Age of Jupiter inferred from the distinct genetics and formation times of meteorites

Thomas S. Kruijer*ab, Christoph Burkhardtb, Gerrit Buddeb, and Thorsten Kleinea

*Institut für Planetologie, University of Münster, 48149 Muenster, Germany; and bNuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550

Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved May 4, 2017 (received for review March 23, 2017)

The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ~1 My and ~3–4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter’s core grew to ~20 Earth masses within <1 My, followed by a more protracted growth to ~50 Earth masses until at least ~3–4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.

Jupiter | giant planet formation | nucleosynthetic isotope anomalies | Hf-W chronometry | solar nebula

The formation of gas-giant planets such as Jupiter and Saturn is thought to have involved the growth of large solid cores of ∼10–20 Earth masses (M_\text{E}) followed by the accumulation of gas onto these cores (1, 2, 2). Thus, the gas-giant cores must have formed before dissipation of the solar nebula—the gaseous circumstellar disk surrounding the young Sun—which likely occurred between 1 My and 10 My after Solar System formation (3). Although such rapid accretion of the gas-giant cores has successfully been modeled (1, 2, 4), until now it has not been possible to actually date their formation. Here we show that the growth of Jupiter can be dated using the distinct genetic heritage and formation times of meteorites.

Most meteorites derive from small bodies located in the main asteroid belt between Mars and Jupiter. Originally these bodies probably formed at a much wider range of heliocentric distances, as suggested by the distinct chemical and isotopic compositions of meteorites (5–8) and by dynamical models indicating that the gravitational influence of the gas giants led to scattering of small bodies into the asteroid belt (9, 10). Information on the initial formation location of meteorite parent bodies within the solar accretion disk can be obtained from nucleosynthetic isotope anomalies in meteorites. These anomalies arise through the heterogeneous distribution of isotopically anomalous presolar components and vary as a function of heliocentric distance (6, 11). For instance, Cr, Ti, and Mo isotope anomalies (6–8, 12) reveal a fundamental dichotomy in the genetic heritage of meteorites, distinguishing between “noncarbonaceous” and “carbonaceous” meteorite reservoirs (11). This distinction may reflect either a temporal change in disk composition or the separation of materials accreted inside [noncarbonaceous (NC) meteorites] and outside [carbonaceous (CC) meteorites] the orbit of Jupiter (11–14). If the latter is correct, then the age of Jupiter can be determined by assessing the formation time and longevity of the NC and CC meteorite reservoirs. However, it is currently not known when these two reservoirs formed and whether and for how long they remained isolated from each other.

To address these issues and to ultimately determine the timescale of Jupiter’s formation, we obtained W and Mo isotopic data for iron meteorites (Materials and Methods, SI Materials and Methods, Fig. S1, and Tables S1–S4). These samples are fragments of the metallic cores from some of the earliest-formed planetesimals (15), making them ideal samples to search for the effects of giant planet formation on the dynamics of the early Solar System. Previous W isotope studies on iron meteorites have focused on the major groups (i.e., IIAB, IID, IIIAB, IVA, and IVB) and on determining the timescales and processes of core formation in these bodies (15). Here we extend these studies by examining a larger set of iron meteorite groups (i.e., IC, IIC, IID, IIIF, IIIE, and IIIF), for which we determined the timing of core formation using the 182Hf–182W chronometer (half-life = 8.9 My), as well as nucleosynthetic Mo isotopic signatures, which enables us to link these irons to either the NC or the CC meteorites.

CC and NC Iron Meteorites

The Mo isotopic data reveal variable nucleosynthetic anomalies in iron meteorites (Fig. 1). Consistent with prior studies (6), we find that these anomalies predominantly reflect the heterogeneous distribution of a presolar carrier enriched in Mo nuclides produced in the slow neutron capture process (s-process) of nucleosynthesis (Fig. 1). However, in a plot of ε^{96}Mo vs. ε^{94}Mo (the parts per 10,000 deviations of δ^{96}Mo/δ^{97}Mo and δ^{94}Mo/δ^{96}Mo from terrestrial standard values), the iron meteorites fall onto a linear array extending from solar values to values typical of CC and NC meteorites. This relationship is consistent with the core formation model for giant planet formation.

To whom correspondence should be addressed. Email: thomaskruijer@gmail.com.

Author contributions: T.S.K. and T.K. designed research; T.S.K. and C.B. performed research; T.S.K., C.B., G.B., and T.K. analyzed data; and T.S.K., C.B., G.B., and T.K. wrote the paper.

The authors declare no conflict of interest.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704461114/-/DCSupplemental.

Significance

Jupiter is the most massive planet of the Solar System and its presence had an immense effect on the dynamics of the solar accretion disk. Knowing the age of Jupiter, therefore, is key for understanding how the Solar System evolved toward its present-day architecture. However, although models predict that Jupiter formed relatively early, until now, its formation has never been dated. Here we show through isotope analyses of meteorites that Jupiter’s solid core formed within only ∼1 My after the start of Solar System history, making it the oldest planet. Through its rapid formation, Jupiter acted as an effective barrier against inward transport of material across the disk, potentially explaining why our Solar System lacks any super-Earths.
two distinct s-process mixing lines. Whereas most of the newly investigated irons (IIC, IID, IIF, and IIIF, and IVB) plot on another s-process mixing line together with carbonaceous chondrites, most of the previously studied irons as well as the IC and IIE iron meteorites plot on a s-process mixing line together with ordinary chondrites, enstatite chondrites, and the Earth’s mantle (ε^{96}Mo = 0) (Fig. 1). Thus, several iron meteorite groups (IIC, IID, IIF, IIE, and IVB) belong to the CC meteorites, whereas several other groups (IC, IIAB, IIIAB, IIE, and IVA) belong to the NC meteorites (Fig. 1).

A similar genetic dichotomy is seen for W isotopes, which for iron meteorites reveal two distinct clusters: ε^{182}W and ε^{184}W (the parts per 10,000 deviations of 182W/184W and 186W/184W from terrestrial standard values). The NC irons have ε^{182}W values between approximately -3.4 and -3.3 and no nucleosynthetic W isotope anomalies (i.e., ε^{183}W \sim 0), whereas the CC iron meteorites have ε^{182}W values of around -3.2 and show nucleosynthetic ε^{183}W excesses (Fig. 2, Fig. S2, and Table S5). Note that the ε^{182}W values of each group were corrected for the effects of cosmic ray exposure (Figs. S3 and S4 and Table S5), using Pt isotopes as the neutron dosimeter (15). In addition, for the iron groups showing 186W anomalies, the ε^{182}W values were corrected for nucleosynthetic ε^{186}W variations, by using correlated ε^{182}W-ε^{186}W variations induced by nucleosynthetic isotope heterogeneities (15) (see SI Text for details).

As variable ε^{182}W values in iron meteorites reflect different times of Hf/W fractionation during metal-silicate separation on their parent bodies (15–17), the higher ε^{182}W of the CC irons indicates a later time of core formation (Table S5), at \sim2.2 My to \sim2.8 My, compared with the NC irons, at \sim0.3 My to \sim1.8 My after the start of Solar System history [as defined by the formation of Ca-Al-rich inclusions (CAI)]. A prior study has shown that ε^{182}W differences between different groups of iron meteorites could be due to distinct melting temperatures during core formation, reflecting the different S contents and hence liquidus temperatures of the cores (15). However, the NC and CC reservoirs both include iron meteorite groups with similar volatile element concentrations and hence, presumably similar S contents. Thus, different melting temperatures of the NC and CC parent bodies cannot be the cause of the observed ε^{182}W dichotomy. Instead, the difference in core formation times is most easily explained by different accretion times of the CC and NC iron meteorite parent bodies. Thermal modeling of bodies internally heated by 26Al decay (SI Text) shows that the NC iron meteorite parent bodies probably accreted within <0.4 My after CAI formation, whereas the CC iron meteorite parent bodies accreted slightly later, at $0.9^{+0.3}_{-0.2}$ My after CAI formation (Fig. 3). Taken together, the Mo and W isotopic data thus indicate that accretion of CC and NC iron meteorite parent bodies occurred not only in genetically distinct nebular regions, but also at different times (Figs. 2 and 3).

Coexistence and Spatial Separation of CC and NC Meteorite Reservoirs

The distinct genetic heritage and accretion times of iron meteorite parent bodies make it possible to constrain the formation time and longevity of the NC and CC nebular reservoirs. Accretion of CC iron meteorite parent bodies at \sim1 My after CAI formation...
Four snapshots of Jupiter and had opened a gap in the disk (13, 23, 24), likely could explain the efficient separation of the NC and CC reservoirs, because in both reservoirs planetesimal accretion occurred concurrently for several million years. Consequently, the precursor dust of planetesimals in both reservoirs must have been present for this period and, therefore, cannot have been locked up in earlier-formed planetesimals.

The most plausible mechanism to efficiently separate two disk reservoirs for an extended period is the accretion of a giant planet in between them, generating a gap within the disk and inhibiting the inward drift of dust grains (13, 23, 24) (Fig. 4). Being the largest and nearest gas-giant planet, Jupiter is the most likely candidate for separating the NC and CC reservoirs. As the Earth is part of the NC reservoir, this implies that the CC reservoir was initially located outside Jupiter’s orbit, meaning that CC bodies originally derive from the outer Solar System. Because the CC meteorites include some iron meteorites, one important implication of our data is that early and rapid formation of differentiated planetesimals was possible not only in the innermost terrestrial planet region (25), but also farther out in the disk.

The formation of Jupiter between the NC and CC reservoirs not only provides a mechanism for efficiently separating these two reservoirs for an extended period, but also provides a means for the later transport of CC bodies into the inner Solar System. This is necessary because although the NC and CC bodies initially formed in spatially distinct areas of the disk, at the present day they both reside in the main asteroid belt. This is a natural outcome of the growth of Jupiter, which ultimately leads to scattering of bodies from beyond Jupiter’s orbit (i.e., CC bodies) into the inner Solar System, either during an inward-then-outward migration of Jupiter (10, 23) or during runaway growth of Jupiter on a fixed orbit (26). Thus, the presence of Jupiter between the NC and CC reservoirs provides the most plausible mechanism to

![Fig. 3. Relation between the time of accretion and core formation on iron meteorite parent bodies.](image)

![Fig. 4. Four snapshots of Jupiter’s growth in the solar circumstellar disk.](image)
account for both (i) the prolonged spatial separation of these reservoirs and (ii) the co-occurrence of NC and CC bodies in the present-day asteroid belt.

Growth History of Jupiter

With the assumption that the prolonged spatial separation of the NC and CC reservoirs reflects the formation of Jupiter in between these reservoirs, the distinct timescales for the accretion of NC and CC meteorite parent bodies make it possible to date the formation of Jupiter. The growth of Jupiter beyond a certain mass would have inhibited the inward drift of particles (13, 24), and once it grew further, Jupiter ultimately would have generated a gap within the disk (23). In particular, theoretical studies suggest that the inward drift of particles stopped once Jupiter's core had grown to about 20 M_E (24), while a gap formed once Jupiter reached approximately 50 M_E (13, 23, 27). Thus, because the r-process material that was added to the CC reservoir did not infiltrate the coexisting yet spatially separated NC reservoir, this implies that at the time the r-process material was added, Jupiter already had a size of >20 M_E. Furthermore, because this material must have been added and homogenized before the first planetesimals formed within the CC reservoir at ~1 Myr after CAI formation, these results mandate that Jupiter reached a size of >20 M_E within ~1 Myr of Solar System formation (Fig. 4). This early formation of (proto-) Jupiter is consistent with the rapid growth of Jupiter’s core predicted in theoretical models (1, 4), regardless of whether pebble accretion (28, 29) or hierarchical growth models (30, 31) are assumed.

Once Jupiter reached a mass of 50 M_E, which happens via gas accretion onto its solid core, a gap opened in the disk (13, 23, 24, 27), followed by scattering of bodies from beyond Jupiter’s orbit (i.e., CC bodies) into the inner Solar System (10, 23, 26). Our results show that this scattering of CC bodies and, hence, Jupiter’s outward migration or runaway growth cannot have started before ~3–4 Myr after CAI formation. This is because CC chondrite parent bodies continued to form until at least ~3–4 Myr after CAI formation (18–20). As these chondrites plot on the CC line in Mo isotope space (Fig. 1), they must have formed before the scattering of CC meteorites into the inner Solar System and, hence, before the CC meteorite parent bodies joined the NC parent bodies in the asteroid belt. Accordingly, these data indicate that Jupiter reached ~50 M_E later than ~3–4 Myr after CAI formation. This is consistent with theoretical predictions that the rapid growth of Jupiter’s core to ~20 M_E was followed by a more protracted stage of gas and solid accretion to several tens of Earth’s masses (1, 32, 33) before runaway gas accretion led to Jupiter’s final mass (~318 M_E). Thus, our results are in good agreement with the timing and sequence of events predicted in the core accretion model for the formation of Jupiter (1). One important implication of this result is that, because Jupiter acted as a barrier against inward transport of solids across the disk, the inner Solar System remained relatively mass deficient, possibly explaining its lack of any “super-Earths” (34, 35).

Materials and Methods

For this study we selected a total of 19 samples covering six different rare iron meteorite groups (IC, IIE, IIF, III, IIE, and IIF). This sample set complements the iron meteorites from major groups (IIAB, IID, IIIAB, IVA, and IVB) whose W, Pt, and Mo isotope compositions had previously been analyzed (6, 15). After digestion of the iron meteorites in concentrated HNO_3–HCl (2:1), the sample solutions were split into a fraction for W and Mo (~90%) and for Pt (~10%) isotope analysis. The chemical separation of W, Pt, and Mo was accomplished using ion exchange chromatography following previously published procedures (6, 12, 15, 36). The W, Pt, and Mo isotope data are reported as ε- (i.e., parts per 10^6) deviation relative to the isotopic ratios measured for terrestrial bracketing solution standards. The reported ε-W, ε-Pt, and ε-Mo values for samples (Tables S1–S4) represent the mean of pooled solution replicates (n = 1–8) together with their associated uncertainties [2 SD or 95% confidence (conf.) interval].

ACKNOWLEDGMENTS. We gratefully acknowledge the Natural History Museum, London (C. Smith, N. Almeida) and the Field Museum, Chicago (P. Heck) for providing samples. We thank F. Nimmo for giving detailed insights into giant planet formation and for a first draft of Fig. 4. We also thank C. Brennecka and A. Morbidelli for discussions; C. Brennecka for comments on the paper; and S. Gerber, J. Hellmann, N. Krabbe, and U. Heitmann for their assistance. Finally, we thank Alex Halliday and two anonymous reviewers for their constructive comments that helped to improve the paper. This study was performed under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with release number LLNL-RLN-731226. This work was funded by the Deutsche Forschungsgemeinschaft (DFG) (Collaborative Research Center/Transregio TRR 170 subproject B3–1). C.B. was supported by the European Research Council Consolidator grant ISOCORE (Contract 616564), and G.B. was supported by the DFG Priority Program 1385 (Grant KL1857/3). This is TRR 170 publication 10.

