Correction

APPLIED PHYSICAL SCIENCES

The authors wish to note the following: “After the publication of our article, we have learned of three papers highly relevant to our research subject.

“In 1967, Masica studied experimentally the stability of liquid interfaces in a tube of circular cross-section under weightless conditions when accelerated transversally (1). This configuration is physically equivalent to a horizontal capillary. Masica’s findings, that stability only occurs provided the effective Bond number is smaller than a critical value, are consistent with our results.

“More recently, Manning, Collicott, and Finn studied theoretically the occlusion of a horizontal tube by a liquid plug, and derived a condition for the nonexistence of the plug (2). This condition happens to be the same as for the emptying of a capillary when turned to the horizontal, because both phenomena reduce to the existence of solutions of the same partial differential equation. Subsequently, Manning and Collicott apply this condition to a rectangular tube and note that no plug can exist when the contact angle is less than 45 degrees, irrespective of the value of the Bond number (3). This is very similar to our findings for spilling from capillaries of triangular cross-section, where we show that spilling must occur if the contact angle is less than 60 degrees for any cross-section size.

“We are very grateful to Profs. Finn, Manning, and Collicott for alerting us to their important work.”

www.pnas.org/cgi/doi/10.1073/pnas.1703324114
Geometry-induced capillary emptying

Carlos Rascón,1 Andrew O. Parry,2 and Dirk G. A. L. Aarts

1Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain; 2Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom; and 3Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom

When a capillary is half-filled with liquid and turned to the horizontal, the liquid may flow out of the capillary or remain in it. For lack of a better criterion, the standard assumption is that the liquid will remain in a capillary of narrow cross-section, and will flow out otherwise. Here, we present a precise mathematical criterion that determines which of the two outcomes occurs for capillaries of arbitrary cross-sectional shape, and show that the standard assumption fails for certain simple geometries, leading to very rich and counterintuitive behavior. This opens the possibility of creating very sensitive microfluidic devices that respond readily to small physical changes, for instance, by triggering the sudden displacement of fluid along a capillary without the need of any external pumping.

capillarity | surface tension | contact angle | Young-Laplace equation

The interaction of liquids with solids has been a fertile topic for physicists, chemists, mathematicians, and engineers, providing fundamental insights into the properties of matter, for example, the necessity of attractive molecular forces (1–3), explaining the rich phenomenology of wetting (4–7) and superhydrophobicity (8–11), and leading to the development of modern microfluidic devices (12–15). One of the prototypical examples of this is the capillary rise of a liquid in a vertical tube, where the shape and location of the meniscus (the interface separating the liquid from the gas) are determined by the surface tensions, the geometry of the capillary, and the strength of the gravitational force, as firmly established by comprehensive studies spanning several centuries (16). It is somehow surprising that, in contrast, the simplest question that may be asked when a capillary is turned to the horizontal, namely, “Does the liquid spill out?”, has so far remained unanswered. Here, we answer this question providing an appropriate mathematical criterion for spilling, and show that the phenomenology of a horizontally oriented capillary is distinctively richer than that of its vertical counterpart because, in this configuration, the meniscus undergoes an unbound deformation triggered by the effect of gravity that precedes the emptying of the capillary. This effect is absent in previous studies of capillarity in “horizontal” systems, like fibers (17) or grooves (18), where gravity is neglected.

Emptying

It is common experience that when a wide container, like a cylindrical glass, is partially filled with liquid and tilted slowly to the horizontal, the liquid spills out, and the glass inevitably empties. In contrast, if the container is narrow enough, like a drinking straw, the liquid remains in the container even in the horizontal position. For lack of a better criterion, the standard assumption is that the liquid will remain in a capillary of narrow cross-section and will flow out otherwise, but can one provide a definite answer that takes into account the cross-sectional shape of the capillary? To answer this question, we turn to macroscopic thermodynamics, which states that the liquid adopts the shape that minimizes the total free energy. This energy has three terms, each dependent on the shape of the meniscus:

\[E[ℓ] = A - \cos θ S + G/a^2.\]

Here, \(γ \) is the surface tension of the liquid-gas interface and \(θ \) is the contact angle (indicative of the affinity of the liquid toward the solid). The capillary length \(a = \sqrt{γ/Δρ g} \) is defined in terms of the mass density difference between the liquid and the gas \(Δρ \), and the gravitational acceleration \(g \); for pure water at room temperature, \(a \approx 2.7 \) mm. The functional dependence of the free energy on the meniscus shape \(ℓ \) enters through three geometrical quantities: the area of the meniscus \(A \), the surface area of the container walls in contact with the liquid \(S \), and the position of the center of mass of the fluid multiplied by its volume \(G \). The equilibrium shape of the fluid can be obtained from minimization of \([1] \), which amounts to balancing the three competing terms, subject to a constant volume condition. This can be done formally and leads to the renowned Young-Laplace equation for \(ℓ \), which must be solved requiring the meniscus to touch the container walls at an angle \(θ \). However, obtaining the shape of the liquid meniscus is a very demanding task in practice. Despite enormous efforts (16), hardly any analytical solutions to the Young-Laplace equation are known, except for simple containers without gravity. Here, we concentrate on the solutions to this equation when the container is a horizontal capillary of arbitrary cross-section. These show a number of remarkable features:

i) The Young–Laplace equation may or may not have a solution. The absence of a solution indicates that no meniscus can hold the liquid and, therefore, the liquid must necessarily flow out of the capillary. This contrasts with vertical (or, in general, upward-oriented) capillaries, for which the Young–Laplace equation always has a solution, except in the complete absence of gravity (16). Without gravity, the orientation is clearly irrelevant and therefore both the vertical and horizontal capillaries behave identically.

ii) For a given capillary geometry (cross-sectional shape and orientation), one may identify an emptying line in the \((θ, a)\) plane which corresponds to the values of the parameters for which solutions cease to exist. This line separates two regions, which we refer to as “filled” and “empty.”

iii) The emptying line is a critical line. All existing solutions in the filled region disappear when this line is crossed.

Significance

We present a precise mathematical criterion that determines whether the liquid in a capillary of arbitrary cross-section will remain in it or will flow out when the capillary is at a horizontal position. The rich phenomenology found can be used to construct very sensitive microfluidic devices.

Author contributions: C.R., A.O.P., and D.G.A.L.A. designed research; C.R. and A.O.P. performed research; C.R. and A.O.P. analyzed data; D.G.A.L.A. performed Surface Evolver computations; and C.R. and A.O.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.-C.B. is a Guest Editor invited by the Editorial Board.

1To whom correspondence should be addressed. Email: carlos.rascon@uclm.es.

This article contains supporting information online at www.pnas.orglookup/ supplemental doi:10.1073/pnas.1606217113/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1606217113
Fig. 1. Emptying line for a cylindrical capillary of radius R as a function of the contact angle θ of the liquid with the walls. The cross-section of a 3D drop of constant volume is included to illustrate the interaction of the liquid with a flat wall for different contact angles, from very hydrophilic ($\theta = 0^\circ$) to very hydrophobic ($\theta = 180^\circ$). The emptying line separates the filled region (where a meniscus exists) from the empty region (where no meniscus exists, which prompts the emptying of the capillary). Plots 1–4 show the deformation of the meniscus for $\theta = 90^\circ$ as the emptying line is approached (by increasing the value of R/a), and the appearance of a liquid tongue before emptying. Plots A–E illustrate the cross-section of the (infinitely long) liquid tongue at emptying for five different contact angles.

Fig. 2. Emptying line as a function of the contact angle θ for a capillary with an elliptical cross-section of semiaxes R and b in two different orientations: portrait (Top) and landscape (Bottom). The meniscus cross-section at different points of the emptying line (circles) is shown under each diagram (A–I). In the portrait orientation, the emptying line lowers as b increases, and touches the line $R = 0$ for $b \geq b^* \approx 1.635$. This creates gaps of width $\theta^* (b)$ at both ends of the diagrams (not visible for $b = 1.7$, but apparent for $b = 3$) representing values of the contact angle for which the capillary empties for any size R. In the landscape orientation, gravity and capillary forces compete to place the liquid, respectively, at the lowest position or near the point of highest curvature of the capillary. This competition causes the emptying line to break into sections, each corresponding to a different emptying mechanism, including those with unconnected interfaces (red lines). At the common point of two sections (white circles), two different emptying mechanisms coexist (represented in a common box under the diagrams). The number of sections of the emptying line depends strongly on the geometry, and does not follow a simple pattern.
capillary slit made of two parallel walls, which is essentially a 2D phenomenon (20). Although these results roughly confirm the intuitive idea that wide capillaries empty and narrow capillaries remain filled when turned to the horizontal, the reality is very different for capillaries with noncircular cross-sections. For example, Fig. 2 shows the emptying line for capillaries whose cross-sections are ellipses of semi-axes R and $b R$. The emptying line is computed for progressively more eccentric ellipses and for two different orientations (portrait and landscape-like), which illustrate the extremely sensitive interplay between the different energetic contributions in [1]. Two features emerge that are worth emphasizing: (i) For sufficiently eccentric capillaries ($b > b^* \approx 1.635$), the emptying line touches the line $R/a = 0$ at contact angles $\theta_0(b)$ and $180^\circ - \theta_0(b)$. This means that, contrary to intuition, those capillaries will empty if the contact angle θ is smaller than $\theta_0(b)$ or larger than $180^\circ - \theta_0(b)$, no matter how small they are. The line $R/a = 0$ also represents the limit of vanishing gravity and, therefore, any result for that line is necessarily independent of the orientation of the capillary. (ii) For landscape-like elliptical cross-sections (Fig. 2), the emptying line is divided into sections corresponding to different emptying mechanisms with distinct meniscus shapes, including those that spread along the sides of the capillary rather than its bottom. At the common point of two adjacent sections, two different (yet equivalent) emptying mechanisms coexist. These common points need to be the starting points of lines of coexisting solutions in the filled region, which present 2D-reduction approach cannot describe. All these features represent a radical departure from the simple case of the circular capillary, where emptying is essentially determined by the size R (wide or narrow containers), and there is only a single emptying mechanism.

Additional features also emerge when capillary cross-sections with edges are considered. For example, Fig. 3 shows the emptying lines of a horizontal capillary of triangular cross-section. The presence of an opening angle β in the cross-section of the capillary gives rise to a distinct emptying mechanism that takes place close to the corner. Any capillary with such an angle will empty for $\theta < (180^\circ - \beta)/2$ and $\theta > (180^\circ + \beta)/2$, no matter how small the cross-section is. Although this phenomenon, closely related to wedge filling (21), has already been described in the absence of gravity (22), we see here that, quite unexpectedly, it extends unaltered to appreciable values of the gravitational field (dashed red lines) that depend on the geometrical details of the capillary. Approaching these vertical sections of the emptying line, the meniscus does not develop a tongue. This is consistent with the vanishing of the meniscus cross-section on approaching the points “A” in Fig. 3 along the (blue) emptying line. In practice, upon crossing these vertical sections of the emptying line, the capillary will simply empty because all of the liquid in the capped end will flow out along the wedge. This has been observed in experiments at zero gravity (corresponding to $R/a = 0$) (16). Note also that, as the cross-section of this triangular capillary lacks symmetry under 180° rotations, the emptying line is no longer symmetric about $\theta = 90^\circ$, as it was in the previous examples.

With the exception of the vertical sections of the emptying line that appear in capillaries with edges, the 3D meniscus develops a tongue that grows in size whenever an emptying line is approached from the filled region. This can be achieved in a number of ways: changing the contact angle [for instance, varying the temperature or using electrowetting (18, 23)], changing the gravitational acceleration (24), or simply rotating the capillary around its axis. In this way, a number of microfluidic devices can be constructed (including, for instance, those with immiscible fluids or other coexisting phases that could play the role of liquid and gas) that exploit the sharp change in the meniscus shape in response to very small physical changes, for instance, by triggering the sudden displacement of fluid along the capillary without the need of any external pressure, or by increasing the meniscus area for catalytic purposes. As we focus here only on equilibrium properties, contact angle hysteresis has not been addressed. However, earlier experimental studies in zero gravity indicate that even in the presence of large contact angle hysteresis, the meniscus behavior is consistent with the discontinuities predicted by the mathematical solution of the idealized Young–Laplace theory (24). Regarding the dynamics of capillary emptying, note that, in the growth of the tongue, the front and rear of the meniscus will be characterized by the advancing and receding contact angles, respectively. Further consequences of capillary emptying could also be envisaged for the localization of fluids in porous media.

ACKNOWLEDGMENTS. We thank Eduardo Colorado for insightful comments. C.R. acknowledges the support of the Spanish Ministerio de Economía y Competitividad under Grant FIS2015-66253-P.