures demonstrated the potential of SFX as a powerful tool to study redox processes in metalloenzymes.

Significance

Copper nitrite reductase (CuNiR) is involved in denitrification of the nitrogen cycle. Synchrotron X-rays rapidly reduce copper sites and decompose the substrate complex structure, which has made crystallographic studies of CuNiR difficult. Using femtosecond X-ray free electron lasers, we determined intact structures of CuNiR with and without nitrite. Based on the obtained structures, we proposed a redox-coupled proton switch model, which provides an explanation for proton-coupled electron transfer (PCET) in CuNiR. PCET is widely distributed through biogenic processes including respiratory and photosynthetic systems and is highly expected to be incorporated into bioinspired molecular devices. Our study also establishes the foundation for future studies on PCET in other systems.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

Data deposition: Crystallography, atomic coordinates, and structure factors have been deposited in the Protein Data Bank, www.pdb.org [PDB ID codes 4Y5C (SRX RS), 4Y5E (SRX RS), 5D4H (SRX NC), 5D4I (SRX NC), 5DF7 (SRX RSCl), 5F7A (SRX RSCl), and Coherent X-ray Imaging Data Bank ID: 34].

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517770113/-/DCSupplemental.
transfer (PT) to the substrate (10–12). Although intramolecular electron transfer (ET) from T1Cu to T2Cu can occur in the resting state (RS) (13, 14), the differences in the redox potentials of T2Cu minus T1Cu are small and sometimes negative in the absence of NO2−, meaning that intramolecular ET before NO2− binding is not energetically favorable (15, 16). By contrast, intramolecular ET is dramatically accelerated in the presence of NO2− (15, 17). An explanation for this gating-like phenomenon is that substrate binding raises the redox potential of T2Cu and shifts the equilibrium of the ET reaction (16). However, pH dependence of intramolecular ET in the presence of NO2− cannot be explained by such a change of redox potentials (15). Instead, Kobayashi et al. (15) proposed that reduction-induced structural change of His255 is responsible for the gating-like mechanism. Because it has been recently proven that intramolecular ET in CuNiR is accompanied by PT and proton-coupled ET (PCET) (17, 18), one can readily speculate that intramolecular ET contributes PT to NO2− and that the structural change of His255 is involved in PCET. Crystal structures of CuNiR from *Rhodobacter sphaeroides* (RhsNiR) implies this possibility because His287 in RhsNiR, which corresponds to His255, seems to show pH- and redox-dependent conformational changes (19, 20). However, presumably because of X-ray radiation damages implied by reification of RhsNiR structures (21), electron density around His287 was so unusual that interpretation of it is difficult (SI Appendix, Fig. S2).

Crystal structures determined by synchrotron radiation crystallography (SRX) have provided insights into the enzymatic mechanisms of CuNiR (22–25), and these studies are summarized elsewhere (7). High-resolution nitrite complex (NC) structures revealed an O-coordination of NO2− showing a near face-on binding mode (22, 23), whereas Cu(II)-NO2− model complexes show a vertical binding mode (7, 26–29). The near face-on coordination manner is thought to facilitate its conversion to side-on NO, which was observed in the crystal structures of CuNiR exposed to NO (22, 23, 25). Skeptical eyes however, have cast doubt on the SRX crystals because SRX data might be affected by some problems connected to the high radiation dose delivered on the crystals. First, strong synchrotron X-rays cause not only radiation damages to amino acid residues but also photoreduction of metalloproteins (30, 31). Although a comparison between oxidized and reduced states is necessary to closely investigate redox reactions, completely oxidized structures are almost impossible to determine by SRX. Indeed, the Cu centers in CuNiR are rapidly reduced by exposure to synchrotron X-rays (21, 32). Second, following the photoreduction of T2Cu, NO2− is easily reduced and produces NO and water in SRX (21). Consequently, electron density at the catalytic site of an NC structure is derived from the mixture of both substrate and product, making interpretation of data complicated and unreliable. Third, cryogenic manipulations for reducing radiation damages in SRX have also been focused as a factor that changes the population of amino acid residues (33, 34) and enzyme–substrate complexes (35). Crystallographic (36), computational (37), and spectroscopic (38–40) studies actually show that binding modes of NO2− and NO in CuNiR crystal structures can differ from those in physiological environments.

We here ventured to use photoreduction in SRX to initiate a chemical reaction and to trap an enzymatically produced intermediary state (30, 31). Furthermore, to visualize intact CuNiR structures in the resting and NC states, we applied serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) (41), which enables damage-free structural determination of metalloproteins (42, 43) and evaluation of the native conformational population at room temperature (RT) (44). By comparing SRX and SFX data, we discuss PT and nitrite reduction in CuNiR.

Results and Discussion

RS Structures Determined by SFX and SRX. The SFX and cryogenic SRX structures of CuNiR from *A. faecalis* (A/NiR) (45, 46) in RS were refined to 2.03- and 1.20-Å resolution, respectively (SFX RS and SRX RS, SI Appendix, Tables S1 and S2). We also collected SRX data at 293 K, which is the temperature in the SFX experiment, and the structure was determined at 1.56-Å resolution (SRX RS**ET**, SI Appendix, Table S2). Although the T1Cu site is rapidly reduced by synchrotron X-rays (21, 32), there is no significant difference in the geometry between the SRX and SFX structures (SI Appendix, Table S3). Because the typical differences of the T1Cu geometries between the reduced and oxidized states are <0.1 Å (47), higher-resolution data are necessary for closer evaluation. The apical positions of the T2Cu site in the cryogenic and RT SRX structures were occupied by water (SI Appendix, Fig. S3 A and B), whereas that in the SFX structure was occupied by a chloride ion (SI Appendix, Fig. S3C) because of the difference of the purification method (SI Appendix). Except for the T2Cu–His135 bond, the distances between His residues and T2Cu did not show significant differences (SI Appendix, Table S3). The T2Cu–His135 bonds in the SRX RS structures (cryogenic: 2.00 ± 0.02 Å, RT: 2.03 ± 0.02 Å) were shorter than that in the SFX RS structure (2.12 ± 0.06 Å). Although this difference was subtle and the resolution of the SFX RS structure was too low for further judgment, it is noteworthy that His135 constitutes the Cys–His bridge for intramolecular ET.

SRX NC Structure. The cryogenic SRX NC structure was refined to 1.30-Å resolution (SI Appendix, Table S4), which is higher resolution than those of previous A/NiR NC structures (22, 46). T2Cu in the SRX NC structure showed ligand NO2− with 95% (molecule A) or 50% (molecules B and C) occupancy (SI Appendix, Fig. 1A, and SI Appendix, Fig. S4A). In molecules B and C, water with 50% occupancy was modeled near the O1 atom of NO2− (21). The binding direction of NO2− was different from that observed in the high-resolution A/NiR NC structure (22) but similar to those in other CuNiR NC structures (SI Appendix, Fig. S4B). Ambiguity in assignment of nitrite binding modes in SRX structures may come from photoreduction of NO2−. The distances from the O1 and O2 atom to T2Cu were 2.07 ± 0.06 Å and 2.18 ± 0.05 Å, respectively, and the N atom was 2.16 ± 0.06 Å from T2Cu. The plane formed by the O1–N–O2 plane and the O1–T2Cu–O2 plane was 69° ± 2° (SI Appendix, Table S5). These values were similar to previously reported ones (7, 22, 23) (SI Appendix, Table S6) and showed the near face-on mode of NO2−. The Cu site geometries in the SRX NC structures are summarized in SI Appendix, Table S5.

SFX NC Structure. To visualize the nondamaged NC structure, we performed SFX (SI Appendix, Fig. S5). Phase determination was performed with the single-wavelength anomalous diffraction (SAD) method using Cu as a phasing element (SI Appendix, Fig. S6). The protocol was the same as recent sulfur SAD phasing with SFX data (48) (SI Appendix). The SFX NC structure was refined to 1.60-Å resolution (SI Appendix, Table S7). The T1Cu site showed no significant difference between the SFX NC and SRX NC structures (SI Appendix, Table S5). Furthermore, both the SFX and SRX data showed that the T1Cu geometry was not dependent on NO2− binding (SI Appendix, Tables S3 and S5). Right above all T2Cu atoms in the SFX NC structure were asymmetric triangle-shaped electron densities, which could accommodate a bent tritatomic molecule (SI Appendix, Fig. 1B, and SI Appendix, Fig. S7). We assigned NO2− with full occupancy because this model showed the best agreement with electron density (SI Appendix, Fig. S8). The distances from the O1 and O2 atom to T2Cu were 2.14 ± 0.05 and 2.00 ± 0.07 Å, respectively, and the N atom is 2.28 ± 0.02 Å from T2Cu. The angles between the O1–N–O2 plane and the O1–T2Cu–O2 plane in the SFX NC structure were 9° (molecule A), 39° (molecule B), and 23° (molecule C), showing a more vertical binding mode than the SRX NC structure (Fig. 1C and SI Appendix, Table S5).

Binding Mode of NO2−. The vertical binding mode is found in many biomimetic model complexes of Cu(II)–NO2− (7, 26–29) and supported by computational chemistry (29, 49). However, synchrotron CuNiR structures have shown the near face-on modes (7, 22, 23). We then determined an SRX NC structure at 293 K.
Fig. 1. NO$_3^-$ binding in NC structures. (A) T2Cu site in the SRX NC structure (molecule A). The sigma-A–weighted 2F$_c$–F$_o$ (1.5σ) and omit F$_c$–F$_o$ (6.5σ) maps are shown as gray and red meshes, respectively. H-bonds (yellow) and coordination bonds (black) are represented by dashed lines. C, N, O, and Cu atoms are colored cyan, blue, red, and brown, respectively. (B) T2Cu site in the SFX NC structure (molecule A). The sigma-A–weighted 2F$_c$–F$_o$ (1.0σ) and omit F$_c$–F$_o$ (4.5σ) maps are shown as gray and red meshes, respectively. H-bonds and coordination bonds are represented as in A. C, N, O, and Cu atoms are colored magenta, blue, red and brown, respectively. (C) Comparison between the SFX NC (magenta) and SRX NC (cyan) structures.

(SRX NC$_{RT}$, SI Appendix, Table S4 and Fig. S9A) to see whether experimental temperature will have an effect on NO$_3^-$ binding modes. The angles between the O1–N–O2 plane and the O1–T2Cu–O2 plane in the SRX NC$_{RT}$ structure were 55° (molecule A), 33° (molecule B), and 50° (molecule C) (SI Appendix, Table S5); that is, the NO$_3^-$ binding mode in the SFX NC structure was more vertical than in the SRX NC$_{RT}$ structure (SI Appendix, Fig. S9B and 1. Supplementary Discussion). This result is consistent with a previous study in which an SRX NC structure of CuNiR from Geobacillus thermodenitrificans (GtNiR) determined at 320 K showed NO$_3^-$ assuming a near face-on mode (SI Appendix, Fig. S4B) (36). Therefore, it is most probable that the conformational change of NO$_3^-$ from vertical to near face-on is induced by photoreduction. AiNiR NC structure determined at cryogenic temperature with an in-house X-ray source (46) is noteworthy because it shows relatively vertical binding modes of NO$_3^-$ (SI Appendix, Table S6). Because the dose rate delivered by the in-house source is significantly lower than that of the synchrotron, the in-house cryogenic structure also implies that the near face-on mode corresponds to the binding mode when T2Cu is photoreduced. The difference of the NO$_3^-$ coordination modes between Cu(I) and Cu(II) is not surprising, because model complexes of Cu(I)–NO$_3^-$ generally show an N-coordination (7, 28, 50–52), not the O-coordination observed in Cu(II)–NO$_3^-$. Our present data, however, did not show a rearrangement from the O-coordination to the N-coordination, which was expected by model complexes and computational chemistry (28, 50–53).

Rotation of the Imidazole Ring of His255. The N$_{61}$ atom of enzymatically important His255 can form a hydrogen bond (H-bond) with the carbonyl O atom of Glu279 and/or the hydroxyl O atom of Thr280, and this Glu–Thr pair is conserved in CuNiRs (SI Appendix, Fig. S10). Compared with the imidazole ring of His255 in the SFX RS structure, the imidazole ring in the SRX RS structure rotated about 20° and hence the H-bond partners of His255 were switched (Fig. 2A and B and SI Appendix, Fig. S11). Similar rotation was observed in the SRX RS$_{RT}$ structure (SI Appendix, Fig. S12), although it was less obvious because the activation energy for the reverse rotation is not so high compared with the thermal energy at RT. The imidazole ring of His255 in the SRX NC structure significantly rotated as was observed in the SRX RS structure (Fig. 2C). Conversely, the imidazole ring in the SFX NC structure only showed slight rotation (Fig. 2C), indicating that NO$_3^-$ binding was not the main cause for His255 rotation. The degree of His255 rotation in molecule A of the SRX NC$_{RT}$ structure was slightly larger than that in the SFX NC structure, although the difference was not significant in other monomers (SI Appendix, Fig. S13). Because NO$_3^-$ binding itself causes slight rotation of His255, it was difficult to distinguish the effect of NO$_3^-$ binding from other effects on His255 at RT, where the rotation is less obvious than at cryogenic temperature. We also solved an SRX structure in the chloride-bound form (SRX RS$_{Cl}$, SI Appendix, Table S7).
SI Appendix, Table S8 and Fig. S14A). His255 in this structure was in the rotated form (SI Appendix, Fig. S14B), indicating that the differences of ligands are not the main reason of the rotation. Besides, the chloride ion in the SRX RS[−] structure was shifted ~1.0 Å toward the center of the catalytic site, probably because rotated His255 provided a wider space above T2Cu (SI Appendix, Fig. S14). Because pH of a buffer at cryogenic temperature is significantly higher than at RT (54), deprotonation of His255 may be promoted at cryogenic temperature and may cause the structural change. However, the imidazole ring of His255 in the SRX RS^{PT} structure was more rotated than that in the SFX RS structure (SI Appendix, Fig. S12). Moreover, we recently showed that the imidazole ring of His244 in GtNiR, which corresponds to His255 in AfNiR, rotates as a result of photoreduction, but not the difference of temperatures (55). Therefore, cryogenic temperature would not be the only factor for the rotation and the reduction of Cu may also cause it, as was predicted previously (15).

PCET and Nitrite Reduction Mechanisms. Apparently, His255 is not linked to either the T1Cu site or the T2Cu site. However, the side chain of Glu279 of the Glu-Thr pair is connected to His100 via an H-bond (SI Appendix, Fig. S15). His100 is not only a T2Cu ligand but also a terminal residue of a sensor loop, through which intramolecular ET between T1Cu and T2Cu is adjusted (9). Besides, His100 has a van der Waals and/or a π–π interaction with His255 (SI Appendix, Fig. S16). These observations suggest that structural change of His255 is involved in a redox-coupled reaction, although the precise mechanism by which His255 perceives electronic states of the Cu centers is unknown. Crystallographic (11, 12) and computational (53) studies support indirect PT from His255 to NO₂[−] via bridging water after T2Cu reduction. The switching of the H-bond partners of His255 may facilitate this PT reaction. Because the hydroxyl O atom of Thr280 is less negatively charged than the carbonyl O atom of Gln279, the N^{δ1} atom of His255 forms a longer and weaker H-bond with Thr280 (Fig. 3).

Using mutated AfNiR, we further proved that the rotated state of His255 is a transient conformation important for the CuNiR activity. The activity of the T280V and T280S mutants was, respectively, 20% and 29% of the WT activity. Because the T280V mutant lacks the hydroxyl O atom that can form an H-bond with His255, the rotation of His255 is inhibited in this mutant. Although the T280S mutant maintains a hydroxyl group in the side chain, it rotates more flexibly than that of Thr, which means that His255 is not always able to make an H-bond with Ser280. Therefore, the T280S mutant showed activity lower than that of WT but higher than that of T280V. Indeed, some natural CuNiRs containing Ser instead of Thr show lower activities than AfNiR (56, 57), and crystal structures of such Ser-containing CuNiRs demonstrate that Ser does not always form an H-bond with catalytic His under certain conditions (56, 57).

PCET and Nitrite Reduction Mechanisms. Apparently, His255 is not linked to either the T1Cu site or the T2Cu site. However, the side chain of Glu279 of the Glu-Thr pair is connected to His100 via an H-bond (SI Appendix, Fig. S15). His100 is not only a T2Cu ligand but also a terminal residue of a sensor loop, through which intramolecular ET between T1Cu and T2Cu is adjusted (9). Besides, His100 has a van der Waals and/or a π–π interaction with His255 (SI Appendix, Fig. S16). These observations suggest that structural change of His255 is involved in a redox-coupled reaction, although the precise mechanism by which His255 perceives electronic states of the Cu centers is unknown. Crystallographic (11, 12) and computational (53) studies support indirect PT from His255 to NO₂[−] via bridging water after T2Cu reduction. The switching of the H-bond partners of His255 may facilitate this PT reaction. Because the hydroxyl O atom of Thr280 is less negatively charged than the carbonyl O atom of Gln279, the N^{δ1} atom of His255 forms a longer and weaker H-bond with Thr280 (Fig. 3).

Using mutated AfNiR, we further proved that the rotated state of His255 is a transient conformation important for the CuNiR activity. The activity of the T280V and T280S mutants was, respectively, 20% and 29% of the WT activity. Because the T280V mutant lacks the hydroxyl O atom that can form an H-bond with His255, the rotation of His255 is inhibited in this mutant. Although the T280S mutant maintains a hydroxyl group in the side chain, it rotates more flexibly than that of Thr, which means that His255 is not always able to make an H-bond with Ser280. Therefore, the T280S mutant showed activity lower than that of WT but higher than that of T280V. Indeed, some natural CuNiRs containing Ser instead of Thr show lower activities than AfNiR (56, 57), and crystal structures of such Ser-containing CuNiRs demonstrate that Ser does not always form an H-bond with catalytic His under certain conditions (56, 57).

PCET and Nitrite Reduction Mechanisms. Apparently, His255 is not linked to either the T1Cu site or the T2Cu site. However, the side chain of Glu279 of the Glu-Thr pair is connected to His100 via an H-bond (SI Appendix, Fig. S15). His100 is not only a T2Cu ligand but also a terminal residue of a sensor loop, through which intramolecular ET between T1Cu and T2Cu is adjusted (9). Besides, His100 has a van der Waals and/or a π–π interaction with His255 (SI Appendix, Fig. S16). These observations suggest that structural change of His255 is involved in a redox-coupled reaction, although the precise mechanism by which His255 perceives electronic states of the Cu centers is unknown. Crystallographic (11, 12) and computational (53) studies support indirect PT from His255 to NO₂[−] via bridging water after T2Cu reduction. The switching of the H-bond partners of His255 may facilitate this PT reaction. Because the hydroxyl O atom of Thr280 is less negatively charged than the carbonyl O atom of Gln279, the N^{δ1} atom of His255 forms a longer and weaker H-bond with Thr280 (Fig. 3).

Using mutated AfNiR, we further proved that the rotated state of His255 is a transient conformation important for the CuNiR activity. The activity of the T280V and T280S mutants was, respectively, 20% and 29% of the WT activity. Because the T280V mutant lacks the hydroxyl O atom that can form an H-bond with His255, the rotation of His255 is inhibited in this mutant. Although the T280S mutant maintains a hydroxyl group in the side chain, it rotates more flexibly than that of Thr, which means that His255 is not always able to make an H-bond with Ser280. Therefore, the T280S mutant showed activity lower than that of WT but higher than that of T280V. Indeed, some natural CuNiRs containing Ser instead of Thr show lower activities than AfNiR (56, 57), and crystal structures of such Ser-containing CuNiRs demonstrate that Ser does not always form an H-bond with catalytic His under certain conditions (56, 57).

PCET and Nitrite Reduction Mechanisms. Apparently, His255 is not linked to either the T1Cu site or the T2Cu site. However, the side chain of Glu279 of the Glu-Thr pair is connected to His100 via an H-bond (SI Appendix, Fig. S15). His100 is not only a T2Cu ligand but also a terminal residue of a sensor loop, through which intramolecular ET between T1Cu and T2Cu is adjusted (9). Besides, His100 has a van der Waals and/or a π–π interaction with His255 (SI Appendix, Fig. S16). These observations suggest that structural change of His255 is involved in a redox-coupled reaction, although the precise mechanism by which His255 perceives electronic states of the Cu centers is unknown. Crystallographic (11, 12) and computational (53) studies support indirect PT from His255 to NO₂[−] via bridging water after T2Cu reduction. The switching of the H-bond partners of His255 may facilitate this PT reaction. Because the hydroxyl O atom of Thr280 is less negatively charged than the carbonyl O atom of Gln279, the N^{δ1} atom of His255 forms a longer and weaker H-bond with Thr280 (Fig. 3).

Using mutated AfNiR, we further proved that the rotated state of His255 is a transient conformation important for the CuNiR activity. The activity of the T280V and T280S mutants was, respectively, 20% and 29% of the WT activity. Because the T280V mutant lacks the hydroxyl O atom that can form an H-bond with His255, the rotation of His255 is inhibited in this mutant. Although the T280S mutant maintains a hydroxyl group in the side chain, it rotates more flexibly than that of Thr, which means that His255 is not always able to make an H-bond with Ser280. Therefore, the T280S mutant showed activity lower than that of WT but higher than that of T280V. Indeed, some natural CuNiRs containing Ser instead of Thr show lower activities than AfNiR (56, 57), and crystal structures of such Ser-containing CuNiRs demonstrate that Ser does not always form an H-bond with catalytic His under certain conditions (56, 57).
2B). As a result, the H atom is more attracted to the N^+ atom and a proton on the N^- atom moves to bridging water (Fig. 3). Furthermore, the N atom of NO^- becomes closer to His255 when NO^- changes its conformation from vertical to near face-on (Fig. 1C), meaning that due to steric hindrance (<3.5 Å) near face-on NO^- might inhibit the reverse rotation of His255 and hence reverse PT. The catalytic activity of CuNiR dramatically drops below pH 5.0 (10, 13). This phenomenon has been explained by decreased intramolecular ET rate at low pH (15). Our model may provide another explanation: the imidazole ring rotation of His255 is difficult at low pH. Because the pK of our crystallization condition was ~4.0, the unprotonated state of His255 observed in the SFX structures should be the natural structure in the crystal. However, cryogenic temperature with increasing pH could assist the rotation of His255, which can explain why the observed rotation at cryogenic temperature was larger than that at RT.

Fig. 4 describes the updated nitrite reduction mechanism. FTIR analysis with carbon monoxide (58) showed that Asp98 is deprotonated in the RS and just after binding of an external ligand (I and II). Because Asp98 is located at the end of the proton channel leading to bulk solvent (SI Appendix, Fig. S1) (17, 23), a proton may be provided through this residue (III). Intramolecular ET causes the structural changes described above (III → IV). The conformational change of NO^- makes the angle of N–O2–H to be about 120°, which may facilitate protonation of NO^-.

Also, PT from His255 to bridging water occurs (IV → V). Atomic-resolution NC structures (23) revealed two conformations of Asp98, namely the gatekeeper (G) and proximal (P) conformations, indicating the catalytic importance of the movement of Asp98 (53); however, the G conformation is prohibited by steric hindrance in some CuNiRs (59). In our NC structures, Asp98 showed only a P conformation despite NO^- binding (Fig. 5), which has been thought to increase the population of the G state (23). Because the SFX data reflect the intact conformational population at RT (44), the G state reported (Fig. 5), which has been thought to increase the population of the G state (23). Because the SFX data reflect the intact conformational population at RT (44), the G state reported (Fig. 5), which has been thought to increase the population of the G state (23). Because the SFX data reflect the intact conformational population at RT (44), the G state reported (Fig. 5), which has been thought to increase the population of the G state (23). Because the SFX data reflect the intact conformational population at RT (44), the G state reported (Fig. 5), which has been thought to increase the population of the G state (23). Because the SFX data reflect the intact conformational population at RT (44), the G state reported (Fig. 5), which has been thought to increase the population of the G state (23). Because the SFX data reflect the intact conformational population at RT (44), the G state reported.

The structure in the crystal. However, cryogenic temperature with increasing pH could assist the rotation of His255, which can explain why the observed rotation at cryogenic temperature was larger than that at RT. The activity assay was performed at 25 °C as described elsewhere (57) with several modifications.

SFX Structure Determination. For the SRX NC structure, a crystal was soaked in the reservoir solution containing 30% (vol/vol) glycerol and 60 mM NaNO_2 for 15 min. For the SRX NC structure, a crystal was soaked in the reservoir solution containing 60 mM NaNO_2 for 15 min. For the RS and RS structures, crystals were soaked in the reservoir solution containing 30% (vol/vol) glycerol. Diffraction data were collected at beamlines BL26B1, BL26B2, and BL44XU at SPring-8. The datasets were processed using HKL2000 (62). The phases were determined by molecular replacement (MR) using Phaser (63) with an Affinity trimer (PDB ID code 15JM) (22) as a search model. Manual model building was performed using Coot (64). The program Refmac5 (65) from the CCP4 suite (66) was used for structural refinement. The final models were checked for stereochemical quality using MolProbity (67).

SFX Structure Determination. To prepare the NC, 1.2 M NaNO_2 in the precipitant solution was added to the microcrystal sample in a 1.5-mL tube to give a final concentration of 160 mM. After incubation for 5 min, the sample was mixed with the grease matrix and packed in an injector syringe before data collection as described previously (68). To avoid the self-dissociation of NO^-_, the totaled 18 samples of NC microcrystals were prepared at time of use, and data collection for each sample was completed within 50 min after addition of sodium nitrite. For the RS structure, microcrystals were mixed with the grease matrix and packed in an injector syringe before data collection. The diffraction pattern were collected with Xfel radiation at BL3 (EH4) of the SPring-8 Angstrom Compact Free-Electron Laser (69). The data were processed with CrystFEL (70). Indexing was performed by DirAx (71). The indexed diffraction images were merged using CrystFEL. The phase for the SFX RS data were determined by MR using Phaser with Affinity (PDB ID code 15JM) as a search model. The phase of the SFX NC data was determined by SAD with SHELX (72). Manual model building was performed using Coot. The program Refmac5 was used for structural refinement. The final models were checked using MolProbity.

Materials and Methods
Complete materials and methods used in this study are described in SI Appendix.

Sample Preparation and Activity Assay. Affinity with a C-terminal 6xHis-tag was expressed in Escherichia coli BL21 (DE3) and purified by a Ni affinity column. After removing the His tag by thrombin, the sample was passed through an Ni affinity column to remove undigested proteins. Further purification was performed with an anion exchange column. Macrocysts for SFX were prepared by the hanging-drop vapor-diffusion method. Crystals were grown at 20 °C in a solution composed of 100 mM sodium acetate (pH 4.1) and 7% PEG 4000. Nanosized solution for micromcysts was prepared by sonicating the macromcysts with a UD-211 ultrasonicator (Tomy Seiko Co.). The resulting solution was slightly centrifuged and the upper solution was collected and used as seeds. Micromcysts for SFX were prepared in a 15-mL centrifuge tube containing 500 μL of the protein solution (50 mg/mL) and precipitant solution (100 mM sodium acetate (pH 4.0), 12% PEG 4000, and 20 μL of the nanosized solution). The centrifuge tube was placed on the RT 50 rotator (Titec) at a speed of 30 rpm for 4 d at 20 °C to obtain microcrystals. The microcrystal solution was filtered through a 30-μm CellTrics filter (Chiyoda Science Co.) before the SFX experiments. The mutant proteins (T280V and T280S) were purified with the same protocol as the WT enzyme. The activity assay was performed at 25 °C as described elsewhere (57) with several modifications.

Acknowledgments. We thank beamline staffs at the SPring-8 (proposal 2014B89474) and the SPring-8 Angstrom Compact Free-Electron Laser (SACLAC) for their support and A. Arrieta for her support in the activity assay. The serial femtosecond crystallography experiments were performed at BL3 of SACLAC with the approval of the Japan Synchrotron Radiation Research Institute (Proposals 2014B8050, 2015A8026, 2015A8048, 2015A8049, and 2015B8047). This work was supported by the K-Xray Free-Electron Laser purity Strategy Program (Ministry of Education, Culture, Sports, Science, and Technology, MEXT), by a Grant-in-Aid for Scientific Research on Innovative Areas (MEXT), and by Japan Society for the Promotion of Science KAKENHI Grant 15K18487. We are grateful for support from the SACLA HPC system and the Mini-K super computer system. Experiments at BL2681 and BL2682 of SPring-8 were supported by the Platform for Drug Discovery, Informatics, and Structural Life Science (Proposals 2014B1146 and 2015B1146).

